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I. Introduction

THE CFD Vision 2030 Study [[1], contracted by NASA, was published in 2014 and has become an aspirational

objective for focusing CFD development on aerospace applications. The Study identified six main technical domains
for aligning research: high performance computing (HPC), physical modeling, algorithms, geometry and grid generation,
knowledge extraction, and multidisciplinary analysis and optimization (MDAQO). Within each domain, subdisciplines
(aka elements) illustrate the maturation of technology during the time period from 2015 to 2030. This maturation is
illustrated in Figure[I} Each of the elements have their own timeline to identify key technology milestones and technology
demonstrations. This Roadmap provides a compact and informative summary of future objectives and milestones, but
some details are necessarily omitted from the graphic due to space constraints. These maturing technologies target the
use of CFD for aerospace applications of increasing complexity that are represented in the Study by a series of grand
challenge problems. At the 2019 AIAA Aviation forum, five years after the Study was published, a special session was
held with invited lectures [2H8]] reviewing the progress and future in the six domains.

Recognizing the ongoing utility of the Vision toward improving CFD technology, AIAA formed the CFD 2030
Integration Committee (IC). One of the charters of the IC is to maintain the Roadmap by assessing progress and
highlighting the ongoing needs of aerospace CFD. Shortly after the 2019 Aviation Forum special session, the IC formed
a Roadmap subcommittee to provide a detailed technical review of the Roadmap and identify progress (and challenges
to) following the outlined trajectory. The Roadmap subcommittee released a report in June of 2021 [9] with their
findings to provide further guidance to the research community. While this report cannot be exhaustive and there are
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Fig. 1 Roadmap graphic from original Study [1].

likely some elements omitted or inadvertently neglected, it represents inputs from a diverse group of experts in the field.
This paper describes the approach taken, summarizes the findings, and provides an update to the Vision 2030 Roadmap
reflecting the present understanding.

II. Approach

The Roadmap subcommittee assessed progress by polling experts within each domain and by reviewing conference
and journal publications with a focus on the aerospace field. Specific focus was placed on the milestones identified
in the original Roadmap. In addition, related technologies that have emerged since the original Study was published
were identified. These milestones were assessed for level of completeness and maturity for the industry as a whole. In
order to provide a consistent and clear grading scale for each of the identified technologies, a technology readiness level
(TRL) scale was utilized with specific interpretations for each of the nine levels. As depicted in Table[T] there is a focus
on publicly demonstrated or documented applications of a given technology to provide clear evidence of the maturity
for the entire community. This scale is utilized to help assess what technologies are maturing with respect to the Study
forecast and which ones are lagging.

The intent of this review is to help focus research and development on the technologies required to achieve the
Study’s vision of CFD in 2030, while identifying those that are particularly at risk. With this update representing a little
over five years since the release of the Roadmap, some milestones are adjusted to reflect the development that has taken
place. A TRL score is associated with each of the milestones that will be used to track progress annually.

II1. Roadmap Updates
The Roadmap identified three technology demonstrations to be performed in 2020: 1) unsteady, complex geometry,
separated flow predictions at flight Reynolds number (e.g., high lift); 2) grid convergence for a complete configuration;
and 3) on-demand analysis/visualization of a 10 billion point mesh, unsteady CFD simulation. These items help to
provide a good indication of the advancements made and, while progress has definitely been made on all of these
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Table 1 Technology Readiness Level standard definitions and interpretation for assessing CFD technology

development.
TRL | NASA Definition [10] DOD DAG [L1] Description Present Interpretation

1 Basic principles Lowest level of technology readiness. Sci- | Conference article describing con-
observed and reported entific research begins to be translated into | cept/underlying principles

applied research and development.

2 Technology concept Invention begins. Once basic principles | Peer-reviewed article describing re-
and/or application are observed, practical applications can be | sults from feasibility study.
formulated invented. Applications are speculative and

there may be no proof or detailed analysis
to support the assumptions.

3 Analytical and Active research and development is initi- | Article or paper demonstrating pro-
experimental critical ated. This includes analytical studies and | totype of capability (with limited
function and/or laboratory studies to physically validate | scope)
characteristic proof of analytical predictions of separate elements
concept of the technology.

4 Component and/or Basic technological components are in- | Capability evaluated/implemented
breadboard validation tegrated to establish that they will work | by a CFD team; basic demonstration
in laboratory together. This is relatively “low fidelity”
experiment compared to the eventual system.

5 Component and/or Fidelity of breadboard technology in- | Successful demonstration of capa-
breadboard validation creases significantly. The basic techno- | bility on a production-level case
in relevant environment | logical components are integrated with

reasonably realistic supporting elements
so it can be tested in a simulated environ-
ment.

6 System/subsystem Representative model or prototype system, | Capability used multiple times by
model or prototype which is well beyond that of TRL 5, is | a single CFD team for purposes be-
demonstration in a tested in a relevant environment. Repre- | yond demonstration (application)
relevant environment sents a major step up in a technology’s

demonstrated readiness.

7 System prototype Prototype near, or at, planned operational | Use/Evaluation of capability by in-
demonstration in an system. Represents a major step up from | dependent organizations (perhaps in
operational TRL 6, requiring demonstration of an ac- | different implementations). This is
environment tual system prototype in an operational | typically inspired by the successful

environment such as an aircraft, vehicle, | demonstration of some significant
or space. milestone in terms of efficiency, ease
of use/robustness, or accuracy.

8 Actual system Technology has been proven to work in its | Application of capability (beyond
completed and qualified | final form and under expected conditions. | demonstration) by independent or-
through test and In almost all cases, this TRL represents | ganizations. This implies sufficient
demonstration the end of true system development. Ex- | robustness for use (value achieved

amples include developmental test and | exceeds investment required to ob-
evaluation of the system in its intended | tain it)
weapon system to determine if it meets
design specifications.
9 Actual system proven Actual application of the technology in its | Routine/expected use of capability

through successful
mission operations

final form and under mission conditions,
such as those encountered in operational
test and evaluation.

by multiple organizations. OR Ac-
ceptance of results by multiple teams
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fronts, there are still enhancements that are required to meet the proposed demonstrations. In the Physical Modeling
Domain, there has been steady, incremental progress in the development of unsteady methods for high Reynolds number
flight over complex configurations. Test cases from the Third AIAA CFD High Lift Prediction Workshop [12] spurred
multiple instances of contributors generating time dependent simulations on the JAXA standard model with promising
results using a number of different approaches [[13H15]]. These results have been positive and a more concentrated study
is taking place in preparation for the fourth workshop with significant efforts including time dependent simulations using
both wall modeled LES approaches as well as hybrid RANS/LES methods. For the Algorithms Domain technology
demonstration, grid convergence has been demonstrated [[L6H18]] for simple configurations (such as the ONERA M6
wing) in different tools with different algorithms. Finite element discretizations have used strong solvers and adaptive
meshes to demonstrate progress toward grid convergence. However, these techniques also identify concerns with
multiple grid-converged solutions existing for the RANS equations [19]. A large step toward completing a technology
demonstration in the Knowledge Extraction Domain was made at SC19. During this event, a large-scale interactive
demonstration was presented for a Mars lander configuration [20] simulated using NASA’s FUN3D CFD solver on a
6 billion element grid with 200,000 time steps. The interactive visualization of unsteady flow used state-of-the-art
hardware (4 DGX-2™ systems each with 16 V100™ GPUs and 16 SSDs for GPUDirect™ storage) that is not typically
available to industry, but does represent a significant capability demonstration.

The following subsections review highlights of the achievements in each of the domains through 2020 and provide
updates to the Roadmap. In each section, an evaluation of the progress toward milestones is made and milestone
additions or adjustments are made based on perceived progress in order to help provide an updated version of the
progress toward the Vision outlined in the original Report. A graphical subset of the original and modified Roadmap
is presented in each subsection for comparison. This is followed by a table of all of the milestones on the modified
Roadmap with an indication of the assessed 2020 TRL (as described above) and an indication of the proposed milestone
date. The evolution from the current status to the end state TRL at the deadline is depicted using a color gradient; where
the gradient is rapid, more rapid development is suggested. Note that while a milestone should reach TRL 9 to be
complete, there are some past milestones that are accepted at a lower TRL level. The symbols in the Roadmap for these
are shaded gray to reflect a partial completion.

A. High Performance Computing

Original 2015 2020 2025 2030
Demonstrate implementation of CFD algorithms for D ficiently scaled CFD simulati 30 exaFLOPS, unsteady, maneuvering flight, full
HPC extreme parallelism in NASA CFD codes (e.g., FUN3D) capability on an exascale system engine simulation (with combustion)
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2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030
CFD on massively parallel systems
Demonstrate implementation of CFD algorithms for extreme parallelism in

NASA CFD codes (e.g., FUN3D) 6
Demonstrate efficiently scaled CFD simulation capability on an exascale system 0 ¢
30 exaFLOPS, unsteady, maneuvering flight, full engine simulation (with ¢
combustion) 0
CFD on Revolutionary Systems (Quantum, Bio, etc.)
Demonstrate solution of a representative model problem 2 ¢
Demonstrate solution of a representative model problem 0 o

The High Performance Computing (HPC) component of the Study is considered an enabling technology across
all domains of the Roadmap. The HPC Domain is further organized into a primary element aimed at an evolutionary
progression of more conventional hardware technologies, as well as a secondary element intended to monitor community
progress toward potential game-changing use of revolutionary hardware technologies such as quantum and neuromorphic
computing for CFD applications. While progress has been made in the field of quantum computing, this technology has
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yet to penetrate into aerospace CFD. Accelerators based on Graphics Processing Units (GPUs) are an enabling near-term
technology to realize exascale computing for practical applications, but generally require a substantial refactoring effort.

The first of the HPC Domain milestones appeared in 2019 and called for a demonstration of the implementation
of algorithms for extreme parallelism in a NASA CFD application. At that time, the Department of Energy (DOE)
Summit system located at Oak Ridge National Laboratory (ORNL) held the top ranking as the world’s most powerful
HPC system, enabled predominantly by its six NVIDIA® GPUs available on each compute node [21]]. In Refs. [22]
and [23]], computational campaigns on Summit using the NASA FUN3D unstructured-grid solver are described. In these
efforts, a comprehensive port to NVIDIA GPUs based on the CUDA™ programming model was used to demonstrate a
performance advantage of 4.5x and 6.5x for the NVIDIA Tesla™ V100 GPU over dual-socket Intel® Xeon™ Gold
6148 (40 cores total) and IBM® POWER9® (44 cores total) CPUs, respectively. Excellent scaling to 1,024 nodes of
Summit (6,144 GPUs) was observed, with absolute performance equivalent to approximately 1.2 million Intel Xeon
Gold 6148 cores and a nominal per-node performance advantage of 36x for GPU- versus CPU-based simulations
on the Summit system. This capability was used throughout 2019 to perform parametric studies of long duration,
high-resolution simulations of a supersonic retropropulsion concept for entry, descent, and landing operations of a
human-scale Mars lander, using spatial meshes of 6 billion elements and with each simulation producing several hundred
terabytes of output data. The port of FUN3D to NVIDIA GPU architectures was the result of several years of workforce
development through strategic partnering, extensive software modifications, and the adoption of a steady progression of
available hardware features. Minimizing data motion across complex memory hierarchies and identifying approaches to
substantially increase node-level parallelism were critical.

While the fundamental hardware technologies for HPC have been relatively stable for the past two decades
with periodic hardware refreshes bringing additional processing cores, vectorization support, and improved memory
performance, there has not been a pressing need for large-scale application updates. Compilers for common high-level
languages such as Fortran, C, and C++ have delivered reasonable performance with minimal developer effort. Node-level
parallelism has generally called for O(100) degrees of concurrency, which could be readily achieved through popular
shared-memory programming models such as OpenMP [24}25]] or POSIX™ Threads, or the ubiquitous message-passing
model of MPI [25]].

As the HPC community prepares for the imminent generation of exascale systems, the landscape is undergoing a
fundamentally disruptive paradigm shift in the technologies driving today’s most powerful computing architectures.
Looming manufacturing constraints and power requirements that grow as a strong function of clock speed have forced
vendors to seek improved performance through vastly higher levels of concurrency, or parallelism, using processing
elements that often operate at reduced clock speeds compared to prior architectures. Increasingly elaborate memory
hierarchies abound and often include High Bandwidth Memory (HBM) ideal for the proliferation of memory-bound
applications characterized by motifs with low arithmetic intensity. Trends suggest a steady increase in heterogeneity;
that is, architectures over the next decade are likely to leverage highly diverse arrays of processing elements most
amenable to very specialized tasks.

The RIKEN Center for Computational Science in Japan recently debuted Fugaku, the world’s new top system, which
delivers a 442-petaflop LINPACK rating [21] and is based on a new ARM processor from Fujitsu. Within the United
States, the DOE will accept delivery of three state-of-the-art HPC systems over the next few years starting in late 2021
with the delivery of the Frontier system at Oak Ridge National Laboratory. Frontier will use AMD CPUs and GPUs.
Argonne National Laboratory will follow with the Aurora system, which will use Intel CPUs and new Intel GPUs. In
2023, the El Capitan system will arrive at Lawrence Livermore National Laboratory. Like Frontier, this system will also
be based on AMD CPUs and GPUs and is expected to realize two exaflops in LINPACK performance. The European
community hosts a number of systems incorporating similar CPU and GPU technologies, but also aims to field a new
architecture of their own in the next few years through the European Processor Initiative [26].

Migrating or developing large-scale applications to deliver portable performance across a broad swath of diverse,
complex architectures generally calls for more expressive programming models beyond the conventional approaches
of Fortran, C, and C++. Today’s developer has a plethora of options available offering a variety of advantages and
disadvantages, including high-level abstractions such as directive-based approaches and abstraction models, entirely
new languages specific to a particular hardware architecture, and machine-specific intrinsics sometimes necessary to
achieve peak performance. The mapping of application data and algorithms to hardware, as well as latency hiding
associated with memory accesses, network traffic, and I/O subsystems is of paramount importance. Mixed-precision
algorithms performed on specialized hardware driven by the rapid growth of the machine learning community can yield
substantial performance benefits. The use of asynchronous task-based models leveraging knowledge of algorithmic
graph dependencies and a run-time scheduler to dynamically allocate work to idle processing elements offers great
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promise but may also require a complete overhaul of the target application.

The next Roadmap milestone, originally scheduled for 2023, calls for the demonstration of an efficiently-scaled
CFD simulation on an exascale system. The third and final milestone in the Roadmap calls for a 30 exaflop simulation
of, for example, maneuvering flight including a comprehensive analysis of the propulsion system accounting for full
combustion physics. Although Japan’s Fugaku boasts an impressive 442-petaflop LINPACK rating, the more appropriate
metric may be its HPCG (High Performance Conjugate Gradients) rating [21]], widely considered to be more relevant in
the context of today’s large-scale science and engineering applications. In this measure, Fugaku achieves 16 petaflops.
Viewed in this light, the 2030 milestone calling for a 30-exaflop simulation lies some three orders of magnitude beyond
the current state of the art. While this considerable gap may appear daunting at the present time, such a rate of growth is
remarkably consistent with the historical trend of the past 25 years [21]] and speaks to the meticulous deliberations and
foresight of the authors of the Study.

Finally, as noted eatlier, the revolutionary systems timeline is intended to monitor developments in game-changing
hardware technologies, which may hold the potential to bring disruptive change across the fields of science and
engineering. The field of quantum computing holds the promise of radically more efficient computation enabled by
basic physical properties of quantum physics. Basic research has led to tremendous strides in this field in recent years
and large efforts are actively funded by the Department of Energy, the Department of Defense, and the National Science
Foundation, among others in the United States, as well as private industry and other nations around the world. NASA
has long sponsored the Quantum Artificial Intelligence Laboratory, or QuAIL, project at the NASA Ames Research
Center. Recent examples of quantum computing applications include linear algebra, machine learning, differential
equations, hybrid approaches combining quantum computing with classical HPC, and recent research simulating
quantum computation of a Poisson solver as applied to CFD [27]. Maturing the use of this technology for CFD will
hinge on increased interactions between aerospace scientists and engineers and quantum computing researchers.

. .
B. Physical Modeling
Original 2015 2020 2025 2030
RANS Improved RST models in CFD codes Highly accurate RST models for flow separation
N Unsteadly, complex geometry, separated flow at flight
Hybrid RANS/LES o *Reynolds number (e.g., high lift)
LES Integrated transition prediction WMLES/WRLES for complex 3D flows at appropriate Re
ysical Modeling d d /WRLES f lex 3D fl
Chemical kinetics Chemical Multiregime turbulence- nsteady, 3D geometry, separated flow
Combustion calculation speedup kinetics in LES chemistry interaction model (e.g., rotating turbomachinery with reactions)
2020 Rev Machine learning
RANS Improved RST mgdels in CFD codes _, Integrated transition prediction (T-5) Highly accurate RANS models for flow separation for complex flow Integrated transition prediction (General)
) Unsteady, complex geometry, separated flow at
Hybrid RANS/LES ‘Hlight Reynolds number (e.g., high mq* )
Physical Modeling | Les WMLES for complex 3D flows at appropriate Re, *nlegraled transition prediction! gRLES fo;complex 3D flows at appropriate Re
Chemical kinetics Chemical Itiregime turbul y, 3D & y, separated flow
Combustion calculation speedup kinetics in LES chemistry interaction model (e.g., rotating turbomachinery with reactions)

2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030

RANS
Improved RST models in CFD codes 7
Integrated transition prediction (Tollmein-Schlichting modeling) 6
Integrated transition prediction (non-TS) 3
Highly accurate RST models for flow separation 2
Demonstration of machine learning to simulation of complex flow regime 1

Hybrid RANS/LES
Integrated transition prediction 2
Unsteady, complex geometry, separated flow atflight Reynolds number (e.g., 4
high lift)

LES
Integrated transition prediction 2
WMLES/WRLES for complex 3D flows at appropriate Re 5
Unsteady, 3D geometry, separated flow (e.g., rotating turbomachinery with 3
reactions)

Combustion
Chemical kinetics calculation speedup # 3
Chemical kinetics in LES
Multiregime turbulence-chemistry interaction model 3
Unsteady, 3D geometry, separated flow (e.g., rotating turbomachinery with 3

reactions)
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The Physical Modeling Domain encompasses the key modeling technologies required to represent complex physical
phenomena for air vehicles including turbulence, transition to turbulence, and complex chemical reaction phenomena
related to combustion. The domain is subdivided into four elements: RANS, Hybrid RANS/LES, LES and Combustion.
The first three elements related to computational simulation of turbulence are not completely distinct, as aspects of
RANS modeling and LES modeling are contained in hybrid models. It is acknowledged that there is a long list of
additional physical phenomena that are not included in the Roadmap but that are important for many applications. This
list includes icing phenomena, two phase flows in turbulence, real gas effects and plasma phenomena, and modeling for
high altitude rarefied gas applications. Key milestones included in the original Roadmap are Improved RST Models in
CFD Codes (2016), Highly accurate RST models for flow separation (2019), Integrated transition prediction (2017),
Unsteady complex geometry separated flow at flight Reynolds Number (e.g., high lift) (2020) and Chemical kinetics
calculation speedup (2017). Progress has been made in many of these areas but the full potential expected from these
technologies has not yet arrived.

Reynolds stress transport (RST) models have seen continued development since the publication of the Roadmap.
Significant efforts have been made at DLR [28]], NASA [29], China [30} 31/, and Superior Tech in Lisbon and Maritime
Research Institute in the Netherlands [32]]. While these models are available for use in several codes including popular
commercial flow solvers, outside of DLR, they have not penetrated extensively into aerospace industry applications.
These models have shown significant benefit in flows with curvature and swirl as well as corner flows, but have not
demonstrated significantly improved predictions of separated flows, a significant focus of the Roadmap. The Roadmap
included a decision point in 2019 for RANS turbulence models, particularly with respect to flow separation predictions.
While there have only been incremental enhancements in RANS models for this purpose, it is recognized that RANS
methods will continue to play an important role in many aircraft industry applications including conceptual design,
optimization, and loads prediction. As an example of ongoing development, machine learning (ML) methods have seen
a steady increase in research over the last five years. This development, in its infancy when the Study was released and
thus not mentioned, has multiple potential implications and has led to the addition of a new milestone.

Spanning all of the turbulence modeling elements was the 2017 milestone for integrated transition prediction,
which is recognized as an area of major importance to expanding the fidelity of CFD for many applications. Prior to
2014, a transport model-based method for prediction of Tollmien-Schlichting 2D transition was available through the
two-transport equation Langtry-Menter model. Over the past six years there has been active research resulting in the
development of additional transport-based transition prediction models, but there has been little convergence among
groups or CFD codes around a single model or approach with these new models. For many classes of application,
including swept transonic wings, laminar flow designs, low pressure turbines, hypersonic flows, and lower Reynolds
number flows representative for small and moderate scale UAVs, these methods are insufficient and accurate and
automated predictions of transition are not yet available. These milestones are of key importance but sufficiently far
from ready that they must be delayed.

Scale-resolving methods have emerged with uneven success for reaching the technology demonstration for 2020 of
modeling unsteady complex geometry separated flow at flight Reynolds number. Some progress in this front has already
been alluded to in the introduction. While there has been success in applications of hybrid RANS-LES methods to
high angle of attack tactical fighter applications, these are simpler than others because locations of separation onset
are largely dictated by sharp leading edges in the thin, swept wings. For other applications, particularly off-design
flight regimes such as high lift and lift break conditions, highly accurate simulations are elusive. Hybrid methods are
currently most effective where the point of flow separation is fixed by a sharp edge or a shock. Unsteady methods such as
Lattice-Boltzmann and wall modeled LES (WMLES) show promise for these flows, but additional computational cost is
a barrier, and their accuracy in predicting smooth-body separation with current grid counts is even more debatable than
that of hybrid methods. NASA has committed to “develop and demonstrate computationally efficient, eddy-resolving
modeling tools that predict maximum lift coefficient (C, ,,,) for transport aircraft with the same accuracy as certification
flight tests” (by 2025). These could be either hybrid RANS/LES or WMLES. Given the current state of the art, this is
considered an ambitious goal. While the 2020 demonstration was not met, the emphasis in this area by NASA suggests
that it may be realized with only a moderate delay.

Carefully controlled validation experiments are also important for the advancement of physical modeling, in particular
for turbulent separated flows. The NASA Juncture flow test case evaluated 3D separation in the adverse pressure
gradient region of a wing-fuselage juncture [33]]. While the initial test campaign was completed in the fall of 2019, post
processing and simulation of data continue into 2020 as well as a planned second test entry. Experimental programs in
progress to investigate smooth body separation, reattachment and recovery include the VT bump experiment [34]] and
the Boeing speed bump [35]. Transonic shock induced separation evaluation of a bump on an axisymmetric cylinder,
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first tested in the 1970s, is being reevaluated with carefully defined tunnel wall boundaries at a range of Reynolds
numbers by Lynch et al. [36]. These experimental programs are a critical part of the efforts to improve the fidelity of
physical models for CFD.

The final element in the Physical Modeling Domain examines combustion and includes an early milestone for
chemical kinetics calculations speedup. For several time-averaged combustor performance parameters, such as overall
heat release and spatial temperature distribution, it is sufficient to include very simple (1- to 4-step) chemical kinetics
models, or pretabulated chemistry models such as used in flamelet combustion models where the flamelets themselves
are computed a priori with detailed chemical kinetic models. These can be done in the RANS or LES frameworks,
with LES simulations being more typical for combustor designs that include large recirculation zones and/or strong
jet-in-cross flow phenomena. These computations are not very compute-intensive and are performed routinely and
chemical kinetics calculation speedup is not a roadblock to performing these simulations. However, other combustor
phenomena, including predictions of emissions (oxides of Nitrogen [NOx], carbon monoxide [CO], soot), ignition and
extinction events, and assessing impacts of unconventional fuels with significant difference in composition relative to
conventional fuels, do require more detailed chemistry approaches and chemical kinetics calculation speedup is required.
Prediction of soot entails more complexities, not only in chemical kinetic models, but also in the models that describe
the physics of soot production and oxidation. There are multiple approaches being leveraged to provide better inclusion
of chemical kinetics in CFD simulations. These include "laminar chemistry", which neglects the effects of turbulence,
stochastic methods to include the turbulence-chemistry interactions, and adaptive methods that employ different models
within different regions of the simulation. In addition to improving the integration of chemical kinetics into CFD, two
additional outstanding issues need to be added to the Roadmap. First, modeling of soot and other nonvolatile particulate
matters is becoming more important due to increased environmental concerns. Second, modeling of atomization at
relevant operating conditions is key to accurate descriptions of the spray droplet distributions and other properties are
key to obtaining accurate predictive simulations of emissions and unsteady phenomenon such as ignition and blowout.

.
C. Algorithms
Original 2015 2020 2025 2030
Grid convergence for a Production scalable
Convergence/Robustness 4% d robust solvers complete configuration entropy-stable solvers
Algorithms e ;
Uncertainty Quantification Reliable error estimates in CFD codes OUHCQMMV propagation capabilities in CFD
Characterization of UQ in aerospace
2020 Rev
Grid convergence for a Low-dissipation discretizations Production scalable
Convergence/Robustness Automted robust sc\verso cnmplete;nfiguratiun s eshing metods entropy-stable solvers
. Scalable optimal solvers Long time integration
Algorithms Uncertainty Quantification Reliable error estimates in CFD codes Large scale stochastic capabilities

Characterization of UQ in aerospace Uncertainty propagation capabilities in CFD Tail events

2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030

Convergence/Robustness

Automated robust solvers 7 #

Unsteady, complex geometry, separated flow at flight Reynolds number (e.g., +

high lift)

Scalable optimal solvers

Improved discretizations for scale-resolving methods (low-dissipation, HO,...)

Accurate and robust methods for long time integration

Production scalable entropy-stable solvers
Uncertainty Quantification (UQ)

Characterization of UQ in aerospace

Reliable error estimates in CFD codes

Uncertainty propagation capabilities in CFD

Identification of tail events/probabilities from CFD codes

Large scale stochastic capabilities in CFD
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The Algorithm Domain of the Roadmap includes elements for both the convergence and robustness of numerical
algorithms and uncertainty quantification (UQ). The overall objectives identified in this domain are associated with
estimating the uncertainty in CFD simulations, both through assessment of the sensitivities in the results as well as
reducing numerical errors associated with grid resolution and iterative convergence. Technology milestones targeted to
have been reached by 2020 include development of technology for automated robust solvers (2016), characterization
of uncertainties in aerospace (2015), and reliable error estimates in CFD codes (2019). These were to lead to a 2020
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technology demonstration of grid convergence for a complete configuration. As outlined in the introduction to this
section, this demonstration was not met for complex configurations, but demonstrated for simpler configurations such as
a transonic wing. This case study identified additional considerations associated with achieving grid convergence for
RANS simulations as nonunique solutions appear to exist and robust methods for controlling the particular solution
have not been developed.

The improvements identified in the Algorithms Domain require significant advancement in several areas of CFD,
beginning with enhancing solver robustness leading to improved convergence levels in terms of both iterative convergence
and grid convergence. Improvements in grid convergence have been further aided by advances in solution-based mesh
adaptation. However, the typically highly-skewed meshes resulting from mesh adaptation increase the challenges for
robust solver convergence, leading to further demands for robust and efficient algorithms. The increasing demand for
scale-resolving simulations also creates demand for robust, low-dissipation numerical schemes.

A key example of algorithms that improve the solver robustness is the Hierarchical Adaptive Nonlinear Iteration
Method (HANIM) developed at NASA Langley in 2016 [37,[38]. HANIM is a highly scalable iterative solver that
uses an adaptive pseudotime approach to accelerate iterative convergence. HANIM extends the simple preconditioner
of USM3D by providing two additional hierarchies around the preconditioner. The hierarchies are a matrix-free
Newton-Krylov linear solver for the exact linearization of discrete RANS equations and nonlinear control of the solution
update. This algorithm has also been implemented in FUN3D [39] and has provided robust and dramatically accelerated
solutions for NASA configurations, including being able to achieve machine-zero residuals on multiple grid families,
while the baseline solver could not attain target low levels of residuals on many of the same grids.

In addition to enhancements for traditional finite volume CFD discretizations, enhancements have been made
with other schemes. There are multiple codes successfully using p=1 Streamline Upwind Petrov/Galerkin (SUPG)
discretizations for RANS applications [[19, 40, 41]]. These schemes demonstrate higher accuracy for the same degrees
of freedom as finite volume schemes and use robust Newton-Krylov solvers to achieve reliable convergence. Other
methods such as Galerkin/Least squares and discontinuous Galerkin formulations are also showing progress.

The results of 2D multielement high-lift computations demonstrate the computational savings potential from
using higher-order stabilized continuous Galerkin discretizations in combination with the MOESS output-based mesh
adaptation method. High-order methods, in particular p=2 and p=3 continuous Galerkin variational multiscale with
discontinuous subscale discretizations, provide accurate outputs with an order of magnitude less computational time
than p=1 methods [42]]. These approaches lead to high accuracy on coarse grids, but require curved-elements — a new
grid generation challenge. Additionally, the solution cost remains an issue for these approaches and improvements
in solution techniques will be necessary to make them competitive for steady RANS problems. Furthermore, Lattice
Boltzmann codes have been demonstrated to provide industry-level solutions on multiple aerospace applications
including aeroacoustics and general unsteady/separated flow applications [14].

UQ has continued to see slow penetration into CFD problems over the last five years. The JANNAF guide [43] 144]
from 2015 remains a key reference. In 2016, Barth [45] received the Fluid Dynamic Best Paper award for his overview
of application of uncertainty estimates to CFD computations. Although there has been an increase in the number
of publications each year, the community is still limited. With the cost of each CFD simulation and the number of
uncertain quantities, the use of Monte Carlo techniques has been regarded as infeasible for most applications. This
has led to applications of UQ in CFD relying on various types of surrogate modeling including radial basis functions,
Gaussian Processes, and nonintrusive polynomial chaos (NIPC) [46]. The AIAA Community of Standards released
a preview [47] of their updated standard that provides a general framework for describing CFD uncertainty. This
framework provides indications of identifying, characterizing, propagating, and analyzing uncertainties. Important
aspects of this characterization are separating random (aleatory) uncertainty from lack of knowledge (epistemic)
uncertainty. Some of the key epistemic uncertainties in CFD include the discretization error estimation and model form
uncertainty.

An area that has seen particular focus for uncertainty quantification is assessing the uncertainty of turbulence
model closure coefficients ranging from simple configurations [48-51] through full configurations such as the Common
Research Model [52,[53]]. An alternate approach for assessing the impact of turbulence model uncertainty is based
on the Lumley triangle and has demonstrated appropriate trends for capturing differences between experiment and
simulation [54]. General awareness of UQ techniques beyond Monte Carlo is increasing across the community
and multiple organizations are collaborating to provide a consistent terminology and recognition of different viable
approaches [55].

Multifidelity techniques offer another key approach to leveraging CFD results for engineering analysis. Examples of
this type of approach are given by West [56] and Wendorff [57]. The DARPA-sponsored Scalable Environment for
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Quantification of Uncertainty and Optimization in Industrial Applications (SEQUOIA) [58H60] considered several
representative applications using multifidelity techniques for both UQ and robust design considerations.

While there have been improvements in the robustness of algorithms for both finite volume and finite element solvers,
these have yet to be widely adopted, but are expected to have gained enough general adoption that the milestone will
be completed in the near term. These will help to enable both error estimation for mesh adaptation techniques and
the ability to reach grid convergence because of degradation of present solvers with increasing grid size. However,
the challenges of interpreting/achieving grid convergence if there are multiple possible solutions introduces additional
issues. HANIM appears to meet the expectations for a scalable optimal solver but needs increased adoption to achieve
the metrics outlined for achieving the milestone. With the increased emphasis on scale-resolving simulations to address
accuracy issues in separated flows, there are new milestones added to tailor discretizations for these situations and
improve the robustness and accuracy for long time integration. Increases in penetration of UQ have been made since the
publication of the Study but it is not yet standard in the aerospace CFD industry. Efforts are underway to increase fluid
dynamic community awareness of techniques that have been successfully applied and to develop techniques that are
appropriate for CFD to develop reliable error estimates. Although delayed compared to the prediction of the Study,
uncertainty quantification methods are expected to play a significant role in the next five years as increased CFD
capability and HPC capacity enable both wider and more efficient CFD usage. This change will be enabled by meeting
the milestones for having common methods to characterize and propagate uncertainty in CFD analysis, resulting in
methods to provide reliable error estimates associated with CFD results.

D. Geometry Modeling and Mesh Generation

Original 2015 2020 2025 2030
Large scale parallel
G d Fixed Meshing Tighter CAD coupling mesh generation
eometry an S
Mesh Generation | Adaptive Meshing Production AMR in CFD codes
2020 Rev Reversible data transfer between Associative equivalence Distributed open  Robust multidisciplinary data
Geometry Modeling opague and open geometry models for manipulation geometry platform, exchange open stangard
S < S
EE——
Geometry HPC Meshing Large-scale parallel mesh generation’ Generate 1008 cell fit-for-purpose me3h Generate 1T cell fit-for-purpose mesh
Modeling and Tiehter CAD coun Automatic generation of meshon  CAD. cuuTlini available in  Automatic generation of family of
. Fixed Meshin, ighter CAD coupling complex geometry on first attempt , commercial grid generation  meshes on complex configuration
Mesh Generation = RO -~ — n
Adaptive Meshing Production AMR in CFD codes Adaptive meshing accepts pragmatic geometry’ Adaptive curved meshing. ¥ Demonstrate asymptotic "Disphce fixed meshes
convergence rate

2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030
Geometry Modeling
Quantified, reversible data transfer demonstrated between opaque and open
geometry model representations.
Associative equivalence demonstrated for OML manipulation schemes.
Distributed, open geometry representation platform established
Robust, quantifiable multidisciplinary data exchange supported by open data

standard.
HPC Meshing
Large-scale parallel mesh generation
Generate a 100 billion cell, fit-for-purpose volume mesh.
Generate a 1trillion cell, fit-for-purpose volume mesh.
Fixed Meshing
Tighter CAD coupling
CAD coupling available in commercial grid generation
Automatic generation of suitable mesh on complex geometry on 1st attempt.
Automatic generation of a family of meshes about a complex configuration.
Adaptive Grid
Production AMRin CFD codes
Adaptive meshing techniques will accept typical assembly tolerance levels and

unfavorable B-Rep topologies to accept a pragmatic interpretation of geometry.
Adaptive curved meshing to support higher-order solvers will be available from

‘5 -
5
4
4
5
multiple implementations.

Accurate CFD solutions are verified by asymptotic convergence rate
demonstration or low variation between independentimplementations.
The Geometry Modeling and Mesh Generation Domain of the Roadmap (formerly Geometry and Grid Generation)

Adaptive mesh computations displace fixed meshes as the default and
practitioners will rarely visualize the mesh directly.
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contains two elements for Fixed and Adaptive Meshing with milestones for achieving tighter coupling with CAD
software and the addition to CFD code of production-level adaptive mesh refinement from the period before 2020.
Future milestones include large-scale parallel meshing in the 2021 timeframe and automated, adaptive meshing in
2030. Important new elements are being captured by including Geometry Modeling and HPC Meshing as additional
elements to provide more refinement of the key tasks necessary to develop robust and automated mesh generation at
scales required for the Vision.

The need for simultaneous access to multiple forms of geometric representation are becoming better appreciated
throughout the aerospace community [7]]. This capability allows various instances of the model to be generated from
the same feature-based parameterization. In this way, there is not a single resultant model, but several models may
be generated, one for each type of simulation, at the appropriate level of fidelity. Matching and equivalence between
models generated from the same Master Geometry is accomplished by attribution on the topological entities. Mesh
adaptation fidelity requirements and computationally distributed access to geometry are some of the reasons that
traditional geometry kernels need to be redeveloped to meet the requirements for use as part of an integrated system on
HPC [61}162]. Furthermore, a growing awareness of the potential geometric ambiguities inherent in all B-Rep models
has led many researchers who are pursuing the Study’s goals to either build their own B-Rep geometry modelling
kernels (and provide bespoke control of the attendant consequences) [63164] or to seek alternative geometry modelling
techniques that yield geometrically watertight models [62}165]. More recently, the focus of research interest has moved
away from modelling techniques in which OMLs are parameterized a priori to those where the desired geometry emerges
as a result of other, physics-based drivers. The published examples all rely on spatial-occupancy-based geometry
modelling techniques — some explicit [66], others implicit [62]. Here, there has been some transference of the lessons
originally learned in structural modelling (via topology optimization). Compelling demonstrations are beginning to
appear in a wide range of practical applications, not confined to the aerospace sector (or, for that matter, engineering).

The ATAA Geometry and Mesh Generation Workshop series (GMGW) [67, 168] has provided insight into geometry
model interoperability issues. In the first two workshops, a model of the NASA High Lift Common Research Model
(HL-CRM) was developed and disseminated to participants in multiple formats. all participants for the first workshop
identified that modest levels of repair were required but the specific problematic areas varied among mesh generators.
This workshop also identified that interoperability issues can be exacerbated when mesh adaptation is used since the
maximum permissible tolerances needed to trim the B-Rep surfaces is not known a priori. When a second model used
to support manufacture of the wind tunnel model was provided eighteen months later for GMGW-2, there was general
concern that the workload involved in preparing it for meshing would likely make the model unsuitable for use in a
workshop setting.

Progress in mesh generation has largely addressed the suitability of the mesh for a given analysis that can span from
creating a valid mesh, improving cell quality or resolution, and adapting the mesh to the solution and geometry. A large
range of techniques are used to support this suitability. In addition to improving suitability, the need for increased sizes
of meshes and more integrated analysis processes are driving increased use of HPC for mesh generation.

To facilitate development and assessment of the methods and tools necessary to support unstructured mesh adaptation
for the Vision, an open group of researchers formed the Unstructured Grid Adaptation Working Group (UGAWG),
published the results of their first benchmarks for adaptivity [69], established an online presence [[70], and documented
the use of geometry models for mesh adaptation [[71]]. The working group is notable because its goals are derived
directly from the Study and because its membership is cross-organizational, international, and includes representatives
from industry, academia, and government.

Another emerging area of mesh generation is the creation of high-order (H-O) meshes for use in H-O flow solvers.
To take advantage of the methods, curved meshes are required. While there are a number of techniques that have been
applied to deform linear meshes into curved elements, there are particular challenges for high aspect cells consistent
with resolving boundary layers in high Reynolds number flows.

Milestones associated with Geometry Modeling and Mesh Generation include continuing the linkage between
geometry and mesh, both for automated processes of parametric geometry as well as supporting mesh adaptation. The
need for associative equivalence will become more important as multiple representations of models are required for
different types of analysis. There are strong desires to increase the level of automation in fixed mesh generation. As
adaptive mesh generation becomes more of the default, there will be needs to ensure that it will accept typical assembly
tolerances and curved elements.
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Integrated Databases

Simplified data representation ¢ 3

Accepted data fusion techniques 3 °
Creation of real-time multifidelity database: 1000 unsteady CFD simulations plus 5 +

test data with complete UQ of all data sources

Visualization
On demand analysis/visualization of a 10B point unsteady CFD simulation 1 ¢
On demand analysis/visualization of a 100B point unsteady CFD simulation 2 ¢

E. Knowledge Extraction

The Knowledge Extraction Domain focuses on extracting data from simulations to attain engineering results. In this
regard, there are several key areas that are included in the Study: database generation and large-scale visualization.
Databases of aerodynamic or propulsion results are heavily used to perform more detailed analysis, ranging from
estimating trim drag through complete maneuver simulation. The first set of milestones in this domain focuses on
being able to generate this type of database, including the development of multifidelity capabilities that incorporate
different levels of CFD analysis with time-dependent scale-resolving simulations and experimental data. This timeline
has requirements similar to that of a digital thread in ensuring that consistent geometry is maintained and results are able
to be assimilated into a database and appropriately combined including estimates of uncertainty. While this is an area of
active research, there is no consensus format for representing this rich and varied data. Being able to capture this type
of information for aerospace simulations is an emphasis of the first milestone. Although it was forecast to have been
met in 2017, there still remains much work to be done, including establishing a format for the data that can represent
the necessary range of integrated and nonintegrated data, along with its geometry provenance and data uncertainty.
Cambridge University [72], Intelligent Light [73], ANSYS [74], and Sandia National Laboratory [75] have all made
significant progress on developing web server-based tools for data processing and analysis.

The second timeline in this domain focuses on large-scale visualization with a technology demonstration slated for
2020 to provide "on-demand analysis/visualization of a 10B point unsteady CFD simulation." At the SC19 conference,
NASA and NVIDIA demonstrated an interactive visualization of a 6 billion node, time-dependent simulation of a Mars
lander [23]]. This user-controlled animation of 150Tb of time-series data in real time required four dedicated NVIDIA
DGX-2™ gsystems each with 16 NVIDIA Tesla™ V100™s and coupled with 16 SSDs to hold the data using NVIDIA’s
GPUDirect™ to move the data directly across the network to the GPU memory. While this level of hardware is not yet
generally available, it provided a powerful demonstration of the near-term potential.

To achieve the levels of performance required, particularly with the larger increases in CFD throughput compared
to the increases in storage speed, new strategies are required to meet the visualization demands. These include
development of in situ/in transit methods that perform at least part of the data reduction while the CFD simulation is
being performed. With in situ processing, the flow solver is instrumented with a data processing/visualization library,
such as Vislt-Libsim [76] or Paraview-Catalyst [77], which shares the memory space of the flow solver. This capability
often requires that the simulation code pauses while the data are processed. With in transit processing, the simulation
data are transferred to a separate set of compute nodes, which processes the data and allows the simulation to resume
after the data have been transferred.

Data reduction is often needed to make visualization and knowledge extraction tractable. Data reduction can be
performed via either data extracts or by directly creating an image. With data extracts, the visualization graphic objects
are created in situ, in transit or via traditional post-processing tools and then written to disk. The user can then load the
extract into a conventional post-processor for further analysis or render an image. Since the extract is just a subset of the
volume data (i.e., a coordinate cut plane or line extract), it can be many orders of magnitude smaller than the volume
data, reducing the amount of data stored and reducing the processing time during user interaction. This approach was
demonstrated by Kirby [78]] in 2018 to extract knowledge about the wake breakdown of the vortical wake structure in a
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wind turbine simulation and apply Proper Orthogonal Decomposition (POD) methods to correlate wake breakdown
features to POD modes for a 1.2B degree of freedom time-dependent simulation. Another data extract approach is
to save off a series of images. The Cinema technology [[79] developed at Los Alamos National Laboratory provides
mechanisms to interactively visualize large collections of images.

As an indication of the present limits of visualization technology, Tecplot has used their product to visualize data
sets from a 1 trillion cell canonical dataset on desktop-sized systems [80]. Cielo et al, [81]] visualized the “World’s
Largest Turbulence Simulation” of an actual simulation — interstellar turbulence that focused on the formation of stars
and the associated magnetic fields. Using a custom build of VisIt with OSPRay running on a parallel computer system
(512 nodes, 24 cores per node), the researchers were able to perform volume renderings of a turbulent dataset sized at
10,0483 (1 trillion) cells.

Steady progress is being made on both timelines within this domain, but the Integrated Databases tasks are falling
behind the forecast in the original Study. In addition to establishing a flexible and robust schema for representing CFD
data, data fusion approaches need to be matured and accepted in the aerospace community to facilitate realizing the
large scale databases necessary for achieving the challenge problems and vision laid out in the Study.

F. Multidisciplinary Analysis and Optimization

original 2015 2020 2025 2030
Define standard for coupling Robust CFD for
to other disciplines complex MDAs UQ-Enabled MDAO
MDAO — O — ) *
High fidelity coupling Incorporation of UQ for MDAO MDA simulation of an entire
techniques/frameworks aircraft (e.g., aeroacoustics)
2020 Rev
Define standard for coupling Robust CFD for Full vehicle coupled analytic sensitivities,
to other disciplines complex MDAS Incorporation of UQ for MDAO, including geometric and subsystem UQ-Enabled MDAQ
MDAO Cm— OO

High fidelity coupling MDAO simulation of an entire Full vehicle coupled analytic
techniques/frameworks aircraft (e.g., aeroacoustics) sensitivities for chaotic systems

2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030

Define standard for coupling to other disciplines 4

High fidelity coupling techniques/frameworks 4

Robust CFD for complex MDAs 4

Incorporation of UQ for MDAO 2 9

MDAO simulation of an entire aircraft (e.g., aeroacoustics) 3 °

UQ-enabled MDAO 1 .2
Full vehicle coupled analytic sensitivities, including geometric and subsystems 4 0

Full Vehicle coupled analytic sensitivites for chaotic systems 0 0

There has been considerable progress made in many areas of MDAO since the release of the Roadmap including
increased use of high fidelity CFD in optimization on a more routine basis with a primary multidisciplinary interaction
focusing on combining external aerodynamics and structural analysis. To accomplish a full vehicle MDAO, there are
typically 100-200 critical conditions for a loads survey that must be assessed, leading to O(10*) — O(10°) constraints.
Similarly, the number of design variables are large for a system-level, full vehicle MDAO. For example, the number
of aerodynamic design parameters such as wing span, chord, and thickness are O(10?), structural sizing parameters
such as skin thickness, spar thicknesses, and moments of inertia are ()(103 ), control effector parameters such as
number, size, and location of control effectors is O(10?), system level propulsion parameters are O(10?), and system
thermal management parameters are O(10%). Hence, a large scale system level full vehicle MDAO problem consists of
potentially 10 multifidelity disciplines, 10 couplings, O(10*) design variables, and O(10°) constraints. This poses a
daunting problem for integrating high-fidelity methods like CFD, but there have been a number of advancements that
increase the state of the art.

The MDAO Domain of the Roadmap called for development of coupling standards among disciplines, coupling
techniques and frameworks, robust CFD processes, and inclusion of UQ for MDAO by 2020. Significant advancements
have been made in these areas, but complete success has not yet been attained.

Primary approaches for multidisciplinary coupling involve either solving the coupled systems of equations
representing different disciplines simultaneously or using a partitioned approach where conditions are exchanged at
discipline boundaries. The latter approach is more modular and provides more options for readily adding additional
disciplines as well as utilizing independent methods for each discipline, but adds complexity with the coupling that
must occur at the discipline boundaries, including the geometry. Considering methods for transferring loads and
displacements between CFD and computational structural dynamics (CSD) solvers, Kiviaho and Kennedy [82] classified
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load and displacement transfer techniques into projection-based methods and interpolation-based methods and developed
the method of matching-based extrapolation (MELD) that achieves localization similar to projection-based methods for
computational efficiency with nonintrusiveness similar to interpolation-based methods. This method also incorporates
a consistent approach for developing the necessary sensitivity information required to perform MDO with coupled
analysis. In addition to providing a coupling mechanism, the functionality for a CFD code is also required to be defined.
While there is no formal standard that has been accepted, there has been progress in developing standard interfaces.
Mader et al. [83] developed an approach with the solver as a compiled library with direct memory access and defined
both a minimal API and an advanced API for interfacing to other disciplines. This approach has been incorporated
into openMDAO [84]. Commercial software vendors such as Dassault Systemes’ SIMULIA® [85], ANSYS [86] and
COMSOL® [87] have implemented chained analysis capabilities, but at present none compute fully coupled sensitivities
for steady and transient responses that can be used in gradient-based optimization.

Often individual discipline solvers are interfaced through a scripting language "glue" to provide a best in class
approach (BCA) for defining a process and solving a selected problem. Frameworks that support the BCA can be
found in commercial offerings such as Phoenix Integration’s ModelCenter® and Analysis Server® [88]], ESTECO’s
modeFRONTIER and VOLTA [89], VR&D Visual Doc [90], and Dassault Systemes’ SIMULIA Isight Simulation
Engine [91]]. There are also some U.S. government or open source efforts such as OpenMDAO [84]], Dakota [92],
GEMS [93]], and MSTC Engineering [94] that can support BCA MDAO. While there are multiple benefits of this
approach including selecting preferred analysis techniques for individual disciplines, challenges exist due to different
data structures and formats for the different tools, often leading to a fragile connection among the disciplines and
difficulties in identifying failures. Furthermore, many of these approaches are unable to accept user-supplied sensitivities
when performing gradient-based optimization, but this limitation is evolving. For example, OpenMDAO excels in
solving design problems involving coupled numerical models of high-fidelity, complex engineering systems. It also has
a framework for the computation of the derivatives of these coupled models for use with gradient-based optimization
algorithms. This enables the solution of high-fidelity, large-scale (O (10%) — O(10%) design variables), gradient-based
design optimization. Dakota supports BCA integration with user supplied sensitivities but its primary strengths are in
UQ, optimization algorithms, and surrogate modeling. Dakota’s UQ methods primarily focus on the forward propagation
of uncertainty where probabilistic or interval information on parametric inputs are mapped through the computational
model to assess statistics or intervals on outputs. Further, Dakota supports optimization under uncertainty (OUU) and
reliability-based design optimization (RBDO). GEMS focus is on developing an automatic programming of MDO
processes along with distributed and multilevel MDO formulations (or MDO architectures). Finally, MSTC-Engineering
is primarily a research code exploring efficient ways of performing multifidelity large scale geographically distributed
MDAO.

Clark [93]] gives a comprehensive review of recent work done in including uncertainties and expensive-to-evaluate
simulation models for optimization and classifies optimization under uncertainty techniques into three primary areas;
reliability-based design optimization (RBDO), robust optimization, and distribution matching techniques. All of these
techniques become computationally challenging as the complexity of the modeled physics increases. Recently a large
research effort has been funded in the area of UQ by DARPA to address many of the challenges associated with
incorporating uncertainty in design optimization. From 2015-2018, DARPA funded EQUiPS (Enabling Quantification of
Uncertainty in Physical Systems) [96] acknowledging the importance in characterizing model, parametric, environment,
and measure uncertainty when designing complex physical systems, devices and processes. Under this effort, Scalable
Environment for Quantification of Uncertainty and Optimization in Industrial Applications (SEQUOIA) developed a
strategy for UQ and Design Under Uncertainty (DUU) that advances the scale and complexity of problems [58]]. The
three thrusts of the program were: 1) scalable algorithms to accommodate a large number of design variables and
random parameters, 2) model-form uncertainty using multiple approaches, and 3) design and decision making under
uncertainty. Researchers from the Massachusetts Institute of Technology and the University of Texas at Austin have
advanced the state of the art in multifidelity MDAO under uncertainty through new methods that leverage Monte Carlo
variance reduction techniques and machine learning along with effective reuse of information from past optimization
iterations in multifidelity Efficient Global Reliability Analysis (mfEGRA) [97H99].

For progressing toward full-system MDAO, there appears to be two primary vectors that are being followed in the
aerospace community. The first is focused on incorporating more disciplines into the vehicle level design process
and the second is to bring higher fidelity, coupled analysis into the process. Both are aimed at capturing physics
that are being missed during early design. In time, it will be necessary that these two vectors merge to solve the
system level full vehicle MDAO problem. The first vector is heavily dependent on two technology areas: robust
parametric associative geometric modeling of the inner and outer mold line of the vehicle and analytic sensitivities.
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Parametric geometry has been somewhat discussed in the Geometry Modeling and Mesh Generation Domain. Analytic
sensitivities from CFD analyses often use adjoint solutions because there is typically a large design space with few
constraints and objective functions. Over the last five years, there have been numerous examples (see [100-H102]]
among others) of single-discipline gradient-based optimization using analytic sensitivities. There have also been
numerous two-discipline efforts including aerostructural [[103H105], aeropropulsive configurations [106} [107], and
rotorcraft aerostructural problems [108, [109]. The team of AFRL, Northrop Grumman, and Stanford is executing the
quantification of the utility of aerospace derivatives (QUAD) [[110] program to accelerate the transition of this capability
to industry. The second vector focuses on bringing more disciplines into the design environment. Efforts that focused
on including subsystem models into the MDAO environment include the works by Chakraborty and Mavris 111} [112]
and the Optimized Integrated Multidisciplinary Systems (OPTIMUS) program [113|[114]. Recently, the Expanded
MDO for Effectiveness-Based Design Technologies (EXPEDITE) [[115}[116] program has focused on early conceptual
MDAO with an important part of the program goals being to advance the state of the art for effectiveness-based design
(EBD) [117]. EBD uses mission scenario measures of effectiveness (MoEs) and shifts away from the traditional
paradigm of performance-based design, which uses aircraft performance metrics (weight, range, drag, etc.) as the
design objective. EBD on the other hand uses mission effectiveness objectives such as cost per available seat mile for
commercial air travel. In order to achieve full vehicle MDAO, it is critical that these two primary vectors must merge. In
order for that to occur, continued advances must be made in the area of modeling and sensitivity analysis. Efforts need
to be initiated to develop analytic sensitivities for many of the subsystems being modeled such as generators, actuators,
electrical systems and thermal management systems along with the continued development of high-fidelity physics
sensitivities for coupled transient analysis.

While the Study does discuss the importance of sensitivities for MDAO and UQ, it did not create a milestone for
sensitivities. It could be reasonably stated that high-fidelity, CFD-based MDAO and UQ will only be possible with
analytic derivatives, as every other nongradient-based technique is too expensive if the number of free parameters exceeds
a few dozen. Hence, additional specific milestones have been added for "Full vehicle coupled analytic sensitivities,
including geometry and subsystems" and "Full vehicle coupled analytic sensitivities for chaotic systems". Although the
focus in recent years has been on developing the sensitivities of coupled high-fidelity physics, efforts have to be initiated
to compute analytic sensitivities of geometry and subsystem models as well. Examples of this are the open source
ESP/CAPS [118H120] effort for solid geometry and PyCycle [121} [122] for chemical equilibrium used in propulsion
models. Martins and Hwang [123]] provide the unifying chain rule approach to derive sensitivities; this approach has
been implemented in the modular analysis and unified derivatives (MAUD) architecture [124]]. Transient or unsteady
sensitivity analysis is immature at this time due to the challenge of developing efficient and accurate coupled sensitivities.
There has been some progress in this approach by numerous researchers using different approaches to avoid the chaotic
behavior of solutions [125H129]. Unless efficient and accurate sensitivities are available for all responses (objectives
and constraints) participating in the optimization, it will not be possible to perform full gradient-based design, which is
currently the only realistic way to handle the number of design variables (O (10%) — O(10%)) that will be present in full
vehicle MDO problems.

IV. Next Steps
The completely updated Roadmap image is depicted in Figure 2] and illustrates some of the key areas of continued
CFD focus toward the Vision. The AIAA CFD Vision 2030 Integration Committee will continue to monitor developments
and annually review progress by updating the TRL for each milestone based on public knowledge. These updates will
be available on the website [[130]. Additional participation in collecting data and evaluating progress is welcome with
more details available on the website. Another detailed update of the Roadmap is planned for 2025.

Appendix
This appendix provides an overview of all of the milestones appearing on the Roadmap organized by domains with
brief descriptions to provide more details of the item than is possible in the graphic itself.

A. High Performance Computing
* Demonstrate implementation of CFD algorithms for extreme parallelism in NASA CFD codes (e.g., FUN3D):
Intended to encourage modification of NASA and related CFD codes to efficiently execute on hierarchical memory
(GPU/coprocessor) systems by 2020.
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* Demonstrate efficiently scaled CFD simulation capability on an exascale system: An initial evaluation of exascale
performance on a representative CFD problem should be performed.

* 30 exaFLOPS, unsteady, maneuvering flight, full engine simulation (with combustion): A mature exascale
implementation should be used to efficiently simulate one or more of the relevant Grand Challenge problems as
proposed by the CFD 2030 Integration Committee and the broader AIAA community.

* Demonstrate solution of a representative model problem: Intended to establish the ability of these systems to
address problems of interest to the aerospace community (i.e., typical of a Poisson problem for PDE-based
simulations). If, at any of these decision points, the technology clearly shows its expected potential, increased
investment to accelerate the use of these machines for CFD applications is recommended.

B. Physical Modeling
* RANS

— Improved RST models in CFD codes: Reynolds stress transport models that are in general use and provide
significant prediction improvement over other RANS models for at least some flow phenomena.

— Integrated transition prediction (T-S): A transition prediction model that can be applied in a highly automated
fashion with a RANS flow field simulation to a full scale transport configuration. The transition location for
these applications is often dominated by Tollmein-Schlicting instabilities. At the high Reynolds numbers
for these applications, adverse pressure gradient flow typically triggers transition.

— Highly accurate RANS models for flow separation: Improved Reynolds stress closure models that
significantly improve predictions of separation and reattachment relative to present RANS models.

— Machine learning for complex flow: Demonstration of the application of machine learning methods to
improve prediction of a RANS turbulence model for a complex, 3D flow regime. This should be a critical
portion of an aircraft related flowfield where standard RANS approaches do not predict the flow well.

— Integrated transition prediction (General): As detailed in this report, there is are many applications where
extended runs of laminar flow and weak pressure gradients, crossflow, environmental factors, hybrid laminar
flow techniques, and supersonic flow complicate transition prediction and required more sophisticated
transition prediction methods than can be captured by methods available at this time.

* Hybrid RANS/LES

— Unsteady, complex geometry, separated flow at flight Reynolds number (e.g., high lift): Ability to generate
consistent, improved predictions with hybrid RANS/LES models that are predictive. Predictive models
switch from RANS to LES without a priori knowledge of transition locations for boundary layer separation.

— Integrated transition prediction: A transition prediction method than is applicable in a region where flow
separation occurs in a region of laminar or transitional flow and the hybrid model switches to LES mode in
this region.

* LES

— WMLES for complex 3D flows at appropriate Re: A single or unified method that can accurately predict
complex flows such as realistic configuration aircraft at lift break with good accuracy in both attached and
separated flow regions of the flow field at flight Reynolds numbers.

— Integrated transition prediction: An accurate automated transition prediction method that is embedded
within an WMLES or WRLES simulation method

— WRLES for complex 3D flows at appropriate Re: A single or unified method that can accurately predict
complex flows such as realistic configuration aircraft at lift break with good accuracy in both attached and
separated flow regions of the flow field at flight Reynolds numbers.

— Unsteady, 3D geometry, separated flow (e.g., rotating turbomachinery with reactions): A single method that
can accurately predict complex flows including rotation, chemical reactions, separation for realistic flow
conditions. Flow withing a compressor, combustor and turbine would be an example.

e Combustion

— Chemical kinetics calculation speedup:

— Chemical kinetics in LES

— Multiregime turbulence-chemistry interaction model

C. Algorithms
» Convergence / Robustness
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— Scalable optimal solvers: Flow solver algorithms that scale well with increased problem size and number of
processors to reach toward exascale-level performance

— Automated robust solvers: Flow solvers that routinely and without user intervention or customization
can reliably converge to machine zero, including when there is additional stiffness associated with
multidisciplinary simulations.

— Grid convergence for a complete configuration: Demonstrated solution independence of grid for relevant
quantities of interest on a complete aerospace vehicle.

— Low-dissipation discretizations for scale-resolving methods: Demonstration of methods that have small
enough numerical dissipation compared to the physically modeled dissipation at the desired LES cut-off
frequency on relevant grid topologies.

— Long time integration: Demonstrate algorithms that are efficient at reaching long times (10s of seconds for
complex events) while appropriately representing necessary high frequencies.

— Production scalable entropy-stable solvers: Extension of algorithms that are inherently mathematically
stable to production environment whileremaining applicable to exascale class machines.

* Uncertainty Quantification

— Characterization of UQ in aerospace: Accepted approaches and representations for describing uncertainty
elements present in aerospace applications.

— Uncertainty propagation capabilities in CFD: Development and acceptance of efficient methods for assessing
the impact of uncertainty in output quantities of interest predicted using CFD. Uncertainty sources include
input uncertainty, model form uncertainty, and numerical/discretization errors.

— Reliable error estimates in CFD codes: Demonstrable methods of discretization error estimation appropriate
for modern solvers on representative production CFD problems.

— Tail events: Development of methods that will identify infrequent events and characterize the likelihood of
occurrence.

— Large-scale stochastic capabilities: Demonstration of approach that provides appropriate uncertainty
distributions for a full configuration across a range of operating conditions with representative number of
uncertain quantities.

D. Geometry Modeling and Mesh Generation
* Geometry Modeling
— Reversible data transfer between opaque and open geometry models: Quantified, reversible data transfer
demonstrated between opaque and open geometry model representations.
— Associative equivalence for manipulation: Associative equivalence demonstrated for OML manipulation
schemes.
— Distributed open geometry representation platform: Established a distributed (multimachine) geometry
representation that is openly available.
— Robust multidisciplinary data exchange open standard: Accepted robust, quantifiable multidisciplinary data
exchange supported by open data standard.
* HPC Meshing
— Large scale parallel mesh generation: Creation of a mesh on a complete configuration using O(100+) cores
with scalable efficiency
— Generate a 100 billion cell, fit-for-purpose volume mesh.
— Generate a 1 trillion cell, fit-for-purpose volume mesh.
* Fixed Meshing
— Tighter CAD Coupling: CFD solvers, regardless of the platform on which they run including HPC and
regardless of the format in which geometry models are provide, will have efficient access to geometry
definitions for operations such as mesh adaptation and shape changes.
— Automatic generation of mesh on complex geometry on first attempt: Automatic generation of a suitable
mesh on the first attempt such as for the 4th CFD High-Lift Prediction Workshop.
— CAD coupling available in commercial grid generation
— Automatic generation of family of meshes about a complex configuration: This family of meshes could
represent a grid refinement study or parametric variations of a component of the design.
* Adaptive Meshing
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Production AMR in CFD codes:

Adaptive meshing accepts pragmatic geometry: Adaptive meshing techniques will accept typical assembly
tolerance levels and unfavorable B-Rep topologies to accept a pragmatic interpretation of geometry.
Adaptive curved meshing: Support for higher-order solvers will be available from multiple implementations.
Demonstrate asymtotic convergence rate: Accurate CFD solutions are verified by asymptotic convergence
rate demonstration or low variation between independent implementations.

Displace fixed meshes: Adaptive mesh computations displace fixed meshes as the default and practitioners
will rarely visualize the mesh directly.

E. Knowledge Extraction

Integrated Databases

— Simplified data representations: Development of a standard schema for representing different types of CFD
data, including meta data, scalar results, and field data.

— Creation of real-time multifidelity database: Development of a database with 1000 unsteady CFD simulations
plus test data with complete UQ of all data sources representative of the type of information necessary for
performing a flight profile analysis.

— Accepted data fusion techniques: Established and accepted methods for combining multiple types of data,
including different CFD approaches and test data, to leverage the cost and accuracy of each approach.

Visualization
— On demand analysis/visualization of a 10B point unsteady CFD simulation
— On demand analysis/visualization of a 100B point unsteady CFD simulation

F. Multidisciplinary Analysis and Optimization

Define standard for coupling to other disciplines: Accepted definition of API or data required to be provided
to/from a flow solver to interface with other disciplines for generating multidisciplinary simulations.
High-fidelity coupling techniques/frameworks: Demonstrated accurate and robust approaches for interfacing
high-fidelity CFD codes to exchange both discipline interface information and associated sensitivities.

Robust CFD for complex MDAs: Demonstration of CFD processes, including both mesh deformation and solution
evaluation, that is automated and robust for a range of multidisciplinary analyses for a complex configuration
representative of a full vehicle or subsystem.

Incorporation of UQ for MDAO: Demonstration of the computation of uncertainties in relevant performance
metrics including the effect of multiple disciplines.

Full vehicle coupled analytic sensitivities, including geometric and subsystems: Computation of multidisciplinary
analytic sensitivities to appropriate quantities of interest for a range of design variables representative of a full
vehicle analysis.

MDAO simulation of an entire aircraft (e.g., aeroacoustics)

UQ enabled MDAO: Appropriate inclusion of uncertainty quantification in a MDAO analysis to provide a design
that is robust to both physical and modeling unknowns.

Full vehicle coupled analytic sensitivities for chaotic systems: Demonstration of analytic sensitivities generated
from a chaotic flow field such as at high angles of attack with massive separation (e.g., commercial high lift).
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