Structural and Multidisciplinary Optimization Laboratory

Graeme J. Kennedy, Komahan Boopathy, Ting Wei Chin, Kevin Jacobson, Jan Kiviaho, Mark Leader, & Jordan Trout School of Aerospace Engineering

Flexible Multibody Dynamics for Rotorcraft

Optimization with Time-accurate Analysis

Topology Optimization

- Mass-minimized design subject to stress constraints (left) and mass-minimized design subject to stress and natural frequency constraints (right)
- Developed a stress reconstruction technique beneficial for solving large-scale stress constrained problems
- Implemented a Jacobi-Davidson eigenvalue solver with eigenvector recycling, reducing the computational cost by up to 73% when compared to the Lanczos method

- With Adaptive Mesh Refinement: 81.8 million elements with 31.8 million DVs in 49.2 hours (top)
- Without AMR: 329 million elements with 125 million DVs in 77.0 hours (bottom)
- Identical resolution with only 1.86% difference in compliance objective

• Orthotropic design using AMR: 3.19 million elements with 5.91 million DVs

Multimaterial Topology Optimization with Thermoelastic Effects

- Identical mass but different layout
- Compliance-minimized design subject to mass constraints (left) and mass-minimized design subject to stress constraints (right)

Framework

- TMR¹: parallel mesh generation and adaptive mesh refinement tool
- TACS²: finite element solver well-suited for large-scale problems
- ParOpt³: parallel optimizer utilizing the interior-point method
- ^ahttps://github.com/gjkennedy/tmr
- bhttps://github.com/gjkennedy/tacs chttps://github.com/gjkennedy/paropt

Website: gkennedy.gatech.edu