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The stochastic Galerkin method for the propagation of probabilistically modeled uncertain-

ties can be difficult to apply in practice due to its formulation and the challenge of creating a

computational infrastructure to support it. To address these challenges, this work proposes a

sampling-based stochastic Galerkin method that leverages existing deterministic analysis and

adjoint-based derivative implementations. The proposed formulation is semi-intrusive, since it is

implemented using an existing deterministic framework, requiring only the numerical sampling

of the deterministic residuals, Jacobians, boundary conditions, and adjoint implementations at

nodes in the probabilistic domain. The software architectures to support stochastic generaliza-

tions of the deterministic finite element frameworks are presented. This proposed approach is

demonstrated on a finite-element framework for flexible multibody dynamics problems. Finally,

the semi-intrusive implementation of the stochastic Galerkin method is used to demonstrate

adjoint gradient-based optimizations of flexible multibody dynamics systems in the presence of

probabilistically modeled uncertainties.

Nomenclature

𝒙, D = design variables and design domain

𝑡, T = temporal variable and time domain

𝑡0, 𝑡 𝑓 = initial and final time

𝒖(𝒙, 𝑡) = deterministic state variables

𝑹(𝒙, 𝑡; 𝒖(𝒙, 𝑡)) = residuals of the deterministic differential equations

𝐹 (𝒙, 𝑡; 𝒖(𝒙, 𝑡)) = spatio-temporal output function for performance evaluation

�̄� (𝒙) = spatio-temporal average or extrema of the output

𝒚, Y = probabilistic random variable (aleatory) and probabilistic random domain

𝑀 = number of the probabilistic random variables

𝜌(𝒚) = probability density function
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N = normal probability distribution

U = uniform probability distribution

E = exponential probability distribution

𝑁 = number of orthonormal basis functions

𝜓𝑛 (𝒚) = 𝑛−th orthonormal basis function

P = number of deterministic degrees of freedom in the finite element model

𝑄 = number of quadrature points from the probabilistic domain

𝒚𝑞 = [𝑦𝑞1 , 𝑦
𝑞

2 , . . . , 𝑦
𝑞

𝑀
] = 𝑞−th quadrature node/point from the probabilistic domain

𝛼𝑞 = corresponding weight of the 𝑞−th quadrature node from the probabilistic domain

u(𝒙, 𝑡, 𝒚) = stochastic state variables

R(𝒙, 𝑡, 𝒚; u(𝒙, 𝑡, 𝒚)) = residuals of the stochastic differential equations

F(𝒙, 𝑡, 𝒚; u(𝒙, 𝑡, 𝒚)) = probabilistic-spatio-temporal output

F̄(𝒙, 𝒚) = spatio-temporal average or extrema of the probabilistic-spatio-temporal output

E[·], V[·], S[·] = expectation, variance, and standard deviation operators

v(𝒙, 𝑡, 𝒚),w(𝒙, 𝑡, 𝒚) = stochastic adjoint state variables for E[F] and E[F2], respectively

𝑓 (𝒙) = optimization objective function

𝒄(𝒙) = optimization inequality constraint functions

I. Introduction
The goal of optimization under uncertainty (OUU) is to enable the systematic incorporation of uncertainties into

design optimization problems [1–10]. To apply OUU to relevant aerospace applications, there is a need to create

computational infrastructure that applies uncertainty quantification (UQ) to high-fidelity simulations such as flexible

multibody dynamics. Figure 1 illustrates the key elements required for gradient-based OUU: (1) evaluations of output

functions from simulations governed by partial differential equations (PDEs), (2) the evaluation of statistics of the PDE

outputs, and (3) the evaluation of the derivatives of the statistics for optimization. However, the development effort

needed to implement both uncertainty propagation techniques and adjoint-based derivative evaluation methods is a

significant impediment to the broader adoption of OUU. To address this issue, we propose a semi-intrusive approach that

enables the extension of an adjoint-enabled deterministic finite-element framework to OUU problems. The proposed

method is semi-intrusive since it leverages the original deterministic implementation to create a stochastic finite-element

framework.

Methods for uncertainty analysis can be categorized as either stochastic sampling methods (SSMs) [11–18] or

stochastic projection methods (SPMs) [16, 19–32]. The SPMs are categorized further as either stochastic spectral
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Fig. 1 A schematic of the analysis categories spanning optimization under uncertainty and deterministic
optimization.

projection (SSP) methods [19, 20] or stochastic Galerkin-projection methods (SGMs) [16, 21–34]. The SSM and SSP

are non-intrusive, whereas the SGM is intrusive, requiring end-to-end source code implementations for applications.

The simplicity, accuracy, robustness, scalability, and efficiency of uncertainty propagation methods through the existing

physics and adjoint simulation frameworks are crucial in the context of multidisciplinary analysis and optimization.

Towards the vision of solving large-scale OUU problems [9], this investigation focuses on addressing key issues related

to the application of SGM through existing physics and adjoint sensitivity analysis frameworks

The propagation of uncertainties using the SSM is based on multiple solutions of the deterministic PDEs for the

sampling nodes selected from the probabilistic domain Y. The sampling nodes are chosen based on deterministic

quadrature schemes from probability distributions, as random realizations from probability distributions, as partially

random Latin hypercube samples, or as fully random Monte Carlo samples [10]. The steps involved in SSM are outlined

schematically in Figure 2. The SSMs treat the deterministic PDE solution procedure as a black-box operation. The

simplicity of SSM makes it a natural choice for UQ and OUU applications. However, SSM implementations may suffer

from a lack of scalability, sacrifice derivative accuracy, and may lack robustness. Each of these issues is described below.

• Scalability of forward and reverse problems: The computational cost of solving deterministic PDEs scales
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Fig. 2 A schematic representation of combinatorics in the placement of sampling and spectral expansion
principles forming different UQ methods. The use of sampling reduces intrusiveness.

linearly with the number of samples,𝑄, and non-linearly with the number of probabilistic dimensions, 𝑀 , resulting

in the curse of dimensionality. To mitigate this issue, the SSMs employ sparse sampling grids and adaptive

sampling instead of full-tensor grids [17, 35] to evaluate output statistics, or construct surrogate-models [36–40]

as a proxy for expensive PDE outputs and sample the surrogate model to evaluate output statistics (see Figure 2).

The less-expensive surrogate model approach may either use non-spectral models such as kriging [38, 40] or

spectral models such as polynomial chaos [36, 37, 39, 41]. The cost of building a surrogate model is a function

of the dimensionality and sample-set size, which are recognized as scalability bottlenecks [40]. As with the

forward-mode solution of PDEs, the reverse-mode adjoint solution to obtain derivatives is also an inherent

computational cost for each chosen sample. The deterministic adjoint derivatives are sampled similarly to obtain

the derivative of the statistics [2], but this approach again faces the curse of dimensionality.

• Accuracy of Derivatives: In the absence of an adjoint implementation, the approximate derivatives of statistics

can be evaluated by using finite-difference or complex-step methods [42] which requires multiple solutions of the

governing PDEs. The computational cost of this approach grows rapidly with the number of design variables.

Alternatively, the surrogate models built to approximate the output functions in the forward-mode can provide

inexpensive derivative estimates [39–41]. Due to the lack of scalable options for obtaining derivatives of statistics,

approximations such as the derivative evaluated at the mean of input distributions [39, 41] or at a random sample

from the distribution [10] are used as the expectation derivative, and often ignore the contributions of the variance
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derivatives.

• Robustness: The deterministic PDE solvers are relied upon to yield converged solutions for all probabilistic nodes

in the sample set. In applications such as risk evaluation of designs where samples are drawn specifically from the

tail ends of the probability distributions, a lack of solver robustness necessitates the omission of unconverged

outputs from the accumulation of statistics or derivatives.

These cost, accuracy, and robustness considerations are relevant at each design iterate produced by the optimizer until a

converged design is obtained. Any combination of these factors can impede large-scale OUU applications.

The SGM applies spectral expansions in the probabilistic domain and factorizes the stochastic fields (states and

outputs) into known orthonormal basis functions and undetermined coefficients. The steps in the method are shown

schematically in Figure 2. The decomposition coefficients are evaluated by solving a coupled system of equations

simultaneously, requiring the development of a specialized computational infrastructure. The formulation of this coupled

system of equations is challenging [16] due to the simultaneous application of probabilistic domain discretization along

with spatio-temporal PDE discretizations. We denote

• the probabilistic discretization as representing the solution fields as a spectrum of orthonormal polynomials and

multi-dimensional integration across the probabilistic domain Y using a set of probabilistic nodes;

• the temporal discretization as the application of methods such as the backward differences and Runge–Kutta to

integrate fields along the one-dimensional time domain T using a set of temporal nodes; and

• the spatial discretization as the application of finite element method (FEM) to integrate fields across the

three-dimensional spatial domain S using a set of spatial nodes.

The SGM has not found general purpose adoption for UQ, as each application requires a case-by-case formulation and

implementation based on the governing stochastic PDEs (SPDEs) and the characterization of input uncertainties [16].

For example, the SGM has been formulated for temporal decay [16], diffusion [16], the Navier–Stokes equations [43],

and porous media applications [23]. In contrast to the SSM, the SGM solves a larger system of equations once and does

not possess multiple single-point failures, which can be a robustness advantage. However, the scalability of the method

is constrained by the larger system of equations. There is considerable interest on the SGM solver scalability aspects

like adaptive basis selection [44], algebraic multigrid with preconditioners [45–47] and domain-decomposition [48, 49].

The stochastic Galerkin adjoint method for obtaining derivatives of the statistics is an essential component for scalable

OUU applications (see Figure 1), but it has not been reported in the literature.

Another UQ approach that combines both the sampling and spectral expansion principles for the SPDE solution

is the SSP method. In this non-intrusive method, the decomposition coefficients for the spectral basis functions are

obtained by sampling the output of the deterministic PDE for each input spectral mode [19, 20], as depicted schematically

in Figure 2. The robustness and scalability issues in the SSP method arise from the application of sampling around the

deterministic PDE solvers.
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Recently, another UQ approach that applies sampling around deterministic residuals, Jacobians, initial conditions

instead of the entire PDE solution module, has been developed by the authors [50, 51] in the context of FEM for flexible

multibody dynamics, and by Chatzimanolakis et al. [52] in the context of finite volume methods for Navier–Stokes

equations. The method is illustrated schematically in Figure 2. In our method, the discretized SPDE equations are

assembled by sampling the discretized deterministic PDE at a set of nodes from the probabilistic domain. The advantages

of this approach over the other UQ methods are enumerated below:

1) It enables the reuse of discretization methods implemented for the deterministic PDE and alleviates the issue of

intrusiveness with the classical SGM implementations.

2) The method does not inherit the solver robustness issues like the SSM or SSP, as it does not rely on deterministic

solutions of the PDE.

Regarding the applicability of our concept, it can be used for the implementation of the adjoint sensitivity analysis for

OUU applications, or to extract the block-sparse matrices and vectors from deterministic PDE frameworks to cater

studies focusing on the scalability of solving SPDE linear systems [44–49] on a broader class of SPDE models.

The novelties and contributions of this work are: (1) the placement of sampling to surround deterministic space-time

discretizations for simplifying the stochastic PDE and adjoint implementation, (2) software architectures describing

the implementation of stochastic FEM as an extension of deterministic FEM, and (3) OUU demonstrations with SGM

adjoint derivatives of the statistics.

In the remainder of this article, we focus on the formulation, implementation, verification, and OUU applications

of our semi-intrusive SGM in the context of FEM, flexible multibody dynamics, and adjoint sensitivity analysis. In

Section II we review the solution of OUU problems using SSM. In Section III, we describe the mathematical formulation

of our semi-intrusive SGM for time-dependent physics and adjoint sensitivity analysis. In Section IV, we present

software architectures to implement SGM. In Section V, we present verification studies and OUU applications using the

stochastic framework. Section VI concludes the article.

II. Optimization Under Uncertainty Using Stochastic Sampling Methods
The deterministic optimization procedure involves a forward-mode analysis of physics and a reverse-mode sensitivity

analysis implementation such as the adjoint method as depicted in Figure 1, whereas in the presence of uncertainty

analysis, the problem statement evolves into an expanded context as optimization under uncertainty.

A. Deterministic PDE and Optimization

In the context of flexible multibody dynamics, we consider the solution of the Euler–Lagrange equations of

motion [53]:

𝑹(𝒙, 𝑡; 𝒖(𝒙, 𝑡)) = 0, (1)
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where 𝒖(𝒙, 𝑡) are the state variables that depend on time 𝑡 ∈ T and the design variables 𝒙 ∈ D. Here, the time

derivatives ¤𝒖(𝒙, 𝑡) and ¥𝒖(𝒙, 𝑡), as well as the dependence of 𝒖 on the spatial domain are suppressed for simplicity of

notation. In this work, we use the overloaded notation 𝑹 to also refer to the residuals of the system of equations in the

context of Newton–Raphson method.

We consider output functions of the form 𝐹 (𝒙, 𝑡; 𝒖(𝒙, 𝑡)) that denote time-dependent fields such as displacement,

stress, and strain. These output fields may be averaged over an interval of time as

�̄� (𝒙) = 1
𝑡 𝑓 − 𝑡0

∫ 𝑡 𝑓

𝑡0

𝐹 (𝒙, 𝑡; 𝒖(𝒙, 𝑡)) 𝑑𝑡, (2)

or, their maximum over a time interval may be estimated using the Kreisselmeier–Steinhauser (KS) aggregation

method [54, 55] as

�̄� (𝒙) = 𝑐𝑘𝑠 +
1
𝜌𝑘𝑠

ln
∫ 𝑡 𝑓

𝑡0

exp [𝜌𝑘𝑠 (𝐹 (𝒙, 𝑡; 𝒖(𝒙, 𝑡)) − 𝑐𝑘𝑠)] 𝑑𝑡. (3)

The parameters 𝜌𝑘𝑠 and 𝑐𝑘𝑠 in Eq. (3) are used to control the accuracy of the estimates. The functions (2) or (3) or other

functions of 𝐹 are used to formulate the objective 𝑓 (𝒙) and constraints functions 𝒄(𝒙) of deterministic optimization

problems based on the design context. For example, a single objective deterministic optimization can be formulated as

minimize
𝒙∈D

𝑓 (𝒙) ≜ �̄� (𝒙)

subject to 𝒄(𝒙) ≜ �̄� (𝒙) ≤ 0.
(4)

The derivatives 𝑑𝑓 (𝒙)/𝑑𝒙 and 𝑑𝒄(𝒙)/𝑑𝒙 are evaluated by applying the adjoint method [56, 57] for scalability in terms

of the number of design variables.

B. Stochastic PDE and Optimization Under Uncertainty

In the presence probabilistically modeled random variable inputs 𝒚, we consider the solution of the stochastic PDEs

as solving the following system of nonlinear equations

R(𝒙, 𝑡, 𝒚; u(𝒙, 𝑡, 𝒚)) = 0, (5)

where u(𝒙, 𝑡, 𝒚) are the stochastic state variables. Throughout this work, we use the terms stochastic, random and

probabilistic to refer to the dependence of functions on the probabilistic random coordinate 𝒚 (in a sense similar to the

temporal coordinate 𝑡 ∈ T ), and deterministic to refer to functions that lack this dependence.

7



Similar to the deterministic output (2), the time-averaged probabilistic output fields are

F̄(𝒙, 𝒚) = 1
𝑡 𝑓 − 𝑡0

∫ 𝑡 𝑓

𝑡0

F(𝒙, 𝑡, 𝒚; u(𝒙, 𝑡, 𝒚)) 𝑑𝑡, (6)

or, their temporal maximum are

F̄(𝒙, 𝒚) = 𝑐𝑘𝑠 +
1
𝜌𝑘𝑠

ln
∫ 𝑡 𝑓

𝑡0

exp [𝜌𝑘𝑠 (F(𝒙, 𝑡, 𝒚; u(𝒙, 𝑡, 𝒚)) − 𝑐𝑘𝑠)] 𝑑𝑡. (7)

The statistical measures such as the expectation E[F̄(𝒙, 𝒚)], variance V[F̄(𝒙, 𝒚)], and standard deviation S[F̄(𝒙, 𝒚)], are

utilized in OUU problem formulations. In this investigation, we consider the robust optimization problem formulation

among other variants [1, 8, 39]

minimize
𝒙∈D

𝑓 (𝒙) ≜ E[F̄(𝒙, 𝒚)] + S[F̄(𝒙, 𝒚)]

subject to 𝒄(𝒙) ≜ E[C̄(𝒙, 𝒚)] + 𝐾 · S[C̄(𝒙, 𝒚)] ≤ 0.
(8)

In contrast to the deterministic optimization (4), the OUU objective function 𝑓 (𝒙) includes the expectation and a

measure of its variability. The constraint 𝒄(𝒙) demands that the design output 𝒙 observes a separation of 𝐾 standard

deviations from the expected constraint manifold. To utilize gradient-based algorithms for optimization, we consider the

evaluation of the adjoint derivatives of statistical measures:

𝑑E[F̄(𝒙, 𝒚)]
𝑑𝒙

,
𝑑V[F̄(𝒙, 𝒚)]

𝑑𝒙
and

𝑑S[F̄(𝒙, 𝒚)]
𝑑𝒙

. (9)

C. Stochastic Sampling Method and Adjoint Derivatives

The stochastic sampling method requires the solution of deterministic PDEs for all the probabilistic nodes 𝒚𝑞

provided by the sampling scheme resulting in the solution of the nonlinear system as follows

𝑹(𝒙, 𝑡, 𝒚𝑞; 𝒖(𝒙, 𝑡, 𝒚𝑞)) = 0. (10)

Throughout this work, we utilize the tensor-product quadrature nodes and weights {𝒚𝑞 , 𝛼𝑞}𝑄𝑞=1 normalized such that∑𝑄

𝑞=1 𝛼𝑞 = 1. These nodes are the roots of the polynomials associated with the input probability distributions listed in

Table 1 for better rates of convergence. The output functions (6) and (7) are evaluated at these quadrature nodes to

evaluate their expectation as

E[F̄(𝒙, 𝒚)] ≜
∫
Y
𝜌(𝒚)F̄(𝒙, 𝒚) d𝒚 =

𝑄∑︁
𝑞=1

𝛼𝑞 �̄� (𝒙, 𝒚𝑞), (11)
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and the variance as

V[F̄(𝒙, 𝒚)] ≜ E[F̄(𝒙, 𝒚)2] − E[F̄(𝒙, 𝒚)]2 =

𝑄∑︁
𝑞=1

𝛼𝑞 �̄� (𝒙, 𝒚𝑞)2 − E[F̄(𝒙, 𝒚)]2. (12)

Similar to the statistics, the derivatives of the expectation are formed through quadrature sampling as

𝑑E[F̄(𝒙, 𝒚)]
𝑑𝒙

= E

[
𝑑F̄(𝒙, 𝒚)
𝑑𝒙

]
=

∫
Y
𝜌(𝒚) 𝑑F̄(𝒙, 𝒚)

𝑑𝒙
d𝒚 =

𝑄∑︁
𝑞=1

𝛼𝑞
𝑑�̄� (𝒙, 𝒚𝑞)

𝑑𝒙
, (13)

and the derivatives of the variance as

𝑑V[F̄(𝒙, 𝒚)]
𝑑𝒙

= 2
𝑄∑︁
𝑞=1

𝛼𝑞 �̄� (𝒙, 𝒚𝑞)
𝑑�̄� (𝒙, 𝒚𝑞)

𝑑𝒙
− 2E[F̄(𝒙, 𝒚)] 𝑑E[F̄(𝒙, 𝒚)]

𝑑𝒙
. (14)

The standard deviation and its derivatives are obtained using the relation S[F̄] =
√︁
V[F̄]. Note that in Eqs. (13) and (14)

the derivative operator is moved inside the integral making use of our assumption that the probabilistic variables 𝒚

and the integration limits are independent of the design variables 𝒙. We implement probabilistic sampling around

deterministic physics and adjoint frameworks for non-intrusive formation of (11)–(14) as a benchmark to verify the

same quantities evaluated by implementing the semi-intrusive SGM.

Table 1 The probability density functions, basis polynomials and quadrature rules for distribution types.

Distribution Density function 𝜌(𝑦) Univariate orthonormal polynomials 𝜓𝑘(y) Quadrature rule

Gaussian N 1
𝜎
√

2𝜋
exp[− 1

2 (
𝑦−𝜇
𝜎
)2] 1,

( 𝑦−𝜇
𝜎

)
,
(
( 𝑦−𝜇

𝜎
)2 − 1

)
/2!, . . . Gauss–Hermite

UniformU 1
𝑏−𝑎 1,

(
2( 𝑦−𝑎

𝑏−𝑎 ) − 1
) √

3,
(
6( 𝑦−𝑎

𝑏−𝑎 )
2 − 6( 𝑦−𝑎

𝑏−𝑎 ) + 1
) √

5, . . . Gauss–Legendre
Exponential E 1

𝛽
exp[−( 𝑦−𝜇

𝛽
)] 1, 1 − ( 𝑦−𝜇

𝛽
),
(
2 − 4( 𝑦−𝜇

𝛽
) + ( 𝑦−𝜇

𝛽
)2
)
/2!, . . . Gauss–Laguerre

III. Semi-Intrusive Stochastic Galerkin Method
Consider a set of basis functions 𝝍(𝒚) = {𝜓1 (𝒚), 𝜓2 (𝒚), . . . , 𝜓𝑁 (𝒚)} for M-dimensional random variable 𝒚 =

[𝑦1, 𝑦2, . . . , 𝑦𝑀 ]. The basis functions are constructed orthonormal to each other with respect to the probability density

function for simpler recovery of decomposition coefficients as

〈
𝜓𝑖 (𝒚)

��� 𝜓 𝑗 (𝒚)
〉Y
𝜌(𝒚 )

=

∫
Y
𝜌(𝒚)𝜓𝑖 (𝒚)𝜓 𝑗 (𝒚) 𝑑𝒚 = 𝛿𝑖 𝑗 , (15)

where 𝛿𝑖 𝑗 is the Kronecker delta function. The multivariate basis entries of the set 𝝍(𝒚) are constructed from the

univariate polynomials listed in Table 1. Each of the 𝑃 deterministic degrees of freedom in the deterministic finite
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element model and the corresponding governing kinematic, dynamic, constraint laws in the flexible multibody system

are associated with 𝑁 probabilistic spectral degrees of freedom and forms the stochastic Galerkin finite element model

(see Figure 3). For efficient basis selection, it may be necessary to consider generalization schemes other than tensor

products, similar in principle to adaptive sampling methods [35].

𝜓1 𝜓2 . . . 𝜓𝑁

𝑅1 𝑅1 × 𝜓1 𝑅1 × 𝜓2 . . . 𝑅1 × 𝜓𝑁

𝑅2 𝑅2 × 𝜓1 𝑅2 × 𝜓2 . . . 𝑅2 × 𝜓𝑁

...
...

...
. . .

...

𝑅𝑃 𝑅𝑃 × 𝜓1 𝑅𝑃 × 𝜓2 . . . 𝑅𝑃 × 𝜓𝑁

𝑹 𝑹 × 𝜓1 𝑹 × 𝜓2 . . . 𝑹 × 𝜓𝑁

R ≜ 𝑹 ⊗ 𝝍

𝜓1 𝜓2 . . . 𝜓𝑁

𝑢1 𝑢1 × 𝜓1 𝑢1 × 𝜓2 . . . 𝑢1 × 𝜓𝑁

𝑢2 𝑢2 × 𝜓1 𝑢2 × 𝜓2 . . . 𝑢2 × 𝜓𝑁

...
...

...
. . .

...

𝑢𝑃 𝑢𝑃 × 𝜓1 𝑢𝑃 × 𝜓2 . . . 𝑢𝑃 × 𝜓𝑁

𝒖 𝒖 × 𝜓1 𝒖 × 𝜓2 . . . 𝒖 × 𝜓𝑁

u ≜ 𝒖 ⊗ 𝝍

Fig. 3 The tensor product of deterministic residuals and state variables with the probabilistic basis set forms the
stochastic residuals and states in the forward-problem. This generalization scheme is applicable to the adjoint
reverse-problem as well as other functions of the random variable.

A. Solution of Stochastic Governing Equations

Consider the decomposition of a function 𝑎(𝒚) in terms of another function 𝑏(𝒚) in the probabilistic domain Y

defined as weighted inner product

〈
𝑎(𝒚)

��� 𝑏(𝒚)〉Y
𝜌(𝒚 )
≜

∫
Y
𝑎(𝒚) 𝜌(𝒚) 𝑏(𝒚) 𝑑𝒚 =

𝑄∑︁
𝑞=1

𝑎(𝒚𝑞) 𝛼𝑞 𝑏(𝒚𝑞). (16)

By applying this decomposition operator to the stochastic functions of 𝒚 listed in Table 2, all the terms needed for the

implementation of SGM can be obtained numerically through the sampling of the underlying deterministic residual,

Jacobian, initial conditions, and adjoint implementations. We formulate the Newton–Raphson iterative procedure for

the solution of nonlinear system (5) applying linearization in terms of the unknown state variables u resulting in linear

system of the form: 

J11 J12 . . . J1𝑁

J21 J22 . . . J2𝑁

...
...

. . .
...

J𝑁1 J𝑁2 . . . J𝑁𝑁





Δu1

Δu2

...

Δu𝑁


= −



R1

R2

...

R𝑁


. (17)

The linearized SPDE system of coefficients (17) is solved to obtain stochastic state updates

u𝑛+1 = u𝑛 + Δu𝑛. (18)
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The Newton–Raphson iterations are repeated until the norm of residuals are under a certain tolerance. The residual

vector and Jacobian matrix of the linear system (17) is assembled through the sampling of deterministic residuals

R 𝑗 ≜
〈
𝜓 𝑗 (𝒚)

��� R(𝒙, 𝑡, 𝒚; u(𝒙, 𝑡, 𝒚))
〉Y
𝜌(𝒚 )

=

𝑄∑︁
𝑞=1

𝛼𝑞 𝜓 𝑗 (𝒚𝑞)𝑹(𝒙, 𝑡, 𝒚𝑞; 𝒖(𝒙, 𝑡, 𝒚𝑞)). (19)

Similarly, the Jacobian terms in the linear system (17) are obtained by sampling the deterministic Jacobian

J 𝑗𝑘 ≜
〈
𝜓 𝑗 (𝒚)

��� 𝜕R
𝜕u
(𝒙, 𝑡, 𝒚; u(𝒙, 𝑡, 𝒚))

��� 𝜓𝑘 (𝒚)
〉Y
𝜌(𝒚 )

=

𝑄∑︁
𝑞=1

𝛼𝑞 𝜓 𝑗 (𝒚𝑞)
𝜕𝑹

𝜕𝒖

(
𝒙, 𝑡, 𝒚𝑞; 𝒖(𝒙, 𝑡, 𝒚𝑞)

)
𝜓𝑘 (𝒚𝑞). (20)

The stochastic state vector of size 𝑁 × 𝑃 available as the Newton–Raphson iterate (18) is linearly-combined with 𝑁

stochastic basis functions evaluated at the quadrature nodes to form the deterministic state vector of size 𝑃 as

𝒖(𝒙, 𝑡, 𝒚𝑞) =
𝑁∑︁
𝑖=1

u𝑖 (𝒙, 𝑡) 𝜓𝑖 (𝒚𝑞). (21)

This deterministic state vector is needed as input to the deterministic framework for the evaluation of the deterministic

residual and Jacobians at each quadrature point 𝒚𝑞 in Eqs. (19) and (20) This principle is applied to form the time

derivatives of the deterministic states ¤𝒖 and ¥𝒖, as well the adjoint state variables 𝒗 and 𝒘 for the sensitivity analysis.

For time-dependent simulations, the stochastic initial conditions vector is formed in a manner similar to the stochastic

residuals through the probabilistic sampling of deterministic initial condition implementations at 𝑡 = 𝑡0 as

u 𝑗 (𝒙, 𝑡0) ≜
〈
𝜓 𝑗 (𝒚)

��� u(𝒙, 𝑡0, 𝒚)
〉
=

𝑄∑︁
𝑞=1

𝛼𝑞 𝜓 𝑗 (𝒚𝑞)𝒖(𝒙, 𝑡0, 𝒚𝑞). (22)

The indices 𝑗 , 𝑘 in Eqs (19), (20), (22) run from 1 to 𝑁 through the set of stochastic basis functions. The stochastic

states, residuals, and Jacobian are 𝑁 times larger than their deterministic counterparts, due to the association of 𝑁

spectral modes to each deterministic degree of freedom as shown in Figure 3. Note that the finite element connectivities

and spatial and temporal discretization nodes remain the same in the stochastic finite element problem. As an illustrative

example, Figure 4 depicts the stochastic Jacobian sparsity patterns of a simple one degree of freedom (𝑃 = 1) spring

model after stochastic decomposition using Eq. 20 with 𝑁 = 343 basis functions. This method can be applied to extract

more complicated sparsity patterns associated with flexible multibody systems or other physics.
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(a) 𝐾 (𝒚) ≜ 𝑦1 + 𝑦2 + 𝑦3
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(b) 𝐾 (𝒚) ≜ 𝑦1𝑦2 + 𝑦2𝑦3 + 𝑦3𝑦1
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(c) 𝐾 (𝒚) ≜ 𝑦1𝑦2𝑦3

Fig. 4 Nonzero patterns of the stochastic stiffness matrix for a spring with stiffness K(𝑦1, 𝑦2, 𝑦3) where
𝑦1 ∼ E(𝜇 = 𝜋/2, 𝛽 = 𝜋/4), 𝑦2 ∼ N(𝜇 = 𝜋/2, 𝜎 = 𝜋/20), and 𝑦3 ∼ U(𝑎 = 𝜋/4, 𝑏 = 3𝜋/4). The spectral basis set is
formed through the tensor-product of the first seven Laguerre, Hermite, and Legendre polynomials.

B. Statistical Measures

The stochastic functions F̄(𝒙, 𝒚) are decomposed into the bases and coefficients through the sampling of deterministic

function implementation as

F̄ 𝑗 (𝒙) ≜
〈
𝜓 𝑗 (𝒚)

��� F̄(𝒙, 𝒚)
〉Y
𝜌(𝒚 )

=

𝑄∑︁
𝑞=1

𝛼𝑞𝜓 𝑗 (𝒚𝑞)�̄� (𝒙, 𝒚𝑞). (23)

The expectation and variance are obtained directly from the decomposition coefficients F̄ 𝑗 , where the expectation is

E[F̄(𝒙, 𝒚)] = F̄1 (𝒙), (24)
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and the variance is

V[F̄(𝒙, 𝒚)] = E[F̄(𝒙, 𝒚)2] − E[F̄(𝒙, 𝒚)]2 =

𝑁∑︁
𝑗=2

F̄2
𝑗 (𝒙). (25)

The SGM statistics (24) and (25) can be evaluated through the sampling of deterministic function outputs as outlined in

Eq. (23).

C. Stochastic Galerkin Adjoint Derivatives

Next, we present the stochastic Galerkin adjoint formulation to evaluate the design variable derivatives of the

expectation (24) and variance (25) based on the sampling of deterministic adjoint implementation [56]. The derivative

of the expectation is obtained as

𝑑E[F̄(𝒙, 𝒚)]
𝑑𝒙

=

〈
𝜓1 (𝒚)

��� 𝑑F̄(𝒙, 𝒚)
𝑑𝒙

〉Y
𝜌(𝒚 )

=

𝑄∑︁
𝑞=1

𝛼𝑞𝜓1 (𝒚𝑞)
𝑑�̄� (𝒙, 𝒚𝑞)

𝑑𝒙
. (26)

Eq. (26) employs the sampling of the assembled deterministic derivative 𝑑�̄� (𝒙, 𝒚𝑞)/𝑑𝒙. The total derivative implemented

within the deterministic framework takes the form

𝑑�̄� (𝒙, 𝒚𝑞)
𝑑𝒙

=
𝜕�̄� (𝒙, 𝒚𝑞)

𝜕𝒙
+ 𝒗𝑇 (𝒚𝑞)

𝜕𝑹(𝒙, 𝒚𝑞; 𝒖(𝒙, 𝒚𝑞))
𝜕𝒙

, (27)

due to the adjoint decomposition [56]. Note that the deterministic adjoint variables 𝒗 at 𝒚𝑞 are needed for Eq. (27) as

input to the deterministic framework along with the state inputs 𝒖 at 𝒚𝑞 to obtain the assembled derivative. We form the

deterministic adjoint variables 𝒗 from the stochastic adjoint variables v in a manner similar to the forward physics as

outlined in Eq. (21). The stochastic adjoint states v are found by solving the linear system



JT
11 . . . JT

1𝑁

...
...

...

JT
𝑁1 . . . JT

𝑁𝑁





v1

...

v𝑁


= −



∑𝑄

𝑞=1 𝛼𝑞𝜓1 (𝒚𝑞)
𝜕�̄� (𝒙, 𝒚𝑞)

𝜕𝒖
...∑𝑄

𝑞=1 𝛼𝑞𝜓𝑁 (𝒚𝑞)
𝜕�̄� (𝒙, 𝒚𝑞)

𝜕𝒖


. (28)

To assemble the linear adjoint system (28), we use Eq. (20) for the formation of the Jacobian. The right hand side is

formed through the sampling of the deterministic implementation as follows

〈
𝜓𝑘 (𝒚)

��� 𝜕F̄(𝒙, 𝒚𝑞)
𝜕u

〉
=

𝑄∑︁
𝑞=1

𝛼𝑞𝜓𝑘 (𝒚𝑞)
𝜕�̄� (𝒙, 𝒚𝑞)

𝜕𝒖
. (29)
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Next, the total derivative of the variance is decomposed into two components based on the identity (12) as

𝑑V[F̄(𝒙, 𝒚)]
𝑑𝒙

=
𝑑E[F̄2 (𝒙, 𝒚)]

𝑑𝒙
− 2E[F̄(𝒙, 𝒚)] 𝑑E[F̄(𝒙, 𝒚)]

𝑑𝒙

=

〈
𝜓1 (𝒚)

��� 𝑑F̄2 (𝒙, 𝒚)
𝑑𝒙

〉Y
𝜌(𝑦)
− 2

〈
𝜓1 (𝒚)

��� F̄(𝒙, 𝒚)
〉Y
𝜌(𝑦)

〈
𝜓1 (𝒚)

��� 𝑑F̄(𝒙, 𝒚)
𝑑𝒙

〉Y
𝜌(𝑦)

.

(30)

The second component is available at this stage and therefore we apply the adjoint decomposition method for the squared

output function F̄2, and follow the same approach outlined for the expectation of F̄. The total derivative of the squared

output is formed by sampling the deterministic implementation as

𝑑�̄�2 (𝒙, 𝒚𝑞)
𝑑𝒙

=
𝜕�̄�2 (𝒙, 𝒚𝑞)

𝜕𝒙
+ 𝒘𝑇 (𝒚𝑞)

𝜕𝑹(𝒙, 𝒚𝑞; 𝒖(𝒙, 𝒚𝑞))
𝜕𝒙

. (31)

We use the chain-rule 𝜕�̄�2 (𝒙, 𝒚𝑞)/𝜕𝒙 = 2 �̄� (𝒙, 𝒚𝑞) 𝜕�̄� (𝒙, 𝒚𝑞)/𝜕𝒙 for reusing the available deterministic implementation

for the function and its partial derivatives. The adjoint linear system of equations for the adjoint variables w is



JT
11 . . . JT

1𝑁

...
...

...

JT
𝑁1 . . . JT

𝑁𝑁





w1

...

w𝑁


= −



∑𝑄

𝑞=1 𝛼𝑞𝜓1 (𝒚𝑞)
𝜕�̄�2 (𝒙, 𝒚𝑞)

𝜕𝒖
...∑𝑄

𝑞=1 𝛼𝑞𝜓𝑁 (𝒚𝑞)
𝜕�̄�2 (𝒙, 𝒚𝑞)

𝜕𝒖


. (32)

The right-hand-side (32) may apply the chain-rule: 𝜕�̄�2 (𝒙, 𝒚𝑞)/𝜕𝒖 = 2 �̄� (𝒙, 𝒚𝑞) 𝜕�̄� (𝒙, 𝒚𝑞)/𝜕𝒖 for reusing the available

deterministic implementation.

The above formulation is presented from the perspective of a static finite-element adjoint method. The adjoint for

time-dependent systems can be obtained by sampling the time-dependent deterministic adjoint implementation. The

linear systems and the formation of total derivatives then involve the derivatives of the integrand and the appropriate

temporal scaling factor [56].

As a method of verification of the stochastic Galerkin implementation, note that if 𝑁 = 1 the deterministic finite

element vectors, matrices, and derivatives must be recovered. This property can be used as one of the verification steps

after the stochastic finite element and adjoint implementation. In addition, one can verify the consistency of stochastic

residuals with the stochastic Jacobians using the complex-step perturbations of the stochastic state variables.

IV. Software Architecture for Stochastic Galerkin Method
A key advantage of the proposed semi-intrusive SGM technique is that it can be implemented using straightforward

software architectures that leverage existing deterministic finite element frameworks. In this section, we describe the

software architecture related details of our stochastic finite element implementation that extends the TACS [56, 58]
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Table 2 The terms required for the implementation of a stochastic finite element framework from deterministic
finite element implementations, along with adjoint sensitivity analysis for expectation, variance, and standard
deviation operators.

Operators State Variable Sensitivities Design Variable Sensitivities

Stochastic R 𝜕R/𝜕u 𝜕R/𝜕𝒙
Deterministic 𝑹 𝜕𝑹/𝜕𝒖 𝜕𝑹/𝜕𝒙

Stochastic F 𝜕F/𝜕u 𝜕F/𝜕𝒙
Deterministic 𝐹 𝜕𝐹/𝜕𝒖 𝜕𝐹/𝜕𝒙

Stochastic F2 𝜕F2/𝜕u 𝜕F2/𝜕𝒙
Deterministic 𝐹2 𝜕𝐹2/𝜕𝒖 𝜕𝐹2/𝜕𝒙

deterministic finite element framework. The description is centered around abstract mathematical operators and

derivatives listed in Table 2 that are PDE framework and physics agnostic.

A. Deterministic Finite Element Framework for Physics and Adjoint Sensitivity Analysis

Consider the deterministic finite element framework to consist of the following components:

1) An Element interface to organize element-level block computations based on abstract form 𝑹𝑒 (𝒙𝑒, 𝑡; 𝒖𝑒 (𝒙𝑒, 𝑡))

and its state and design derivatives listed in Table 2. The classes implementing this Element interface apply

the spatial discretization methods for beams, shells, solids, rigid bodies, and kinematic constraints, and their

derivatives.

A Function interface organizes the evaluation of output quantities of interest and their derivatives based on

abstract form 𝐹𝑒 (𝒙𝑒, 𝑡; 𝒖𝑒 (𝒙𝑒, 𝑡)). The classes implementing this Function interface evaluate the element-level

stresses, deformations, compliance, structural mass, and other physical quantities, and their derivatives.

2) An Assembler class collects the blocks of element residual arrays 𝑹𝑒, Jacobian matrices 𝜕𝑹𝒆/𝜕𝒖𝑒 and derivative

arrays 𝜕𝑹𝑒/𝜕𝒙𝑒, 𝜕𝐹𝑒/𝜕𝒙𝑒 within the finite element mesh, and forms the global system-level matrices and vectors

for the solution of physics and adjoint-sensitivity analysis. The assembly is described as

𝑹 ←−
∑︁

𝑹𝑒

𝐹 ←−
∑︁

𝐹𝑒

𝜕𝑹/𝜕𝒖 ←−
∑︁

𝜕𝑹𝑒/𝜕𝒖𝑒

𝜕𝑹/𝜕𝒙 ←−
∑︁

𝜕𝑹𝑒/𝜕𝒙𝑒

𝜕𝑭/𝜕𝒖 ←−
∑︁

𝜕𝑭𝑒/𝜕𝒖𝑒

𝜕𝑭/𝜕𝒙 ←−
∑︁

𝜕𝑭𝑒/𝜕𝒙𝑒 .

(33)
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The Assembler class also coordinates the parallel, inter-processor communications, and provides options for the

ordering of global degrees of freedom.

3) ATime Integrator class uses an instance of theAssembler and implements the implicit temporal discretization

in conjunction with the Newton–Raphson method.

The Element and Function classes within the deterministic finite element library are illustrated schematically in

Figure 5.

B. Stochastic Galerkin Finite Element Frameworks for Physics and Adjoint Sensitivity Analysis

For supporting calculations in the probabilistic domain, consider the implementation of a Probabilistic Domain

class that stores the probabilistic variables, evaluates the orthonormal basis functions, and supplies the quadrature

nodes and weights based on the distribution type. This class abstracts the different options for basis formation (e.g.,

tensor or complete polynomials) and quadrature setup (e.g., tensor or sparse). If the probabilistic domain discretization

is performed first followed by spatial and temporal discretizations, the process would resemble the intrusive SGM

illustrated in Figure 2, and as a consequence there will be nothing to place under a layer of probabilistic sampling.

Instead, we create a semi-intrusive approach by performing the discretization in a different order to facilitate the reuse

of the deterministic implementation. This could take different pathways based on the placement of the probabilistic

sampling either before spatial assembly of element block matrices and vectors or after spatial assembly around the

global matrices and vectors.

1. Architecture for Probabilistic Sampling Before Spatial Assembly

In Architecture-I, a Stochastic Element class implements the Element interface, and also stores a deterministic

instance of the Element class, as shown in Figure 5a. By virtue of this architecture:

1) The Stochastic Element class implements the probabilistic sampling of the underlying deterministic capabil-

ities to form N times larger blocks of the stochastic residuals, Jacobians, and adjoint derivative contributions by

reusing the instance of the deterministic Element it holds through the composition (red lines).

2) The Stochastic Element is also an element through the inheritance of the parent interface (blue lines), and

follows through the established pipeline of the assembly, linear algebra, and time-marching algorithms provided

by the surrounding Assembler and Time Integrator without modifications.

Similarly, for the evaluation of the statistical measures and their derivatives, a Stochastic Function class implements

the Function interface and uses a deterministic Function instance for sampling, as shown in Figure 5b. The

Stochastic Function class can be specialized further to evaluate the expectation and variance.
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Deterministic Element Library

Semi-Intrusive Stochastic Galerkin Layer

«interface»
Element

Add Residual and Jacobian
Add Residual State Variable Sensitivity
Add Residual Design Variable Sensitivity

Beam Element
Add Residual and Jacobian
Add Residual State Variable Sensitivity
Add Residual Design Variable Sensitivity

Revolute Joint Element
Add Residual and Jacobian
Add Residual State Variable Sensitivity
Add Residual Design Variable Sensitivity

Stochastic Element
deterministic element : Element
probabilistic domain : Probabilistic Domain
Add Residual and Jacobian
Add Residual State Variable Sensitivity
Add Residual Design Variable Sensitivity

Probabilistic Domain
Add Probabilistic Variable
Get Quadrature Points and Weight
Evaluate Orthonormal Basis

uses

uses use
s

(a) Deterministic and Stochastic Elements
Deterministic Function Library

Semi-Intrusive Stochastic Galerkin Layer

«interface»
Function

Add Function Contribution
Add Function State Variable Sensitivity
Add Function Design Variable Sensitivity

Failure Function
Add Function Contribution
Add Function State Variable Sensitivity
Add Function Design Variable Sensitivity

Displacement Function

Add Function Contribution
Add Function State Variable Sensitivity
Add Function Design Variable Sensitivity

Stochastic Function
deterministic function : Function
probabilistic domain : Probabilistic Domain

Probabilistic Domain
Add Probabilistic Variable
Get Quadrature Points and Weight
Evaluate Orthonormal Basis

Variance Function
Add Function Contribution
Add Function State Variable Sensitivity
Add Function Design Variable Sensitivity

Expectation Function

Add Function Contribution
Add Function State Variable Sensitivity
Add Function Design Variable Sensitivity

uses

uses use
s

(b) Deterministic and Stochastic Functions

Fig. 5 An architecture showing the stochastic implementation of Element and Function interfaces. The
blue lines denote inheritance and the red lines denote composition among entities. Since the stochastic
implementations follow the same interface utilized for deterministic implementations, the assembly and time
integration infrastructure of the deterministic framework can be used for the stochastic framework without any
modifications.

2. Architecture for Probabilistic Sampling After Spatial Assembly

Alternatively, the probababilistic sampling can be applied surrounding the spatial assembly by implementing a new

Stochastic Assembler class that implements the Assembler interface and uses an instance of the deterministic

Assembler for the reevaluation of deterministic global matrices and vectors for each quadrature point provided by
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the Probabilistic Domain class. This architecture is useful when the deterministic framework constraints allow

sampling only at the globally assembled system level. The SGM Architecture-I and SGM Architecture-II can differ in

the arrangement and ordering of the degrees of freedom (spatial, temporal, and probabilistic), parallel partitioning, and

other implementation details, but provide numerically equivalent methods to implement SGM. Architecture-I offers the

potential for localized and selective element-level evaluation of contributions to the stochastic Galerkin matrices and

vectors, which can be beneficial for speed. For example, if only a group of elements are dependent on random inputs,

their block matrices and vectors may be selectively sampled and the other remaining elements may not be reevaluated

for each quadrature point.

C. Implementation of SSP and SSM

The classes described above can be tailored to implement the SSP [19, 20] and the SSM discussed in Figure 2 which

are classically non-intrusive UQ methods. The SSP can be implemented by invoking the deterministic solution methods

contained in the Assembler to produce the outputs that are then scaled with basis functions and weights provided at the

quadrature points provided by the Probabilistic Domain, for each spectral mode decomposition (see Figure 2). The

SGM Architecture-II and SSP are subtly different: the former uses deterministic Assembler only for the formation of

the coupled stochastic system of coefficients, and solves the larger system once using solver methods implemented in

Stochastic Assembler, whereas the latter uses the deterministic Assembler for repeated solutions for each sample

point. The SSM can be implemented by simply excluding the weighing contributions of the probabilistic basis functions

of SSP implementation, as we are not interested in spectral decomposition in this context.

V. Stochastic Finite Element Analysis and Optimization Under Uncertainty
In this section, we apply our semi-intrusive stochastic Galerkin method on time-dependent finite element problems to

verify the accuracy of physics and sensitivity analysis followed by OUU applications. To verify the SGM statistics we use

the SSM statistics as the benchmark [34]. To verify the adjoint gradients, we employ the complex-step method to obtain

reliable numerical approximations close to machine precision [42]. For these investigations, the SGM Architecture-I

and the SSM are implemented utilizing the TACS finite element and adjoint framework.

A. Four-Bar Mechanism

A nonlinear time-dependent four-bar mechanism [59] used for the verification of flexible multibody analysis

frameworks is shown in Figure 6. The mechanism contains three flexible bars modeled as Timoshenko beams, three

revolute joints (B, C, and D) and an actuator (A) driving the mechanism at a rate of 0.6 rad/s. A rigid fourth-bar is

imagined to exist in the mechanism between 𝐴 and 𝐷. The sectional properties of the flexible bars are calculated

based on the rectangular cross-sections shown in Figure 6. The bars have an elastic modulus of 207 GPa, density of
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7800 kg/m3, Poisson’s ratio of 0.3, and shear correction factor of 5/6. The revolute axes of the actuator, as well as

the joints 𝐵 and 𝐷, are exactly perpendicular to the horizontal plane of the mechanism, whereas the revolute axis of

joint 𝐶 is assumed misaligned by an angle 𝜃 = 𝜃 (𝑦) where 𝑦 ∼ N(𝜇 = 5◦, 𝜎 = 2.5◦). The deterministic finite element

implementation is reused in a black-box fashion for the implementation of SGM, following the semi-intrusive method

discussed in Section III.

Ω = 0.6 rad/s

B

A

Bar 3Bar 1

Bar 2

C

D

Bar 3

16 mm
8 mm

Bar cross sections

Bar 1 and 2

0.24 m 0.12 m

Fig. 6 The schematic of four-bar mechanism (left) and the cross-sectional geometry (right).

1. Verification of Statistics

Figure 7 plots the time history of the mean and variance of the axial force at the mid-point of bar 1. These statistical

measures are computed using the semi-intrusive SGM with 𝑁 = 3, 5, and 7 terms in the orthonormal basis set; and the

SSM with 15 quadrature points. In one full cycle between 𝑡 = 0 to 𝑡 = 12 s, the axial force exhibits two peaks. The peak

occurring between 𝑡 = 7.6 s and 𝑡 = 8.1 s is plotted separately in Figure 7, as well as quantitatively listed in Table 3

along with the deterministic case pertaining to a constant 5◦ misalignment. The effect of uncertainties on the dynamic

response of the mechanism is noticeable in the form of approximately 15% higher peak axial force in bar 1 compared

to the deterministic finite element analysis. The results show good agreement of the SGM moments with the SSM

statistics for this non-linear case.

Table 3 The statistical measures of the axial force of bar 1 at its mid-point evaluated using SGM and SSM.

Peak Axial-Force Expectation Variance

Deterministic 0.5955764 –

SGM (N=3) 0.6870459 0.2585949
SGM (N=5) 0.6858359 0.2625304
SGM (N=7) 0.6866675 0.2614760

SSM (Q=15) 0.6879982 0.2597545

Figure 8 shows the average time taken per time-step for SSM with 𝑄 = 20 and SGM with 𝑁 = 3, 5 and 7. We scale
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Fig. 7 The mean (top) and variance (bottom) of the normalized axial force in bar 𝐴𝐵 as a function of time
computed using SGM and SSM.

the number of finite element mesh nodes of the Timoshenko beams and plot the computational time with the number

of deterministic degrees of freedom. As it can be seen, the SSM is faster for smaller finite element meshes, but its

scalability varies as the mesh size increases. The SGM maintains an almost linear scaling with the degrees of freedom.

For this case setup, the computational time of SGM (𝑁 = 3) is comparable to the SSM. However, note that 𝑄 and 𝑁 are

tunable parameters and this study may not be indicative of higher dimensional scaling when there are more random

variables.

2. Verification of Adjoint Derivatives

The stochastic adjoint gradient verification is performed for three structural output functions: the mass, the maximum

out-of-plane displacement, and the maximum axial stress based failure using the uniform width of bars 𝐴𝐵 and 𝐵𝐶

as the design variable. The maximum displacement and failure response are estimated using Eq. (7) with 𝜌𝑘𝑠 = 104.

Table 4 lists the gradients of the expectation and variance of these functions, evaluated using the stochastic-adjoint

method outlined in Section III.C and the complex-step derivative estimate. The gradients are observed to exhibit

sufficient accuracy for solving the OUU problems using gradient-based methods.
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Fig. 8 The averaged wall time for each time-step taken by the SSM and SGM with the number of deterministic
degrees of freedom (P) in the model.

Table 4 Derivatives with respect to the width of bars 𝐴𝐵 and 𝐵𝐶 evaluated using the complex-step method with
step size 10−30 and the stochastic Galerkin adjoint method.

Function Complex-Step Gradient Adjoint Gradient Relative Error

mass 1078.272000000680 1078.271999999841 7.78 × 10−13

expectation of displacement 49.02365922158757 49.02304466365254 1.25 × 10−5

variance of displacement 70.22008165947029 70.22135562360499 1.81 × 10−5

expectation of failure -0.1067834991432143 -0.1067834443529120 5.13 × 10−7

variance of failure -1.577327462264513 ×10−4 -1.577328512903997 ×10−4 6.66 × 10−5

3. Optimization Under Uncertainty

Next, we formulate an OUU problem with the four-bar model as follows

minimize 𝑓 (𝒙) ≜ E[mass]

subject to 𝑐1 (𝒙) ≜ E[failure] + 𝐾 · S[failure] ≤ 1.0

𝑐2 (𝒙) ≜ E[displacement] + 𝐾 · S[displacement] ≤ 5 mm

bounds 5 mm ≤ widths ≤ 25 mm.

The mass objective refers to the overall mass of the mechanism, the displacement constraint refers to the displacement

component that is out of the plane, and the failure is evaluated based on allowed normal (axial) force in the bars. We use

spatio-temporal aggregation of constraint functions based on KS formulation [54, 55] for displacement and failure. We

perform five optimization runs composed of one deterministic and four probabilistic OUU runs with 𝐾 = 0, 1, 2 and 3,

and compare the designs in Table 5. The widths of the bars AB and BC have a larger impact than the width of the third

bar CD, as bar BC encounters the highest magnitude of force and displacement throughout the simulation range. We
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Table 5 Four-bar mechanism designs resulting from the deterministic and optimization under uncertainty.

Quantity Deterministic 𝐾 = 0 𝐾 = 1 𝐾 = 2 𝐾 = 3

width AB & BC 5.0 5.0 13.0 18.3 23.5
width CD 5.0 5.0 5.0 6.0 7.0

mass [kg] 1.1 1.1 6.02 11.7 19.3
failure [% max] 47% 55 90 100 100

displacement [% max] 78.22 78.72 100 100 100

notice that the optimizer adds width to the beams as we incorporate more constraint satisfaction through the parameter

𝐾 .

B. Flexible Remote Manipulator System

Next, the semi-intrusive stochastic Galerkin framework is applied to a probabilistic design optimization problem

under uncertainty, based on the dynamics of a robotic manipulator arm. Robotic arms like the Canadarm and Dextre are

utilized in space missions for tasks such as moving payloads, assembling space systems, assisting with docking, and

conducting maintenance activities [60].

shoulder wrist

B C D E
flexible booms

A GF

elbow

payload

y

x

Fig. 9 A schematic of the remote manipulator model with six joint degrees of freedom.

1. Setup of the Finite Element Analysis

We utilize a simplified robotic manipulator system [61–66] depicted in Figure 9 as our model. This model, similar

in function to a human arm, features six joint degrees of freedom. The model has two revolute joints at the shoulder, one

at the elbow between the flexible booms BC and CD, and three more near the wrist. The joints at 𝐴 and 𝐸 allow yawing

motion about the 𝑦−axis; the joints at 𝐵,𝐶 and 𝐷 allow pitching motion about the 𝑧−axis; and the joint at 𝐹 allows rolling

motion about the 𝑥−axis. The material properties of the booms are: Young’s modulus of 207 GPa, density of 7800 kg/m3,

Poisson’s ratio of 0.3, shear correction factor of 5/6. The lengths 𝐴𝐵 = 0.9 m, 𝐵𝐶 = 6.4 m, 𝐶𝐷 = 7.0 m, 𝐷𝐸 = 0.5 m,

𝐸𝐹 = 0.8 m and 𝐹𝐺 = 0.6 m. The masses of the rigid bodies are: 𝑚1 = 95 kg, 𝑚4 = 8 kg, 𝑚5 = 44 kg, 𝑚6 = 41 kg.

The two longer booms 𝐵𝐶 and 𝐶𝐷 are modeled as flexible Timoshenko beams of square cross-sections 25 cm wide.
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The control inputs are assumed to maintain the revolute joints at rates: 𝜔𝐴 = 𝜔𝐵 = 𝜔𝐶 = 𝜔𝐷 = 𝜔𝐸 = 𝜔𝐹 = 0.1 rad/s.

The motion is simulated with these parameters and the initial configuration as the fully extended arm for a duration

𝑡 𝑓 = 5 s (see Figure 10).

Fig. 10 The time-lapse of the simulated deterministic motion.

2. Optimization Under Uncertain Payloads

The robotic manipulator system needs to be designed for handling a wide range of masses for assembly and

maintenance operations on space stations, and we demonstrate the suitability of the OUU concepts in this context. We

model the mass of the payload as a function of random variable with Gaussian distribution as 𝑦 ∼ N(𝜇 = 105 kg, 𝜎 =

5 · 104 kg). The stochastic Galerkin basis set is formed with 𝑁 = 3 orthonormal Hermite polynomials, that yield three

probabilistic degrees of freedom to each deterministic degree of freedom in the finite element model. We setup an

optimization problem to minimize the mass of the system subject to stress-based failure constraint as follows

minimize 𝑓 (𝒙) ≜ E[mass]

subject to 𝑐(𝒙) ≜ E[failure] + 𝛽 · S[failure] ≤ 1.0

bounds 25 mm ≤ widths ≤ 50 mm.

(34)

The two design variables are the rectangular cross-sectional width of the booms 𝐵𝐶 and 𝐶𝐷. In this problem setup,

the mass objective function has no dependence on the random variable since the Gaussian-random payload masses
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do not contribute to the mass of the flexible booms. We still evaluate the expectation for verification purposes. The

optimization constraint is formulated using the expectation and standard deviation of the aggregated maximum failure

in spatio-temporal domains based on the KS aggregation method [54, 55] with 𝜌𝑘𝑠 = 104. First, a verification of the

adjoint derivatives of the statistics is performed using the complex-step method prior to optimization, and the values are

listed in Table 6.

Table 6 The complex-step verification of adjoint derivatives for the robotic manipulator system.

Quantity Mass Failure

adjoint 𝑑E[F̄]/𝑑𝒙 1.24800000000001979 × 105 -3.76597889920338691
complex 𝑑E[F̄]/𝑑𝒙 1.24800000000001819 × 105 -3.76596706242138746

relative error 1.3 × 10−15 3.1 × 10−6

adjoint 𝑑V[F̄]/𝑑𝒙 – −4.46442271585651973 × 10−1

complex 𝑑V[F̄]/𝑑𝒙 – −4.46444953483493667 × 10−1

relative error – 6.0 × 10−6

The optimization problem (34) is solved for constraint parameter 𝐾 ranging from zero to seven. For baseline design

comparisons, a deterministic optimization problem with a constant payload mass of 100, 000 kg is also solved. The

results from the nine optimization runs are tabulated in Table 7. It can be seen that the widths increase as we require more

constraint satisfaction through the parameter 𝐾 . For example, the design pertaining to 𝐾 = 6 is six standard deviations

away from the expected failure manifold, where a deterministic optimizer would converge. When the constraints become

100% active for the OUU designs (𝐾 = 2 to 𝐾 = 7), the optimizer adds mass to the structure. Figure 11 provides a

visualization of the two-dimensional design space, and plots the trajectory of the final optimized designs 𝒙(𝐾) as 𝐾

increases from zero to seven.

Table 7 The optimized designs of the robotic manipulator arm produced from deterministic optimization and
OUU.

Quantity Deterministic 𝐾 = 0 𝐾 = 1 𝐾 = 2 𝐾 = 3 𝐾 = 4 𝐾 = 5 𝐾 = 6 𝐾 = 7

𝑥1 [cm] – bar BC 25.00 25.00 25.00 27.17 30.3 34.3 38.5 42.8 47.1
𝑥2 [cm] – bar CD 25.00 25.00 25.00 25.00 25.0 27.8 31.1 34.7 38.1

E[constraint] – 0.729 0.729 0.650 0.552 0.482 0.431 0.388 0.353
S[constraint] – 0.196 0.196 0.175 0.149 0.129 0.114 0.102 0.092
constraint activity % 76.8 72.9 92.5 100 100 100 100 100 100

optimizer iterations 7 7 7 9 8 34 62 43 41
elapsed time [min] 0.20 5.35 4.48 6.02 3.71 12.08 35.20 19.28 27.84
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(a) Objective (b) Failure

Fig. 11 Visualization of optimization design space with contours of the mass and failure alongside the optimal
OUU designs.

VI. Conclusion
In this paper, we presented a formulation of the stochastic Galerkin method that uses the stochastic sampling of

an underlying deterministic finite element framework. The proposed sampling-based semi-intrusive SGM leverages

a deterministic finite-element framework to create a stochastic finite-element framework for OUU that includes

adjoint-sensitivity analysis. The method is semi-intrusive since its implementation reuses the underlying deterministic

framework. The software architectures implementing the SGM at the global-system and the local-element scales were

discussed, within a generalized stochastic framework where other uncertainty propagation methods like the SSP and the

SSM can also be implemented. For verification, the statistics computed using the SGM were compared to the statistics

computed using the SSM on nonlinear time-dependent finite element problems. A stochastic adjoint formulation

was presented and numerically verified using the complex-step method. The computational framework for stochastic

Galerkin finite element analysis and adjoint-sensitivity analysis was utilized to solve OUU problems based on flexible

multibody dynamics.
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