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Stochastic Galerkin projection techniques provide an efficient method to propagate uncertainties
through simulations governed by differential equations. However, stochastic Galerkin methods are
often challenging to implement within existing deterministic finite-element libraries and may require
extensive source code modifications. In this work, we present a semi-intrusive stochastic Galerkin
methodology that fully reuses existing deterministic finite-element implementations to perform pro-
jection in the probabilistic domain. Furthermore, the proposed semi-intrusive technique enables the
use of deterministic derivatives for the adjoint method, yielding a stochastic Galerkin adjoint without
further implementation effort. The principal idea is to project the deterministic element residuals,
Jacobians, boundary conditions, and adjoint terms on to the probabilistic space prior to assembly
of the stochastic finite element system, assuming the deterministic implementations to be black-box.
The deterministic implementations must support the ability to update random parameters to en-
able quadrature in the stochastic space. The proposed semi-intrusive stochastic Galerkin approach
is demonstrated using TACS, a finite-element framework with a adjoint-based gradient evaluation
methods. The capabilities are demonstrated on several test problems including a flexible multibody
dynamics simulation of a four bar mechanism.

Nomenclature

x,X spatial variable and domain
t,T temporal variable and domain
y,Y generalized probabilistic random variable and domain
z,Z standardized probabilistic random variable and domain
ξ ,D design variable and domain
u(t,y), u̇(t,y), ü(t,y) field/state variables and their time derivatives after spatial discretization
R governing equations of probabilistic-spatio-temporal physics
F(ξ , ·) metric of interest/objective functions
G(ξ , ·) inequality constraint functions
H(ξ , ·) equality constraint functions
E[F(y(ξ ), ·)] expectation operator
V[F(y(ξ ), ·)] variance operator
S[F(y(ξ ), ·)] standard deviation operator

I. Introduction
Optimization under uncertainty (OUU) [1–8] has evolved as a field to account for the effect of uncertainties in an

optimal design process. A key aspect of OUU is the propagation of uncertainty from random input parameters, through
nonlinear numerical simulations, to obtain the expectation and variance of functions of interest. Various methods have
been proposed for uncertainty propagation which tradeoff computational cost and implementation difficulty. Often,
these methods are divided into either non-intrusive sampling-based methods or intrusive projection-based methods.
Sampling-based methods are simple to use since they treat the deterministic code as a black-box. However these
methods may be slow to converge, requiring many simulations. On the other hand, projection-based methods require
explicit source code modification to perform integration in probabilistic space, but can provide more accuracy at less
∗Graduate Student, School of Aerospace Engineering, 270 Ferst Drive, komahan@gatech.edu, AIAA Student Member.
†Assistant Professor, School of Aerospace Engineering, 270 Ferst Drive, graeme.kennedy@aerospace.gatech.edu, AIAA Senior Member.

1 of 21

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d 

by
 G

eo
rg

ia
 I

ns
tit

ut
e 

of
 T

ec
hn

ol
og

y 
on

 M
ay

 1
8,

 2
02

4 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/6
.2

02
0-

11
46

 

 AIAA Scitech 2020 Forum 

 6-10 January 2020, Orlando, FL 

 10.2514/6.2020-1146 

 Copyright © 2020 by Boopathy and Kennedy. Published by the American Institute of Aeronautics and Astronautics, Inc., with permission. 

 

 AIAA SciTech Forum 

komahan@gatech.edu
graeme.kennedy@aerospace.gatech.edu
http://crossmark.crossref.org/dialog/?doi=10.2514%2F6.2020-1146&domain=pdf&date_stamp=2020-01-05


computational cost. The application of projection-based methods, however, is limited due to the extra effort involved
in code development [9].

In this work, we present a semi-intrusive approach to bridge this gap and take a step in furthering the applicability
of projection-based methods in a more general stochastic finite-element setting. To demonstrate this approach, we
extend a deterministic finite element analysis process to a stochastic finite element analysis process by reusing existing
deterministic finite element capabilities. As Krenk and Gutirez [3] identify, projection-based methods for problems
involving nonlinearities have not yet reached a mature stage. Xiu [9] also acknowledges the difficulty in deriving
explicit stochastic nonlinear equations for nonlinear physical models. As a remedy to this problem, we propose an
implicit formulation of stochastic algebraic equations, which circumvents the need for explicit stochastic equations.
We apply this semi-intrusive framework to time-dependent simulations of flexible multibody dynamic systems. The
use of time domain simulations poses the additional difficulty of integrating stochastic differential equations in time.
This challenge is addressed by extending deterministic time-integration methods to the stochastic problem. To perform
efficient gradient-based optimization, we develop an adjoint method for the projection-based simulation that leverages
the deterministic implementation. The development of efficient adjoint methods is time consuming, however the
proposed framework utilizes the deterministic implementation for the most challenging components of the adjoint
method. The uncertainty framework is illustrated in Figure 1 which shows the integration of time-dependent physics,
uncertainty analysis, and gradient evaluation using the adjoint method.

Design optimization
of mechanical systems

Time Dependent
Analysis of

Physics

Uncertainty
Quantification

Transient
Sensitivity
Analysis

Figure 1: An integrated design framework with time-dependent physics, uncertainty quantification and adjoint-based
gradient evaluation.

II. Design in the Presence of Probabilistically Modeled Uncertainties
Designing systems in the presence of uncertainties is composed of two main phases: uncertainty quantification and

optimization under uncertainty. The uncertainty quantification (UQ) phase deals with the mathematical aspects of the
uncertainty analysis, whereas the OUU phase deals with the mathematical aspects of formulating design requirements
as objective or constraint functions.

A. Stages in Uncertainty Quantification
The UQ process is broken down in to three stages as:

1. Characterizing the source and form of uncertainties as mathematical functions (e.g. distribution types, intervals);

2. Propagating the input uncertainties through mathematical models of mechanical systems; and

3. Characterizing the behavior of output functions of interest.

The schematic of the UQ process is shown in Figure 2 and reviewed in the remainder of this section.

1. Stage I: Characterization of Input Uncertainties

In the setting of partial differential equations, uncertainties can be a part of input functions, that collectively refer to
the functions describing the distribution of coefficients and physical properties (e.g. material properties, viscosity),
forcing functions (e.g. lift distribution on wing, controller input), and initial as well as boundary conditions. These
uncertainties can be characterized probabilistically using probability theory, or nonprobabilistically without probability
theory.
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Characterization
of Input

Uncertainties
nonprobabilisticprobabilistic

Propagation
of Input

Uncertainties

Characterization
of Output

Uncertainties
nonprobabilisticprobabilistic

Figure 2: The three stages in uncertainty quantification.

(1) PROBABILISTIC CHARACTERIZATION (ALEATORY VARIABLES): When deterministic specification of these
input functions become difficult due to the lack of sufficient information, then probabilistic specification in the form
of probability density functions (PDFs) can be beneficial. For example, instead of specifying one value for a repre-
sentative force acting on a mechanical structure, the probability distribution function of force could be a more relevant
model of the real scenario. When the input functions are probabilistically specified, the partial differential equations
(PDEs) that operate on these input functions naturally inherit a probabilistic domain, Y, along with the original spatial
domain, X, and temporal domain, T. The variables from the probabilistic domain are referred to as random variables,
analogous to spatial and temporal variables from respective domains. These random variables can arise naturally in the
direct specification of PDE coefficients as random variables, or indirectly from the spatial and temporal discretization
of correlated and uncorrelated random fields. Both sources are special cases of the general scenario where a vector
of random variables are present in the problem (see Gunzburger [8]). Since the input functions contain an additional
probabilistic domain, the deterministic PDEs that operate on these inputs, as well as the output functions of interest,
acquire the probabilistic domain and become stochastic partial differential equations (SPDEs). This naturally gives
rise to the need for development of numerical methods for partial differential equations with random input functions.
It is worth noting that SPDEs contain derivatives only in spatial and temporal variables; there are no derivatives in
terms of random variables. Thus, from a vector-space point of view, we only need to find a set of basis functions to
span the probabilistic space, where we can decompose probabilistic processes. This is identical in principle to finding
finite-element basis functions to represent spatial distribution of solution in spatial domain.

(2) NONPROBABILISTIC CHARACTERIZATION (EPISTEMIC VARIABLES): Sometimes, it is difficult to associate
probability information with random variables due to lack of sufficient data. This happens because a large amount
of empirical data is necessary to predict the distribution in first place. When data is not available, nonprobabilistic
approaches such as possibility theory, interval analysis, convex modeling and evidence theory (see Keane and Nair
[10]) are used. In this work, we assume that only probabilistically modeled uncertainties are a part of the physical
model (see Boopathy and Rumpfkeil [11], Boopathy et al. [12] for a combined treatment of aleatory and epistemic
variables).

2. Stage II: Propagation of Input Uncertainties

Uncertainty propagation is the second and step in uncertainty analysis. It can be performed using non-intrusive
sampling-based or intrusive projection-based methods.

(1) STOCHASTIC SAMPLING METHODS: The first class of techniques for uncertainty propagation are based on the
idea of sampling. Sampling based techniques, collectively referred to as stochastic sampling methods (SSMs) rely on
repeated solutions of the deterministic PDE at specified values of uncertain parameters from the probabilistic domain.
Since this approach does not mandate any changes to the existing source code of the PDE solver, sampling-based
techniques are referred to as non-intrusive [13–15]. The most-widely known sampling based technique for uncertainty
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Figure 3: Probabilistic and non probabilistic modeling of uncertainties.

propagation is the Monte Carlo (MC) sampling [16, 17]. The MC method draws samples at random and it is the only
method that does not suffer from the curse of dimensionality (the convergence is independent of the number of random
variables), but the rate of convergence is rather limited to O(1/

√
M), where M is the number of samples. A better

selection of samples is offered by quasi-MC sampling methods (e.g. latin hypercube sampling), but at the cost of in-
curring a dependence on the number of variables and thus prone to the curse of dimensionality. The other type, namely,
the quadrature sampling (also referred to as stochastic collocation) [18, 19], exploits the idea of Gaussian quadrature
rules in the selection of sample points. This idea relies on the smoothness of interpolating polynomials and thus may
not be suitable for functions with discontinuities. More restricting is the extension of one-dimensional quadrature rule
to multiple dimensions using tensor product or similar rules, which leads to a very large number of points. In order to
reduce the number of quadrature points, sparse quadrature methods have been proposed [8, 9, 20]. Since the reduction
in number of quadrature points is achieved by exploiting the smoothness properties of solution, these methods are not
suitable for non-smooth processes. Another approach is to build surrogate models [11, 12, 21–25] that are trained us-
ing a limited set of points (random, quasi-random or quadrature) and then replacing expensive deterministic solutions
of PDE with inexpensive evaluations of the surrogate model. Sometimes the gradient information is also used in the
construction of surrogate models alleviating the curse of dimensionality to an extent [23]. These SSMs allow great
flexibility in using deterministic codes as black-box solvers, but accuracy, robustness, speed and efficiency are seldom
found together in any of these methods. Figure 4 shows random, quasirandom and quadrature selection of samples
from a two-dimensional random space.
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Figure 4: Selection of samples using random and quadrature sampling methods to evaluate multidimensional integrals.
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(2) STOCHASTIC GALERKIN METHODS: The second class of techniques for uncertainty propagation are based on
the idea of Galerkin projection in probabilistic space and are collectively referred to as stochastic Galerkin methods
(SGMs) [5, 26, 27]. The SGMs differ from SSMs in that they directly solve the SPDEs to obtain the solution instead
of solving the deterministic PDE multiple times. The SGM is amenable for the development of specialized algorithms
aiming to exploit the nature of equations in stochastic solvers that perform computations in an efficient manner. How-
ever, this development requires significant effort in terms of specialized solvers, thus leading to its classification as
intrusive methods [9].

Based on the construction of approximation to probabilistic space, SGMs can be further classified into a few
subcategories. The use of globally orthonormal polynomials for the approximation of probabilistic space has led to
the development of methods based on spectral expansion [9, 28], where the entries in basis set have global support.
Since the basis functions have global support the spectral expansion type methods are not the ideal choice if there exists
discontinuities of the solution in terms of probabilistic parameter space. This motivates the use of basis functions with
local support, similar to localized finite-element type constructions that can treat discontinuities. Based on the spatial
discretization method some approaches are referred to as stochastic finite element method [1–3, 29–31] and stochastic
finite volume methods [32]. The methods used to effect spatial or temporal discretization is not as important as
accurate and efficient stochastic projection to obtain the set of stochastic algebraic equations. Xiu et al.[9] points out
that SGMs offer the most accurate solution possible with the least number of equations to be solved in the presence of
large number of random variables, despite the coupling between probabilistic and physical degrees of freedom.

Although projecting in stochastic space appears to be a simple guiding principle, its implementation can be chal-
lenging. This has inhibited the wider adoption of SGMs, despite their potential benefits [9]. As Krenk and Gutirez [3]
note, projection-based methods for problems involving nonlinearities have not yet reached a mature stage. When the
governing deterministic PDEs take complex nonlinear coupled forms, the explicit derivation of stochastic equations
(in algebraic form) may not be possible as noted by Xiu et al. [9]. This work considers this a motivation and intends
to present the concept of projecting in stochastic space to get nonlinear stochastic algebraic equations with little to no
reference to the physical context and spatial and temporal discretizations. We acknowledge the difficulty in obtaining
nonlinear stochastic algebraic equations, and also point out that in reality, the explicit equations are not necessary
and can be made an implicit part of computational machinery seeking the solution to SPDEs. As an analogy, it is
sufficient if one is able to form Jacobian-vector products implicitly to be able to solve a linear system. We observe and
emphasize that the stochastic residuals and Jacobians can be assembled on the fly as we compute and thus deriving
explicit stochastic algebraic equations are not a necessity. It is sufficient to have deterministic algebraic equations
resulting from the spatial discretization method of choice (finite element or finite volume). In this work we try to show
the applicability of this guiding principle by demonstrating on problems ranging in complexities in a finite element
setting.

3. Stage III : Characterization of Output Uncertainties

The final step of characterization of output uncertainties follow after the propagation of input uncertainties through the
system models and the evaluation of metrics of interest. This stage is dependent on the first stage of uncertainty quan-
tification; if nonprobabilistic methods are used to represent input uncertainties, then only nonprobabilistic information
can be used to describe the behavior of outputs of the system. For example, when nonprobabilistic input bounds
are processed into the analysis model, only bounds on the output metrics of interest can be constructed. Similarly,
when inputs are probabilistically modeled, then probability distribution of the outputs can be obtained, along with
useful probabilistic moments such as mean, variance and standard deviation. This output information can be used to
formulate optimization under uncertainty problems.

B. Optimization Under Uncertainty
Within the OUU literature problems are typically classified as robustness-based formulations [33–50] or reliability-
based formulations [51–53]. In this section, first we introduce a general optimization problem without the inclusion of
uncertainties and later compare it to the problem statement where probabilistically modeled uncertainties are included
A deterministic optimization problem can be written as

minimize
ξ

F(ξ , ·)

subject to G(ξ , ·)≤ 0
H(ξ , ·) = 0

(1)
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where ξ are the uncertain design variables, F(ξ , ·) is the objective function, G(ξ , ·) are the inequality constraint
functions and H(ξ , ·) are the equality constraint functions. The derivatives of the objective and constraint functions
with respect to the design variables are required to solve the design problem (1) using gradient-based optimization.

1. Probabilistic Optimization Under Uncertainty Formulation

Historically, OUU problems have evolved separately as robust or reliable formulations. However, when designing
systems in the presence of uncertainties, the designer is concerned about both robustness and reliability aspects of
the design. For instance, the airplane should be designed to ensure fuel efficiency amidst of uncertain wind gusts
(robustness) without compromising on the safety aspects (reliability). We find that robustness discussions arise on the
side of objective function whereas reliability discussions arise on the side of constraints.

Deterministic Optimization

design
variables

constraints objective

Optimization Under Uncertainty

uncertaintyreliability robust

Deterministic Optimization

ξG(ξ) F (ξ)

Optimization Under Uncertainty

y(ξ)E[G(ξ)] + β · S[G(ξ)] (1−α)E[F (ξ)]+α ·S[F (ξ)]

Figure 5: Origination of robustness and reliability arguments from the space of deterministic optimization as soon as
uncertainties are introduced.

Figure 5 illustrates this idea along with mathematical statements that effect them. These mathematical state-
ments are applicable only for probabilistically modeled uncertainties, whereas non-probabilistic models have different
mathematical statements. The probabilistic moments such as the mean E[F(y(ξ ), ·)], variance V[F(y(ξ ), ·)], stan-
dard deviation S[F(y(ξ ), ·)] and probability P[G(y(ξ ), ·) ≤ 0] need to be evaluated to formulate a probabilistic OUU
problem.

DESIGN VARIABLES: The design variable vector ξ can contain deterministic variables and random variables. For
the deterministic variables, there is no ambiguity in their selection since they simply refer to one value. In principle,
the realizations of random variables can not be directly subject to design as they can take an infinite number of values.
However, their probabilistic moments, such as the mean, may be included in the design problem. The design vector
can therefore be written as

~ξ = [ ξ1,ξ2,︸ ︷︷ ︸
deterministic

,y1(µξ3
),y2(µξ4

)︸ ︷︷ ︸
random

] (2)

OBJECTIVE FUNCTION: The objective of minimizing the expected performance and its variability can be stated
mathematically as

minimize
ξ

(1−α) ·E[F(ξ , ·)]︸ ︷︷ ︸
expected performance

+ α ·S[F(ξ , ·)]︸ ︷︷ ︸
performance variability

(3)

with user-specified weights α ∈ [0,1] that can be interpreted as a tunable parameter controlling robustness. Equa-
tion (3) can be viewed as a multiobjective optimization problem or as augmenting the mean objective with a weighted
penalization using standard deviation. Some authors use two unconstrained weights α1 and α2 as well as variance in
place of standard deviation [24].

CONSTRAINT FUNCTION: The designer may want to enforce directly that the probability of inequality constraint
violation is less than a small number, for instance as P[G(y(ξ ), ·) ≤ 0] ≥ b%. The probabilistic moments such as
mean, variance and standard deviations are computationally easier to evaluate compared to the direct evaluation of
probabilities. Therefore, an explicit enforcement of probabilities are difficult, where one can use implicit moment
matching formulations (see Parkinson et al. [54], Du and Chen [50], Du and Chen [55]) to achieve the same effect.
The probability statement can be restated as

P[G(y(ξ ), ·)≤ 0]≥ b%−→ E[G(ξ , ·)]︸ ︷︷ ︸
location of constraint manifold

+ β ·S[G(ξ , ·)]︸ ︷︷ ︸
shifting constraint manifold

≤ 0 (4)
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where b is the desired probability and β ∈ [0,∞) can be interpreted as a tunable parameter controlling reliability.
The enforcement of equality constraints is rather tricky; see Rangavajhala et al. [56] for an overview of treatment
of equality constraints. The simplest method is ensuring that the the optimal solution is sought along the manifold
pertaining to expectation of equality constraint as

E[H(ξ , ·)] = 0. (5)

PROBABILISTIC OUU PROBLEM STATEMENT: Therefore, a general OUU problem embedding optimality, robust-
ness and reliability design considerations can be stated as

minimize
ξ

(1−α)E[F(ξ , ·)]+α ·S[F(ξ , ·)]

subject to E[G(ξ , ·)]+β ·S[G(ξ , ·)]≤ 0
E[H(ξ , ·)] = 0

(6)

The solution of the OUU problem (6) using gradient based optimization requires the derivatives

dE[F(ξ , ·)]
dξ

,
dE[G(ξ , ·)]

dξ
,

dE[H(ξ , ·)]
dξ

,
dS[F(ξ , ·)]

dξ
,

dS[G(ξ , ·)]
dξ

.

The evaluation of these derivatives will be described below.

III. Uncertainty Propagation Through Physics and Sensitivity Analysis Equations
The spatial discretization of nonlinear PDEs results in a system of nonlinear ordinary differential equations (ODEs)

in time, which are denoted as R. The solution of these nonlinear ODEs is then used for the evaluation of functions of
interest, which are denoted as F . This process can be stated mathematically as:

solve
u(t,ξ ),u̇(t,ξ ),ü(t,ξ )

R(t,ξ ,u(t,ξ ), u̇(t,ξ ), ü(t,ξ )) = 0

evaluate F(t,ξ ,u(t,ξ ), u̇(t,ξ ), ü(t,ξ )).
(7)

where u(t,ξ ) is the unknown function characterizing the physical state of the system, with the first and second time
derivatives, u̇(t,ξ ) and ü(t,ξ ), respectively. Note that t is the temporal variable from time domain T and ξ is the
design variable from design parameter domain D. The solution of nonlinear ODEs is performed via implicit time
integration techniques, where the nonlinear algebraic system at each time step is solved using a Newton–Raphson
technique which requires the formation of residuals and Jacobian matrices. The full details of these time integration
techniques and their corresponding adjoint implementation are described in Boopathy and Kennedy [57, 58].

With the inclusion of probabilistically modeled uncertainties, the deterministic ODEs become stochastic ODEs.
The stochastic analysis problem can be stated mathematically as follows

solve
u(t,y(ξ )),u̇(t,y(ξ )),ü(t,y(ξ ))

R(t,y(ξ ),u(t,y(ξ )), u̇(t,y(ξ )), ü(t,y(ξ ))) = 0

evaluate E [F(t,y(ξ ),u(t,y(ξ )), u̇(t,y(ξ )), ü(t,y(ξ )))]

V [F(t,y(ξ ),u(t,y(ξ )), u̇(t,y(ξ )), ü(t,y(ξ )))]

S [F(t,y(ξ ),u(t,y(ξ )), u̇(t,y(ξ )), ü(t,y(ξ )))]

(8)

Once the unknown stochastic state fields u(t,y(ξ )), u̇(t,y(ξ )) and ü(t,y(ξ )) are determined, the probabilistic moments
such as the mean E [F ], variance V [F ] and standard deviation S [F ] can be evaluated.

A. Galerkin Projection Method
Given a set of initial non-orthonormal polynomials spanning the generalized probabilistic space Y, we construct an or-
thogonal and orthonormal set of polynomial basis functions spanning the same space Y using Gram–Schmidt process
such that

Y= span{ψi(y)}N
i=1

initial set
= span{ψ i(y)}N

i=1
orthogonal set

= span{ψ̂i(y)}N
i=1

orthonormal set
(9)
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The orthonormality of any two basis functions ψ̂i(y) and ψ̂ j(y) is mathematically defined as

〈
ψ̂i(y)

∣∣∣ ψ̂ j(y)
〉Y

ρ(y)
=
∫
Y

ψ̂i(y)ρ(y)ψ̂ j(y) dy =

{
1 if i = j
0 if i 6= j

, (10)

where ρ(y) ≥ 0 for y ∈ Y is the probability density function corresponding to the distribution type of the random
variable y. The orthonormal polynomials for probability distribution types used in this work are listed in Table 1
for a standard probabilistic variable z from the standard probabilistic space Z. Since, the orthonormal polynomial
set is derived for standard probability distributions, transformation of variables must be used when performing inner
products in the generalized probabilistic domain Y. The standardization is usually done with zero location and unit
stretch as distribution parameters.

Table 1: Orthonormal polynomials for standard probability distributions.

Hermite Legendre Laguerre

distribution N(y; µ = 0,σ = 1) U(y;a = 0,b = 1) E(y; µ = 0,β = 1)
standardization z = y−µ

σ
z = y−a

b−a z = y−µ

β

notation Ĥd(z) P̂d(z) L̂d(z)

weight
1√
2π

exp
(
−1

2
z2
)

1 exp(−z)

orthogonal set Hd(z) Pd(z) Ld(z)

0 1 1 1
1 z 2z−1 −z+1
...

...
...

...

d zHz
d−1(z)− (d−1)Hz

d−2(z) (−1)d
∑

d
k=0

(
d
k

)(
d + k

k

)
(−z)k (2d−1− z) Lz

d−1(z)
d

− (d−1)Lz
d−2(z)

d
normalization Ĥz

d(z) = Hz
d(z)/

√
d! P̂z

d(z) = Pz
d(z)
√

2d +1 L̂z
d(z) = Lz

d(z)

1. Formation of Stochastic States

We begin the solution process to (8) using the stochastic Galerkin method with the following hypothesis for stochastic
state functions:

u(t,y)≈
N

∑
i=1

ui(t)ψ̂i(y) (11)

This expansion can be interpreted as an application of the technique of separation of variables for solving differential
equations. Due to global support nature of the basis functions ψ̂(y), the equations (11) are referred to as a spectral
expansion of probabilistic functions in orthonormal basis. Alternatively, ψ̂(y) can be constructed so as to have compact
support, resulting in a treatment similar to finite-element methodology.

2. Formation of Stochastic Residual

The stochastic residuals are formed by projecting deterministic residuals onto each basis function ψ̂i(y) in the basis
set spanning the probabilistic space Y

〈
ψ̂i(y)

∣∣∣ R(t,y,u(t,y), u̇(t,y), ü(t,y))
〉Y

ρ(y)
≈ Ri ,

Q

∑
q=1

αqψ̂i(yq)R(t,yq,u(t,yq), u̇(t,yq), ü(t,yq))︸ ︷︷ ︸
deterministic residual for yq

(12)

We use numerical quadrature to approximate this inner product with Q quadrature points from probabilistic space Y.
The number of quadrature points necessary can sometimes be determined a priori using the polynomial degree of the
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integrand. The full stochastic residual vector takes the form:

R=


R1
R2
...

RN

=


∑

Q
q=1 αqψ̂1(yq)R(t,yq,u(t,yq), u̇(t,yq), ü(t,yq))

∑
Q
q=1 αqψ̂2(yq)R(t,yq,u(t,yq), u̇(t,yq), ü(t,yq))

...
∑

Q
q=1 αqψ̂N(yq)R(t,yq,u(t,yq), u̇(t,yq), ü(t,yq))

 (13)

From (12) and (13), it is clear that the stochastic residual R can be computed using repeated evaluations of the deter-
ministic residual R at quadrature points yq.

3. Formation of Stochastic Jacobian

The stochastic Jacobian matrix can be computed using repeated evaluations of the deterministic Jacobian for each
quadrature point. The block i, j entry of Jacobian is

Ji, j ,
∂Ri

∂u j
=

Q

∑
q=1

αqψ̂i(yq)ψ̂ j(yq)J(t,yq,u(t,yq), u̇(t,yq), ü(t,yq)), (14)

where J is the deterministic Jacobian and Q is the number of quadrature points. As a result, the full stochastic Jacobian
matrix takes the form

J=


J1,1 J1,2 . . . J1,N
J21 J2,2 . . . J2,N

...
...

. . .
...

JN,1 JN,2 . . . JN,N

 . (15)

Figure 6 illustrate the nonzero patterns of the Jacobian matrices for different stochastic basis choices. Notice that
there are as many off-diagonal bands as the polynomial degree of the random variable. In this work we use full tensor
product space for simplicity, although other constructions such as complete polynomials may be efficient. It is possible
to determine the nonzero entries of the Jacobian a priori, if the polynomial degree of the random variables with in
the system is known. Exploiting this sparsity can eliminate unnecessary computations in the assembly of stochastic
Jacobians.

0 84 168 252 336
0

84

168

252

336 –1.00

–0.75

–0.50

–0.25

0.00

+0.25

+0.50

+0.75

+1.00
0 90 180 270 360

0

90

180

270

360 –1.00

–0.75

–0.50

–0.25

0.00

+0.25

+0.50

+0.75

+1.00

Figure 6: Sparsity patterns Jacobian matrices resulting from decomposition of for stateless Jacobian functions J(y) =
y3

4 (left) with N = 336 and J(y) = y1y2y3y4 (right) with N = 360 in orthonormal space.

4. Initial Conditions

The projection of initial conditions and their time derivatives is performed as follows〈
ψ̂i(y)

∣∣∣ u(0,y)
〉Y

ρ(y)
≈

Q

∑
q=1

αqψ̂i(yq)u(0,yq) (16)
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This includes the case where the initial conditions also are dependent on random variables from probabilistic domain
(uncertainty associated with initial conditions).

5. Formation of Stochastic Adjoint Equations

The stochastic adjoint states are the unknowns of the adjoint problem which takes the form

JT
λ =

∂F

∂U

T

(17)

The transpose stochastic Jacobian matrix can be computed in an analogous manner as the Jacobian matrix described
above. The right hand side of the adjoint system of equations is formed by projecting the deterministic right hand side
terms onto each basis entry in the orthonormal set as

J1,1 J1,2 . . . J1,N
J21 J2,2 . . . J2,N

...
...

. . .
...

JN,1 JN,2 . . . JN,N


T 

λ1
λ2
...

λN

=
∂F

∂U

T

(18)

The solution of the stochastic state variables and their time derivatives allows the evaluation of probabilistic moments
of quantities of interest. The solution of the stochastic adjoint variables allows the evaluation of the design variable
derivatives of probabilistic moments.

6. Probabilistic Moments and Derivatives

The mathematical relations for the evaluation of probabilistic moments and its derivatives are derived first. Using the
stochastic Galerkin expansion, the expectation of a function of interest F(y, ·) is

E[F(y, ·)] =
∫
Y

ρ(y)F(y, ·)dy =
〈

ψ̂1(y)
∣∣∣ F(y, ·)

〉Y
ρ(y)
≈
〈

ψ̂1(y)

∣∣∣∣∣ N

∑
i=1

Fi(·)ψ̂i(y)

〉Y

ρ(y)

= F1(·) (19)

In a similar manner, the derivative of expectation of the function is obtained as

E
[

dF(y, ·)
dξ

]
=

dF1

dξ
(20)

In the stochastic Galerkin method, the variance can be computed as

V[F(y, ·)] = E[F(y, ·)F(y, ·)]−E[F(y, ·)]E[F(y, ·)]≈
N

∑
i=2

F2
i (·) (21)

Differentiating the above we get the derivative of variance as

dV[F(y, ·)]
dξ

= 2
N

∑
i=2

Fi(·)
dFi

dξ
(22)

The standard deviation of a function of interest can be obtained from the variance

S[F(y, ·)] =
√
V[F(y, ·) (23)

The derivative of standard deviation is

dS[F(y, ·)]
dξ

=
1

2
√

V[F(y, ·)]
× dV[F(y, ·)]

dξ
(24)

These expressions will be used below to obtain estimates of the mean, variance and standard deviation and their
derivatives with respect to the design variables.
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B. Nonintrusive Sampling Method
The principle of nonintrusive methods is to repeatedly evaluate the function of interest at predetermined quadrature
locations in the stochastic space, yi, to compute the probabilistic moments and derivatives. The number of quadrature
points M is chosen based on the accuracy required and the computational budget at hand. For nonintrusive sampling
methods, the expectation of the function is approximated as

E[F(y, ·)] =
∫
Y

ρ(y)F(y, ·)dy︸ ︷︷ ︸
integral

≈
M

∑
i=1

αiF(yi, ·)︸ ︷︷ ︸
quadrature approximation

(25)

The derivative of expectation of function with respect to design variables ξ is

dE[F(y, ·)]
dξ

=
d

dξ

(∫
Y

ρ(y)F(y, ·)dy
)

=
∫
Y

ρ(y)
dF(y, ·)

dξ
dy = E

[
dF(y, ·)

dξ

]
(26)

The derivative of expectation of a function is identical to the expectation of the derivative of the same function. We
approximate the derivative as

dE[F(y, ·)]
dξ

≈
M

∑
i=1

αi
dF(yi, ·)

dξ
(27)

For nonintrusive sampling methods, the variance of function can be obtained as

V[F(y, ·)] = E[F(y, ·)F(y, ·)]−E[F(y, ·)]E[F(y, ·)]

≈
M

∑
i=1

αiF2(yi, ·)−
(

M

∑
i=1

αiF(yi, ·)
)2 (28)

The derivative of variance is

dV[F(y, ·)]
dξ

= E
[

2F(y, ·)dF(y, ·)
dξ

]
−2E[F(y, ·)]dE[F(y, ·)]

dξ

≈
(

2
M

∑
i=1

αiF(yi, ·)
dF(yi, ·)

dξ

)
−2

(
M

∑
i=1

αiF(yi, ·)
)(

M

∑
i=1

αi
dF(yi, ·)

dξ

) (29)

IV. Results
In this section, we present the results of semi-intrusive uncertainty propagation and sensitivity analysis for time-

dependent systems. We consider the following four test cases:

1. A first order ODE benchmark problem;

2. Pitching and plunging airfoil modeled using a second order ODE with two degrees of freedom;

3. Spring mass damper; and

4. Flexible four bar beam mechanism.

A. Uncertainty Analysis on Decay ODE
Consider the following first-order differential equation with prescribed initial condition u0 and constant decay param-
eter λ

du(t)
dt

+λ u(t) = 0 ∈ T

u(0) = u0 ∈ ∂T

(30)

The analytical solution to the differential equation is u(t) = u0 e−λ t . In this problem, the decay parameter is uncertain
such that λ := λ (y), where y is a random variable from stochastic domain Y. This adds a stochastic dimension to the
differential equation resulting in the stochastic differential equation

du(t,y)
dt

+λ (y) u(t,y) = 0 ∈ T⊗Y

u(0,y) = u0 ∈ ∂T⊗Y

(31)
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1. Stochastic Quadrature Sampling (Normal Distribution)

Stochastic sampling technique uses repeated solutions of the differential equation (31) to perform integration in the
stochastic domain. The decay parameter value λi = λ (yi) depends on the random variable yi and its corresponding
distribution type. The stochastic ODE

du(t,yi)

dt
+λiu(t,yi) = 0 ∈ T⊗Y

u(0,yi) = u0 ∈ ∂T⊗Y

(32)

is solved for each λi = λ (yi) and the solutions u(t,yi) are stored. The moments of the solution are computed as

E[u(t,y)] =
M

∑
i=1

αiu(t,yi)

V[u(t,y)] =
M

∑
i=1

αiu2(t,yi)− (E[u(t,y)])2

(33)

Figure 7 compares mean and variance computed using stochastic sampling method with analytical mean and variance
for increasing number of samples from stochastic domain. It can be seen that the first moment converges faster than
the second moment to the exact value.
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(b) variance of solution

Figure 7: Comparison of mean and variance of solution for number of samples from stochastic domain.

2. Stochastic Projection (Normal Distribution)

The stochastic states u(t,y) u̇(t,y) and ü(t,y)are computed using the semi-intrusive projection method described in
Section A. The mean temporal solution field is obtained as

E[u(t,y)] = u1(t). (34)

The variance is computed as

V[u(t,y)] =
N

∑
i=2

ui
2(t). (35)

We use projection method described above for parameter values µλ = 0 and σλ = 1. Figure 8 show comparison of
mean and variance computed using projection method with analytical moments for increasing number of terms in
spectral expansion. Figure 9 shows the rate of convergence of mean and variance to analytical solutions.

3. Verification of Random Modes (Normal, Uniform and Exponential)

Here, we solve the same problem with three choice of distributions: (i) Normal N(µ = 0.0,σ = 1.0), (ii) Uniform
U(a =−1.0,b = 1.0) and (iii) Exponential E(µ = 0.0,β = 1.0). The solution is obtained using a stochastic space
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Figure 8: Comparison of mean and variance of solution for selected number of terms in polynomial expansion.
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Figure 9: Error convergence of mean (purple) and variance (brown) for number of terms in the orthonormal basis set.
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(a) N(µ = 0.0,σ = 1.0)
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(c) E(µ = 0.0,β = 1.0)

Figure 10: Random modes computed using stochastic Galerkin method along with analytical mean and deterministic
solutions for different distribution types.

spanned by N = 4 terms, without explicit formation of stochastic equations using the semi-intrusive method described
in Section III. Figure 10 plots the solution of the stochastic ODE and all four modes computed, along with deterministic
and analytical mean solutions from [9]. It can be seen that the mean of the solution is different than the deterministic
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solution in the absence of uncertainties. The mean solution computed using SGM is matching with the analytical
solution available to this simple benchmark problem reported in Xiu [9].

B. Pitching and Plunging Airfoil System
We study a second order differential equation in two variables: pitch and plunge variables of an airfoil. This extends
the stochastic analysis to vector valued differential equations. We consider the following second-order differential
equation with prescribed initial conditions~u0, ~̇u0 and constant system parameters [M], [C] and [K] in matrix form[m s

s I f

]{ü1(t)
ü2(t)

}
+
[ch 0

0 ca

]{u̇1(t)
u̇2(t)

}
+
[kh 0

0 ka

]{u1(t)
u2(t)

}
=
{0

0

}
∈ T

~u(0) =~u0 ∈ ∂T

~̇u(0) = ~̇u0 ∈ ∂T

(36)

The deterministic parameters of the system are listed in Table 2. Let us assume that the mass m := m(y), where y is a

Table 2: Parameters defining the pitching and plunging airfoil system.

Parameter Definition Value Unit

x f position of flexural axis 0.25 m
xcm position of center of mass 0.375 m
m mass of airfoil 55.3291 kg
I f mass moment of inertia of the airfoil

around the elastic axis
3.4581 kg.m2

s static unbalance m(xcm− x f ) 6.9161375 kg.m
ch plunge damping 0 N/kg/s
ca pitch torsional damping 0 N.m/kg/s
kh plunge stiffness 11366.0 N/kg
ka pitch torsional stiffness 7002.6 N.m/kg

random variable from stochastic domain Y. This adds a stochastic dimension to the differential equation resulting in
the stochastic differential equation. In T⊗Y we have the vector-valued ordinary differential equation[

m(y) s(y)
s(y) I f

]{
ü1(t,y)
ü2(t,y)

}
+
[ch 0

0 ca

]{u̇1(t,y)
u̇2(t,y)

}
+
[kh 0

0 ka

]{u1(t,y)
u2(t,y)

}
=
{0

0

}
(37)

In ∂T⊗Y we have initial conditions defined as
~u(0,y) =~u0

~̇u(0,y) = ~̇u0.
(38)
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Figure 11: Nonzero pattern of PPA system with one random variable decomposed on a stochastic basis with 16 terms.
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Figure 12: Expectation (left) and variance (right) of solution of pitching-plunging airfoil system obtained using
stochastic Galerkin with 5 terms in the basis set and collocation methods with 15 samples.

When using the projection method, an extended linear system is formed. The sparsity of corresponding the stochas-
tic Jacobian for pitching-plungind airfoil system can be visualized from Figure 11. We find the moments of the solution
using SGM and SCM and compare them in Figure 12. It can be observed that both the methods are in excellent agree-
ment for both the degrees of freedom (pitch and plunge) and both statistical moments (mean and variance).

C. Spring Mass Damper
We consider the following second-order differential equation with prescribed initial conditions u0, u̇0 and constant
system parameters m, c and k

m
d2u(t)

dt2 + c
du(t)

dt
+ ku(t) = 0 ∈ T

u(0) = u0 ∈ ∂T

u̇(0) = u̇0 ∈ ∂T

(39)

Let us assume that the mass m := m(y1), damping constant c := c(y2) and stiffness constant k := k(y3) where y1,y2
and y3 are independent random variables from three-dimensional stochastic domain Y3. This dependence on random
variables results in stochastic differential equation

m(y1)
d2u(t,~y)

dt2 + c(y2)
du(t,~y)

dt
+ k(y3)u(t,~y) = 0 ∈ T⊗Y3

u(0,~y) = u0 ∈ ∂T⊗Y3

u̇(0,~y) = u̇0 ∈ ∂T⊗Y3

(40)

where~y = [y1,y2,y3] ∈ Y3 is a vector-valued random variable from stochastic space. Let the random variables be y1 ∼
E(µ = 4.0,β = 1.0), y2 ∼ U(a = 0.25,b = 0.75), y3 ∼ N(µ = 5.0,σ = 0.5), and the initial conditions be u0 = −0.5
and u̇0 = 1. The orthonormal space for projection is constructed using tensor product with N1 = 4, N2 = 4 and N3 = 4
functions in each variable, giving rise to 125 terms in the basis. The sparsity pattern arising due to this setup is shown
in Figure 13. The mean and variance of the solution field is computed using sampling and projection methods are
plotted in Figure 14. The SGM computations were performed using deterministic implementation of the SMD system
and the system is solved for time interval of [0,10]s with a step size of 0.1s using BDF2 method. The stochastic
collocation (sampling) solutions are computed using a tensor product grid of 15×15×15. It can be seen that both the
solutions are in good agreement with each other.

FUNCTION AND GRADIENT VERIFICATION: The damping coefficient c is chosen to be normally distributed as
N(µ = 0.2,σ = 0.1), and the mass m is treated as the design variable. We are interested in computing the probabilistic
moments of the time integral of potential energy

F =
∫ T

0

1
2

ku(t)2 dt (41)
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Figure 13: Nonzero pattern of SMD system with 3 random variables y1, y2 and y3 with N1 = N2 = N3 = 4 giving rise
to 64 basis terms with tensor product.
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Figure 14: Expectation (top) and variance (bottom) of solution and its time derivatives obtained stochastic collocation
and Galerkin methods.

and the Kreisselmeier—-Steinhauser (KS) [59, 60] estimate of the maximum potential energy

F = a+
1

ρks
ln
[∫ T

0
eρks( 1

2 ku(t)2−a) dt
]
. (42)

where a and ρks are aggregation parameters. The probabilistic moments of (41) and (42) and their design variable
derivatives computed using sampling and projection methods are listed in Tables 3 and 4, respectively. It be seen that
the stochastic adjoint derivatives exhibit an accuracy of 12 to 15 significant digits.
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Table 3: Probabilistic moments and derivatives of the integral of potential energy with 10 basis terms and 10 quadrature
samples.

Quantity Sampling Projection

E[F ] 8.62347899840529308 8.62347899840532683
V[F ] 2.18825865715865575 2.18825865715922419

Adjoint dE[F ]/dm 2.29637589213232607 2.29637589213362459
Complex-step dE[F ]/dm 2.29637589213285809 2.29637589213298554

Error 5.3×10−13 6.4×10−13

Adjoint dV[F ]/dm 0.416863786527159164 0.416863786519840573
Complex-step dV[F ]/dm 0.416863786529946490 0.416863786528287372

Error 2.8×10−12 8.4×10−12

Table 4: Probabilistic moments and derivatives of the maximum potential energy in time domain with 10 basis terms
and 10 quadrature samples.

Quantity Sampling Projection

E[F ] 2.50293127981364005 2.50708458655184918
V[F ] 3.81254813515422378×10−3 3.80147552479659367×10−3

Adjoint dE[F ]/dm −3.69267283814737500×10−3 −3.69267283814618151×10−3

Complex-step dE[F ]/dm −3.69267283815061589×10−3 −3.69267283815030625×10−3

Error 3.2×10−15 2.5×10−14

Adjoint dV[F ]/dm −8.59422933369482361×10−3 −8.59422933368299627×10−3

Complex-step dV[F ]/dm −8.59422933370226558×10−3 −8.59422933370156128×10−3

Error 7.4×10−15 8.1×10−14

D. Four Bar Mechanism

0.24 m

0.12 mBar 1

Bar 2

Bar 3

1

2

Misaligned joint

Bar 1 and 2
Bar 3

16 mm
8 mm

Ω3 = 0.6 rad/s

Bar cross sectionsB

C

DA

Figure 15: The four-bar mechanism problem.

As a final example, we show the application of the proposed semi-intrusive projection technique to the four bar
mechanism benchmark [61]. Figure 15 illustrates the setup of the four bar mechanism. The problem contains three
bars that are modeled using Timoshenko beam elements, three revolute joints and an actuator driving the mechanism.
An imaginary, infinitely rigid fourth bar exists in the mechanism between the points A and D. The revolute joints
at points A, B, and D, and have an axis of rotation that is perpendicular to the plane of the mechanism. However,
the revolute joint at point C is misaligned by an angle of 5◦, and rotated about the direction of the bar CD. This
misalignment angle is subject to uncertainty and distributed normally with N(µ = 5◦,σ = 2.5◦). Bars AB and BC
are of the same cross-section, while bar CD has a smaller cross section. The rotation of bar AB about point A of the
mechanism is driven at an angular rate of Ω3 = 0.6 rad/s.
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The finite element library TACS is used for deterministic, stochastic sampling and stochastic projection based
solution of the four bar mechanism problem. In the stochastic projection case, the black-box finite element analysis
code TACS is extended in a modular fashion to compute the probabilistic moments of quantities of interest and their
derivatives.
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Figure 16: The mean of normalized axial force in bar AB as a function of time predicted using SGM and SSM.
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Figure 17: The variance of the normalized axial force in bar AB as a function of time predicted using SGM and SSM.

Figure 16 shows the behavior of the mean of the normal force in the bar AB computed using SGM with 3, 5, and 7
terms in the spectral basis compared with SSM using 15 sample point locations. Overall, the normal force exhibits two
large peaks that occur as the mechanism is forced to snap through the angle where it would lock if the bars were rigid
due to the misaligned joint. The overall behavior of the mean axial force is shown in Figure 16 as well as a zoomed in
view of the behavior between t = 7.6 and t = 8.1 which centers on the second large spike in axial force. SGM captures
the peak behavior in the normal force, even with only three terms. Note that the deterministic solution under-predicts
the mean maximum force.

Figure 17 shows the variance of the axial force in the bar AB computed using SGM with 3, 5, and 7 terms in the
spectral basis compared with SSM using 15 sample point locations. Again, the distribution of the variance exhibits
two large peaks. The second zoomed in view of the variance illustrates that SGM again captures the overall behavior
with only 3 terms. However, better agreement is obtained between SSM and SGM as more SGM basis functions are
added.

V. Conclusions
The stochastic Galerkin projection method offers an efficient approach to propagate uncertainties through com-

plex, nonlinear simulations. However, challenges can arise when implementing SGM and the adjoint method for
OUU. In this paper, we demonstrated a framework for SGM based on the deterministic finite-element code TACS.
This framework leverages existing deterministic element implementations to provide the terms needed for analysis
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and adjoint-based gradient evaluation. The main idea of the proposed semi-intrusive technique is to project the de-
terministic element residuals, Jacobians, boundary conditions, and adjoint terms on to the probabilistic space prior to
assembly of the stochastic finite element system, assuming the deterministic implementations to be black-box. The
mean and variance of the implemented SGM were compared to the mean and variance computed using sampling
methods to demonstrate the accuracy of SGM. The accuracy of the adjoint method was verified using complex-step
methods. Future work will consider the application of the proposed framework to OUU problems.
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