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Uncertainty Propagation through Complex Time Dependent Models

collective blade pitch

¶ deterministic physical states . . . . . . . . . .stochastic physical states
· deterministic adjoint states . . . . . . . . . . . stochastic adjoint states
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Uncertainty Propagation through Complex Time Dependent Models

uCRM wing subject to gust loads

¶ deterministic physical states . . . . . . . . . .stochastic physical states
· deterministic adjoint states . . . . . . . . . . . stochastic adjoint states
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Scope of the work

Design optimization
of mechanical systems

Time Dependent
Analysis of

Physics

Uncertainty
Quantification

Time-Dependent
Sensitivity
Analysis

Ê interested in design of time dependent mechanical systems us-
ing adjoint derivatives

Ë we include probabilistically modeled uncertainties

Ì propagate the uncertainties using stochastic Galerkin projec-
tion method

Í perform stochastic Galerkin computations by reusing deter-
ministic finite element and adjoint code implementation

Î perform optimization under uncertainty
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Systematic treatment of uncertainties for design optimization

A product should be designed in such a way that makes its
performance insensitive to variation in variables beyond
the control of the designer Genichi Taguchi
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... we need a systematic process to achieve
robustness, reliability and optimality of
design
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Systematic treatment of uncertainties for design optimization

Characterization
of Input

Uncertainties

Propagation
of Input

Uncertainties

Characterization
of Output

Uncertainties

Optimization
Under

Uncertainty

K. Boopathy and G. Kennedy Georgia Tech – Aerospace Engineering January 8, 2020 Page 6 of 29

Ê quantify input randomness

Ë uncertainties through PDE models of physics

Ì quantify output randomness

( formulate optimization problem statements
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Stages I and III – Characterization of Input and Output Randomnness
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Stage II – Methods for Uncertainty Propagation

Propagation
of Input

Uncertainties
intrusivenonintrusive
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projected Jacobian

repeated solutions smaller sys-
tem

principle one solution of bigger non-
linear system

no modifications (black box) code requires modifications

how to reuse deterministic FEA and adjoint code for projection?
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Stage IV – Optimization Under Uncertainty

Deterministic Optimization Problem

minimize
ξ

F (ξ)

subject to G (ξ) ≤ 0

Deterministic Optimization

design
variables

constraints objective

Optimization Under Uncertainty

uncertaintyreliability robust
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Stage IV – Optimization Under Uncertainty

Design optimization
of mechanical systems

Time Dependent
Analysis of

Physics

Uncertainty
Quantification

Time-Dependent
Sensitivity
Analysis

Optimization Under Uncertainty Problem

minimize
ξ

(1− α) · E [F (ξ)] + α · S [F (ξ)]

subject to E [G (ξ)] + β · S [G (ξ)] ≤ 0

• α – objective robustness, β – constraint reliability

• need derivatives to solve gradient based optimization problem
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Section 2

Semi-Intrusive Stochastic Galerkin Projection
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Essentials for SGM from a Computational Standpoint

À Forward Physical Analysis (moments of functions)

4 form stochastic states from deterministic states

4 form stochastic residuals from deterministic residuals

4 form stochastic Jacobians from deterministic Jacobians

• form stochastic initial & boundary conditions from determin-
istic initial (boundary) conditions

Á Adjoint Sensitivity Analysis (deriv. of moments of functions)

4 form stochastic adjoint states from deterministic adjoint states

• form stochastic adjoint right hand terms from deterministic
adjoint right hand terms

• form stochastic (transposed) Jacobians from deterministic
(transposed) Jacobians?
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Probabilistic Space and Inner Product

( probabilistic function space is approximated with N basis entries

Y ≈ span{ψ̂1(y), ψ̂2(y), . . . , ψ̂N(y)}

( polynomial type based on the probability distribution type

• Hermite, Legendre, Laguerre

• Normal, Uniform, Exponential
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• orthogonality + normality

• tensor product for multi-
variate basis
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Formation of Stochastic Physical States

The stochastic state vector is

u(t, y) ≈
N∑

i=1

Ui (t)ψ̂i (y)

Core principles at play:

¶ principle of variable separation – time and probabilistic domains

· principle of superposition . . . . . . . . . . . . . . . . . . . . . . . . summation

( the state vector coefficients: U(t) = [U1(t),U2(t), . . . ,UN(t)]
are available as guessed values from iterative solution

( the length of stochastic state vector is N times the length of
deterministic state vector

( time derivatives u̇(t, y) and ü(t, y) are appoximated similarly
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Formation of Stochastic Residual

R =




R1

R2
...
RN



Ri ≈

Q∑

q=1

αqψ̂i (yq)︸ ︷︷ ︸
scalar

× R(t, yq, u(t, yq), u̇(t, yq), ü(t, yq))︸ ︷︷ ︸
deterministic residual for yq

( quadrature over deterministic residual implementations

( the length of stochastic residual vector is N times the length of
deterministic residual vector

( need ability to update elements with new parameter values

( residuals can be fully assembled or elementwise ones
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Formation of Stochastic Jacobian

The stochastic Jacobian matrix is

J =




J1, 1 J1, 2 . . . J1,N

J2 1 J2, 2 . . . J2,N
...

...
. . .

...
JN, 1 JN, 2 . . . JN,N


 .

Ji , j ≈
Q∑

q=1

αqψ̂i (yq)ψ̂j(yq)︸ ︷︷ ︸
scalar

× J(t, yq, u(t, yq), u̇(t, yq), ü(t, yq))︸ ︷︷ ︸
deterministic Jacobian for yq

( quadrature over deterministic jacobian implementations

( need ability to update element with new parameter values

( the size of stochastic Jacobian is N times the size of determin-
istic Jacobian

( applies to assembled and elementwise Jacobians
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Formation of Stochastic Jacobian
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( sparsity patterns depend on the nonlinearity parameter y

( can optimize the number of quadrature evaluations

( can determine the sparsity apriori
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Formation of Stochastic Adjoint States

recall... stochastic physical state vector

U(t) = [U1(t),U2(t), . . . ,UN(t)]

u(t, y) ≈
N∑

i=1

Ui (t)ψ̂i (y)

Stochastic Adjoint state vector is formed in a similar manner

Λ(t) = [Λ1(t),Λ2(t), . . . ,ΛN(t)]

λ(t, y) ≈
N∑

i=1

Λi (t)ψ̂i (y)

4 transposed Jacobian matrix is formed similar to forward solve

4 the right hand sides of the adjoint linear system are formed in
a manner similar to residuals
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Section 3

Four Bar Mechanism Benchmark
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Four Bar Mechanism – Problem Setup

standard finite-element benchmark case

0.24 m

0.12 mBar 1

Bar 2

Bar 3

1

2

Misaligned joint

Bar 1 and 2
Bar 3

16 mm
8 mm

Ω3 = 0.6 rad/s

Bar cross sectionsB

C

DA

( a time-dependent benchmark problem

( À three Timoshenko bars, Á an actuator driving the mecha-
nism, Â three revolute constraints

( the revolute joint at C is misaligned by an angle of 5◦
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Four Bar Mechanism – Problem Physics

The motion of mechanism differs considerably with the alignment
angle of Joint C

no misalignment 5◦ misalignment of joint

( we treat the misalignment angle as a source of uncertainty and
model it as a random variable θ(y) ∼ N (µ = 5◦, σ = 2.5◦)
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Four Bar Mechanism – Probabilistic Moments Verification

mean of normalized axial force in bar AB as a function of time
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Deterministic

variance of normalized axial force in bar AB as a function of time
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Optimization Problem Formulation

OUU with Four Bar Mechanism

minimize E[mass]

design variable width of bars

random parameter revolute axis θ ∼ N (µ = 5◦, σ = 2.5◦)

subject to E[failure index] + β · S[failure index] ≤ 1

E[displacement] + β · S[displacement] ≤ 5mm

bounds 5mm ≤ width ≤ 25mm

( Deterministic optimization with θ = 5◦

( OUU with β = 0, 1, 2, 3
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Gradient Verification

derivatives of probabilistic moments of functions of interest

quantity mass failure displacement

adjoint dE[F ]/dξ 1078.2720000000. . . 22.5748. . . -0.1067834. . .
complex dE[F ]/dξ 1078.2720000000. . . 22.5748. . . -0.1067834. . .

error 4.5× 10−11 8.7× 10−6 5.5× 10−8

adjoint dV[F ]/dξ − 22.45792. . . −1.57732 . . .× 10−4

complex dV[F ]/dξ − 22.45792. . . −1.57732 . . .× 10−4

error − 6.7× 10−6 1.1× 10−10

4 used complex-step method to verify the consistency of adjoint
derivatives

4 no variance derivative for mass due to the choice of random
parameter
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Optimization Results

Quantity deterministic β = 0 β = 1 β = 2 β = 3

width 1 5.0 5.0 13.0 18.3 23.5
width 2 5.0 5.0 5.0 6.0 7.0

mass 1.1 1.1 6.02 11.7 19.3
failure constraint 47% 55% 90% 100% 100%

displacement constraint 78.22% 78.72% 100% 100% 100%

( deterministic optimum is at the lower bounds of variables

( OUU solutions are in the interior of design space and near the
constraint manifolds

( mass reduction by thinning of bar 3
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Software Architecture for Stochastic Galerkin Method

Deterministic Element Library

Stochastic Galerkin Plugin

«interface»
Element

Add Residual and Jacobian
Add Residual State Variable Sensitivity
Add Residual Design Variable Sensitivity

RevoluteConstraint

Add Residual and Jacobian
Add Residual State Variable Sensitivity
Add Residual Design Variable Sensitivity

BeamElement

Add Residual and Jacobian
Add Residual State Variable Sensitivity
Add Residual Design Variable Sensitivity

Actuator

Add Residual and Jacobian
Add Residual State Variable Sensitivity
Add Residual Design Variable Sensitivity

ProbabilisticSpace

Add Random Parameter
Get Quadarature Points and Weight
Evaluate Orthonormal Basis

StochasticElement

Add Residual and Jacobian
Add Residual State Variable Sensitivity
Add Residual Design Variable Sensitivity

uses

uses

uses

use
s

4 StochasticElement –

is an Element by inheritance and also

has an element (deterministic) by composition

4 ProbabilisticSpace – prob. quadrature and basis evaluations
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Section 4

Conclusions
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Summary

Semi-Intrusive Galerkin Projection Technique

4 reuse determistic element residuals, Jacobians like black-box

4 time dependent discrete adjoint sensitivities for gradient-based
optimization

4 implicit formation of stochastic governing equations from de-
terministic governing equations

Applications

4 extended finite element library TACS to perform stochastic
Galerkin computations

4 verified the moments and derivatives using stochastic sampling
and complex-step techniques

4 demonstrated on four bar mechanism problem and simple dy-
namical systems
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Questions?

¶ TACS . . . . . finite element library, flexible multibody dynamics, temporal adjoint
(handles spatial, temporal and design parameter domains)

· PSPACE . . . . . . library for probabilistic quadrature and basis evaluation (handles
probabilistic domain)
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Backup Slides
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Derivatives of Expectation of Functions of Interest

dE[F (y , u(y), λ(y))]

dξ
=
〈
ψ̂1(y)

∣∣∣ dF (y , u(y), λ(y))

dξ

〉Y
ρ(y)

≈
Q∑

q=1

αq × ψ̂1(yq)× dF (y , u(yq), λ(yq))

dξ︸ ︷︷ ︸
deterministic adjoint for yq

4 quadrature over the deterministic adjoint code to compute mean
derivative

4 variance derivative can be computed similarly using

dE[F (y , u(y), λF (y))]

dξ
and

dE[F 2(y , u(y), λF 2(y))]

dξ
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The Big Picture of Uncertainty Propagation through Physical Models

solve
u(ξ)

R(ξ, u(ξ)) = 0

evaluate F (ξ, u(ξ))

Nonlinear Algebraic System

solve
u(t,ξ),u̇(t,ξ),ü(t,ξ)

R(t, ξ, u(t, ξ), u̇(t, ξ), ü(t, ξ)) = 0

evaluate F (t, ξ, u(t, ξ), u̇(t, ξ), ü(t, ξ))

Nonlinear ODE System

solve
u(t,y(ξ)),u̇(t,y(ξ)),ü(t,y(ξ))

R(t, y(ξ), u(t, y(ξ)), u̇(t, y(ξ)), ü(t, y(ξ))) = 0

evaluate E [F (t, y(ξ), u(t, y(ξ)), u̇(t, y(ξ)), ü(t, y(ξ)))]
V [F (t, y(ξ), u(t, y(ξ)), u̇(t, y(ξ)), ü(t, y(ξ)))]
S [F (t, y(ξ), u(t, y(ξ)), u̇(t, y(ξ)), ü(t, y(ξ)))]

Nonlinear Stochastic ODE System

optimizing
aeromechanical

systems
∈

{(1)⊗(2)⊗(3)}

(1)
temporal
physical
analysis

(2)
temporal

uncertainty
analysis

(3)
temporal
sensitivity
analysis

derivatives of probabilistic moments
of functions of interest

probabilistic moments
of functions of interest

functions of interest
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Backup Slides

The Big Picture of Sensitivity Analysis Problem

define L(◦, λ(ξ)) = R(◦) + λ(ξ)F (◦)
where ◦ = ξ, u(ξ)

solve
λ(ξ)

∂L(◦, λ(ξ))
∂u

= 0

evaluate
dF (◦, λ(ξ))
dξ

=
∂F (◦)
∂ξ

+ λ(ξ)
∂R(◦)
∂ξ

Linear Algebraic System

define L(◦, λ(t, ξ)) = R(◦) + λ(t, ξ)F (◦)
where ◦ = t, ξ, u(t, ξ), u̇(t, ξ), ü(t, ξ)

solve
λ(t,ξ)

∂L(◦, λ(t, ξ))
∂u

− d
dt

(
∂L(◦, λ(t, ξ))

∂u̇

)
+
d2

dt2

(
∂L(◦, λ(t, ξ))

∂ü

)
= 0

evaluate
dF (◦, λ(t, ξ))

dξ
=
∂F (◦)
∂ξ

+ λ(t, ξ)
∂R(◦)
∂ξ

Linear ODE System

define L(◦, λ(t, y(ξ))) = R(◦) + λ(t, y(ξ))F (◦)
where ◦ = t, y(ξ), u(t, y(ξ)), u̇(t, y(ξ)), ü(t, y(ξ))

solve
λ(t,y(ξ))

∂L(◦, λ(t, y(ξ)))
∂u

− d
dt

(
∂L(◦, λ(t, y(ξ)))

∂u̇

)
+
d2

dt2

(
∂L(◦, λ(t, y(ξ)))

∂ü

)
= 0

evaluate
dE [F (◦, λ(t, y(ξ)))]

dξ
,
dV [F (◦, λ(t, y(ξ)))]

dξ
,
dS [F (◦, λ(t, y(ξ)))]

dξ

Linear Stochastic ODE System

optimizing
aeromechanical

systems
∈

{(1)⊗(2)⊗(3)}

(1)
temporal
physical
analysis

(2)
temporal

uncertainty
analysis

(3)
temporal
sensitivity
analysis

derivatives of probabilistic moments
of functions of interest

probabilistic moments
of functions of interest

functions of interest
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