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SUMMARY

For aerospace structures, failure can occur not only because of static adversities like

divergence, but also due to time dependent issues like flutter and large vibrations. Therefore,

the consideration of time-domain physics becomes essential during design. The physics-based

design of aerospace systems involves solving partial differential equations to obtain metrics

of interest that guide the design process. These differential equations contain unknown

parameters that are sometimes difficult to be characterized as a deterministic value. The

uncertainties in input parameters have a direct impact on the output metrics of interest

which guide the system design process. To this end, optimization under uncertainty has

evolved as a field that accounts for the effect of uncertainties, by propagating the effect of

uncertainties through physics simulations.

For numerical optimization, the algorithms that do not use gradient information become

computationally intractable as the number of design variables increases. Moreover, the nu-

merical approximations of the gradients through the finite-difference or the complex-step

methods are inefficient, for their lack of scalability with respect to the number of design

variables. Therefore, efficient gradient evaluation techniques such as the adjoint method are

needed for solving large scale optimization problems with practical turnaround times. How-

ever, because of the inclusion of time dependent physics, the corresponding time dependent

adjoint equations needs to be formulated and implemented. Furthermore, the uncertainties

need to be propagated through the time dependent physics and the adjoint sensitivity anal-

ysis framework. Due to the inherent complexities in the development of time domain physics

and adjoint sensitivities analysis capabilities, the sampling-based methods are widely used

for the propagation of uncertainties while the projection-based methods are less used.

This work presents enhanced implicit time marching methods for flexible multibody dy-

namics, to analyze the time dependent behavior of aerospace structures, and formulates the

corresponding time dependent adjoint sensitivity analysis equations, to efficiently optimize

xxi



designs using gradient based methods. The adjoint-based design capabilities are demon-

strated with the structural optimization of a rotorcraft hub system. A newly developed

semi-intrusive approach for projection is shown to fully reuse the underlying time-domain

analysis and adjoint sensitivity analysis capabilities, for the projection-based propagation of

uncertainties. Using this method, the stochastic residuals and Jacobians are formed implic-

itly from the deterministic counterparts that have been implemented apriori. The application

of the semi-intrusive projection method is shown using a flexible robotic manipulator system

modeled after the Canadarm. In the presence of uncertainties in the payloads, the Canadarm

system experiences stresses that have a large variability. This work demonstrates the use

of uncertainty quantification as a valuable tool for assessing the risk associated with such

operating conditions.
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Introduction
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CHAPTER 1

EFFICIENT OPTIMIZATION UNDER UNCERTAINTY OF SYSTEMS

WITH TEMPORAL PHYSICS

A product should be designed in such a way that makes its performance

insensitive to variation in variables beyond the control of the designer.

Genichi Taguchi

We begin this Chapter with Genichi Taguchi’s quote on producing robust and reliable

designs. The motivating factors of the thesis are summarized and classified under three

subject areas: uncertainty quantification, time dependent physics and adjoint sensitivity

analysis. Finally, we outline the contributions of this thesis and present its organization.

1.1 Motivations

(a) Uncertainty quantification: The Federal Aviation Authority (FAA) airworthiness

certification requires a factor of safety of 1.5 for aircraft structures with human occupancy [2].

The inclusion of a factor of safety as a certification requirement is a tacit acknowledgment of

the ubiquitous presence of uncertainties that are beyond the scope of classical system design

process. For aerospace systems, higher factor of safety implies heavier designs with increased

operation costs for the entire life cycle of the system. Despite factor of safety stipulations

in the design process, systems do fail (a risk concern) or perform in a degraded manner

(a robustness concern), partly due to a lack of uncertainty assessments before designing the

system. To this end, the fields of uncertainty quantification (UQ) and optimization under un-

certainty (OUU) have evolved to rigorously address the effect of uncertainties in the design

process. UQ addresses the mathematical representation and propagation of input uncer-

tainties, whereas OUU addresses the mathematical aspects of formulating design/regulatory
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requirements as objective or constraint functions.

(b) Temporal physics: The mathematical models of physics can also be a contributing

factor for unforeseen system behavior. For example, when fixed- and rotary-wing aerome-

chanical structures are designed without time dependent analysis of response (by using a

static evaluation), the onset of many time dependent adverse effects such as limit cycle oscil-

lations, buffeting, flutter, stall-induced vibration and rotor-shaft whirl can go unpredicted.

Arguably, inclusion of time domain within system analysis is as important as uncertainty

quantification; thus, time dependent mathematical models of physics along with mathemati-

cally modeled uncertain inputs encompass a superior representation of system behavior. The

systems designed using such inclusive analyses will emerge better in terms of robustness and

reliability.

Design optimization of
aeromechanical systems

Temporal
Analysis of

Physics

Uncertainty
Quantification

Temporal
Sensitivity
Analysis

Figure 1.1: An integrated design framework with temporal physics, uncertainty quantification
and sensitivity analysis.

(c) Adjoint-based gradient evaluation: Numerical optimization of large aeromechan-

ical systems require gradient-based optimization techniques that are computationally efficient

compared to techniques that do not use higher-order information. Therefore, an efficient

evaluation of gradients is also an important ingredient to the UQ–OUU design process. The

time dependent nature of physical analysis necessitates the development of time dependent

sensitivity analysis equations. Altogether, a need for incorporation of temporal analysis
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of physics, uncertainty analysis and sensitivity analysis into a common design framework

emerges naturally (see Figure 1.1).

1.2 Thesis Contributions

The main contributions of this thesis are as follows:

1. We present simpler time dependent analysis methods for flexible multibody systems,

that can be used to assess the onset of time dependent issues like flutter or large

vibrations while designing aeromechanical systems.

2. We contribute adjoint based gradient evaluation capabilities to address the issue of the

scalability of optimization problems with respect to the design variables, in the context

of time dependent simulations.

3. In the context of uncertainty propagation, we address the issue of “intrusiveness” of the

stochastic Galerkin method by presenting a simpler technique to achieve projection in

probabilistic space.

4. We present a stochastic Galerkin based OUU framework that can be used to solve prob-

abilistic optimization problems, and provide information in the form of probabilistic

moments that can be used for certification and quality assurance purposes.

The technical contributions align with the subject areas shown in Figure 1.1, and are sum-

marized as deterministic optimization and optimization under uncertainty capabilities, in

the reminder of this section.

1.2.1 Deterministic Finite Element Framework with Adjoint Sensitivities

The first contribution of this thesis is the development of high-fidelity simulation techniques

and the implementation of adjoint-based derivative evaluation method for time-accurate flex-

ible multibody dynamic simulations. These capabilities are implemented within the Toolkit
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for Analysis of Composite Structures (TACS), a parallel framework for finite element anal-

ysis [3], that is available as open source software1. The finite element formulations based

on Lagrange’s equation of motion were implemented, along with implicit time marching

methods and adjoint formulations.

1.2.2 Stochastic Finite Element Framework with Adjoint Sensitivities

The second contribution of this work is the modular extension of the deterministic design op-

timization capabilities to include uncertainties through projection-based stochastic Galerkin

technique. These capabilities are implemented as modular extensions to the TACS frame-

work, and are available as open source packages PSPACE2 and STACS3.

New Mathematical Techniques: During the development of these frameworks for de-

terministic optimization and optimization under uncertainty of flexible multibody systems,

we developed two mathematical techniques as listed in Table 1.1.

Table 1.1: The developed mathematical techniques and their primary benefit.

Technique Primary Benefit

1 Generalized Newton–
Raphson method for
second-order nonlinear
equations

facilitates the direct solution of the governing
equations of flexible multibody dynamics in nat-
ural second-order form

2 Semi-intrusive stochastic
Galerkin method

facilitates the reuse of time-domain physics and
adjoint sensitivity analysis capabilities for creating
a stochastic Galerkin framework for uncertainty
propagation

Other Contributions: The other notable contributions are listed as follows:

• We develop discrete adjoint sensitivity formulations for implicit multistep and multi-

stage time marching methods based on abstract governing equations and functions of
1https://github.com/gjkennedy/tacs
2https://github.com/komahanb/pspace
3https://github.com/komahanb/stacs
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interest. These equations are applicable to general second-order systems.

• We address the software architecture aspects alongside the mathematical developments,

which is key for modular implementations.

• We demonstrate the adjoint-based design capabilities with the structural optimization

of a rotorcraft system.

• We present the application of the semi-intrusive projection method using a flexible

robotic manipulator system modeled after the Canadarm.

1.3 Thesis Organization

The remainder of this thesis is organized into parts and chapters as outlined in Table 1.2.

Table 1.2: Organization of the thesis.

Part Chapter Contents

I 2 introduces and reviews the time marching methods for flexible
multibody dynamics, the uncertainty quantification techniques and
the sensitivity analysis methods that are needed for design opti-
mization under uncertainty

II 3 provides the mathematical details of the adjoint and the direct sen-
sitivity analysis methods on static (time independent) problems

4 provides the mathematical details of time dependent physical anal-
ysis and adjoint sensitivity analysis, in the context of multistep and
multistage time marching methods

5 presents the deterministic optimization applications in the context
of flexible multibody dynamics

III 6 presents the mathematical preliminaries necessary for the presen-
tation of uncertainty propagation methods as inner products and
corresponding quadrature approximations

7 presents the mathematical details of sampling and semi-intrusive
projection approaches for uncertainty propagation, along with the
software architecture for programming implementations

8 illustrates the semi-intrusive stochastic Galerkin method on simple
time dependent systems and flexible multibody dynamics problems

IV 9 summarizes the results and contributions as well as outlines future
research directions
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CHAPTER 2

AN OVERVIEW OF TEMPORAL, SENSITIVITY AND UNCERTAINTY

ANALYSES

In this chapter, we review implicit time marching methods for flexible multibody dynamics as

well as methods for sensitivity analysis and uncertainty quantification. Finally, the specific

objectives of the thesis are discussed.

2.1 Temporal Analysis of Physics: Flexible Multibody Dynamics

Figure 2.1: Timelapse and timespirals depicting temporal evolution of dynamical systems.

2.1.1 Abstract Form of Governing Equations

The temporal evolution of some flexible multibody systems are shown in Figure 2.1. Such

systems can be studied by solving a system of nonlinear ordinary differential/algebraic equa-

tions of the form:

R(t, ξ, u(t, ξ), u̇(t, ξ), ü(t, ξ)) = 0, (2.1)
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where u(t, ξ) is a function that describes the physical state of the system, along with functions

describing the time rate of change: u̇(t, ξ) and ü(t, ξ). Here t is the temporal variable and

ξ is the design variable. In principle, the abstract descriptor form (2.1) form facilitates the

treatment of different formulations and discretizations of the governing equations, as well

as governing equations for different physics under a common mathematical framework. For

example, Equation (2.1) can be viewed as an abstract representation of time dependent

processes resulting from:

• purely algebraic equations (e.g. spring mass damper system, Van der Pol oscillator) or

• algebraic equations resulting from spatial discretization (e.g. beam deformation model,

Laplace equation) or

• algebraic equations of a particular physics resulting from different formulations (e.g.

Newton–Euler method, Maggi’s method, Euler–Lagrange method, Hamilton’s princi-

ple [4, 5]).

Only the characterization (size and physical interpretation) of u(t) differs from case to case,

whereas the process of solving for u(t) remains more or less the same; namely, linearization

followed by iterations followed by time-stepping.

Stiffness and Drifting: In the context of dynamics, in presence of constraint equations,

the system (2.1) represents a set of differential algebraic equations (DAEs), whereas in the

absence of constraints it reduces to ordinary differential equations (ODEs). The ODEs and

DAEs are collectively referred to as initial value problems (IVPs). There are some charac-

teristic difficulties associated with solving DAEs when compared to ODEs. The presence of

kinematic constraints make DAEs of flexible multibody systems numerically stiff to solve.

The highest time derivative of the kinematic part of the equations is usually less than two,

but the kinetic (dynamic) part of the equations contain second time derivatives, which leads

to equations that contain varying scales of time. Therefore, the solution of DAEs is not as
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straightforward as the solution of ODEs, from a numerical solution perspective, and often

requires specialized scaling of terms. Sometimes, the kinematic equations are differentiated

to match the second derivative (see Haug et al. [6]) to transform DAEs to ODEs, but the sat-

isfaction of true non-differentiated form of kinematic constraints is not guaranteed due to a

phenomenon referred to as drifting. Bauchau and Laulusa [7] presents a review of constraint

violation stabilization techniques that have been developed in the literature. In this work,

the techniques to address the issue of drifting are not investigated; however, we enforce the

constraints in index-2 form to ensure that drifting does not occur.

Steps in Numerical Solution of ODEs/DAEs: The major steps involved in the clas-

sical numerical solution of DAEs are:

1. converting the DAEs to first-order form,

2. choosing an explicit or implicit solution method, and

3. choosing a multistep or multistage derivative approximation hypothesis.

These steps are detailed next.

2.1.2 Conversion to First-Order Form : State-Space Representation

As noted previously, the second-order differential equations in time that model the dynamics

of flexible multibody systems are of the form (2.1). The first step in classical solution

approach is to define an equivalent first-order representation for (2.1) of the form:

S (t, ξ, v(t, ξ), v̇(t, ξ)) = 0 (2.2)

where v(t, ξ) and v̇(t, ξ) are newly defined unknown functions. Effectively, the higher-order

differential equations are transformed to equivalent first-order equations using algebraic

transformations of the original unknown state functions u(t, ξ), u̇(t, ξ) and ü(t, ξ). This
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results in defining pseudophysical state functions v(t, ξ) and v̇(t, ξ) whose codomain is larger

than the codomain of u(t, ξ); notably, the size of v(t, ξ) is greater than the size of u(t, ξ).

Since numerical techniques for the solution of first-order initial value problems (IVPs) are

well established and is implemented as a part of many numerical solution packages (for ex-

ample, EPISODE [8], ODEPACK/LSODE [9] and DASSL [10]), the conversion to first-order form

is justified in a practical sense. We emphasize that, it is not a fundamental mathematical

requirement to solve the ODE in first-order form, but rather a conventional approach to

utilize existing numerical libraries, solution algorithms, and proofs pertaining to first-order

systems. The first-order representations are not necessarily unique due to flexibility (avail-

ability of numerous options) in transformation of variables, and can be from algebraically

simple to cumbersome depending on the actual explicit form of (2.1).

A Philosophically Different Classical Technique: At this juncture, it becomes im-

portant to examine another classical numerical solution technique specifically developed for

structural dynamics known as the Newmark [11, 12] method. The Newmark method de-

viates from converting to first-order form and operates directly on the second-order form

of equations. The seminal authors and others attribute its stability, order of accuracy and

numerical dissipation as suitable aspects for numerical solution of structural dynamics equa-

tions. Later, Chung and Hilbert [13] generalized the Newmark method to a class of methods

referred to as Generalized−α method, where the choice of parameter α produces different

schemes such as

1. Original Newmark

2. Hilber-Hughes-Taylor (HHT) method

3. Chung–Hilbert method (CH)

4. Wood–Bossak–Zienkiewicz (WBZ) method
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The Generalized-α method features unconditional stability for specific choices of parame-

ter α and the general order of accuracy is two (except Fox and Goodwin [11] with third

order accuracy). Note that unconditional stability and higher-order accuracy is also a well

known feature of Backwards Difference Formulas (BDF) [14, 15] widely used in the area

of computational fluid dynamics (CFD), where the governing Navier–Stokes equations con-

tain first-derivative in time. Also Runge–Kutta (RK) based methods having comparable

stability and accuracy properties have been reported by Jameson et al. [16]. In general,

when authors intend to use BDF/RK method the equations are in first-order form (2.2) and

when Newmark/Generalized-α method is used the equations are in second-order form. For

instance,

• the SU2 [17] framework implements RK method for fluids (first-order equations in time)

and Newmark method for structural dynamics (second-order equations in time),

• the Metafor [18] framework for the simulation of solids subject to large deforma-

tions as well as the Dymore [19] framework for flexible multibody dynamics implement

Generalized-α method for time marching.

Thus, in the context of solving second-order system of equations, the main advantage of the

Newmark method is that it is directly applicable for second-order equations (2.1), whereas

other methods are employed on the first-order form of equations (2.2).

Solving in natural higher-order form: In this work, backward difference formulas

(BDF), Runge–Kutta (RK) methods, Adams–Bashforth–Moulton (ABM) methods will be

derived for governing equations in second-order form, enabling their direct application to

DAEs and providing a common framework for adjoint-based derivative evaluation. Within

the existing literature, we find that Haug et al. [6] extends the RK method for second-order

systems in descriptor form. Their effort is in harmony with the principle that is emphasized

here. However, the foundational principle of solving the second-order system without con-

verting to first-order form is not directly suggested as a guiding principle by the authors of
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original Newmark method, or Generalized-α method or Haug et al. [6] who extended the

RK method, although they seem to have used this principle. This work intends to explicitly

introduce this guiding principle for solving IVPs directly in higher-order form, which will

help:

• enhancing the body of time marching methods available for numerical solution of IVPs

of classical and chaotic dynamical systems [20]

• circumventing the need to convert differential equations to first-order form which re-

quires additional mathematical work

Therefore, we propose the development of a homogeneous body of numerical methods for

time marching of flexible multibody dynamics, operating based on abstracted governing

equations in second-order (2.1) (see Figure 2.2 for an illustration this idea). When the steps

in solution process are formulated based on a common mathematical abstraction, the soft-

ware implementation of these techniques become a simple and efficient. The mathematical

abstraction (2.1) parallels the role of “Interfaces and Abstract Classes” in contemporary soft-

ware development terms. We also take this opportunity to highlight that the success of

object oriented software development is inherently related to the mathematical derivations;

the former is imperative for the latter. The importance of this step is often naive overlooked

by physicists and engineers while deriving equations.

2.1.3 Multistep and Multistage Methods

Time marching methods advance the physical state of the system step-by-step. A step is

defined as advancing state functions from tk−1 to tk, whereas a stage can be viewed as an in-

termediate point in time domain between two steps, τ ∈ [tk−1, tk]. DAEs contain time deriva-

tives and therefore require a hypothesis for their numerical approximation. Multistep and

multistage time-derivative approximation hypotheses emerge from a classification based on

the time-level from which system state information is utilized (see Figure 2.3 for an illustra-
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=
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Figure 2.2: Enhancement of body of numerical methods for the solution of flexible multibody
dynamics equations in second-order form.

tion). Methods such as Backwards Difference Formulas (BDF) [14, 15], Adams–Bashforth–

Moulton (ABM) [21, 22] are regarded as multistep, whereas Runge–Kutta (RK) [23] and

Diagonally Implicit Runge–Kutta (DIRK) [24, 25] are regarded as multistep methods. In

general, multistage methods require more numerical work compared to multistep methods.

The order of accuracy preservation becomes difficult for multistep methods with a lack of

sufficient state history at the beginning of time marching process. Thus, multistep meth-

ods are non-self-starting whereas multistage methods are self-starting. A common start-up

strategy is using multistage methods to generate system states for few initial time steps until

enough states are available for multistep methods.
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Multistep Time Marching

Multistage Time Marching

tktk−1tk−2 τjτj−1τjτj−1

Figure 2.3: Connections between steps and stages of multistep and multistage approximation
methods of time derivatives.

2.1.4 Explicit and Implicit Nonlinear Solution

The selection of a derivative approximation hypothesis allows casting the nonlinear system of

differential-algebraic equations (DAEs) as nonlinear algebraic equations (time-derivatives are

discretized). Now, the advancement of system state to next time level can follow explicit or

implicit paths or some combination of both. Explicit time marching techniques advance the

system state from one time level to another without solving system of nonlinear equations,

whereas implicit methods have an intrinsic requirement of solving system of equations for

time advancement. Although both methods come with comparable theoretical accuracies,

the distinguishing factor is the superior stability of implicit schemes. In the context of

flexible multibody dynamics, the stiffness of DAEs necessitate the use of extremely smaller

time steps if an explicit method is used, in order to achieve stability in the solution process.

However, larger time steps can be employed when implicit schemes are used, which turns

out to be computationally efficient and robust in the context of solving DAEs. Gear [26]

and Brenan et al. [10] discuss solution methods for stiff and non-stiff systems written in
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first-order form (2.2). A possible hybrid approach is to partition the DAEs into stiff and

non-stiff parts, and to solve the stiff algebraic part using implicit integration schemes, and

the non-stiff part using explicit methods. In this work, the focus is on implicit techniques

for time advancement.

Implicit Newton–Raphson Nonlinear Solution: The Newton–Raphson iterative so-

lution process is to linearize the nonlinear system and solve the resulting linear systems

repeatedly. As long as computer implementations permit the evaluation of residuals and

corresponding Jacobian matrices at each linearization point, the nonlinear system can be

solved to determine the states for studying the temporal behavior of systems.

2.2 Techniques for Sensitivity Analysis

Let f(ξ) be a function of interest (e.g. stress, failure) evaluated after the numerical solution

of the physical state of aeromechanical systems u, u̇, ü, where ξ is the design variable. Let

f(ξ) represent functions that are either integrated in time variable t as

f(ξ) :=

∫ tfinal

tinitial

F (t, ξ, u(t, ξ), u̇(t, ξ), ü(t, ξ)) dt, (2.3)

or functions evaluated at specific instance of time tk as

f(ξ) := F (tk, ξ, u(tk, ξ), u̇(tk, ξ), ü(tk, ξ)) . (2.4)

Some common techniques used to compute the derivatives of these functions of interest with

respect to variables subject to design ξ are reviewed in this section. Figure 2.4 presents a

characteristic classification of derivative evaluation methods.
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Figure 2.4: Classification of derivative evaluation methods based on principles followed.

2.2.1 Numerical Methods

The numerical methods for sensitivity analysis work without the need for an explicit mathe-

matical expression for derivative. The only requirement is being able to evaluate the function

of interest f(ξ) for input ξ.

2.2.1.1 Finite Difference Method

The finite difference method is a simple numerical method to approximate derivatives. Using

this method, the first derivative of function of interest is approximated to first and second-

order accuracy respectively as

df(ξ)

dξ
=
f(ξ + ∆ξ)− f(ξ)

∆ξ
+O(∆ξ)

df(ξ)

dξ
=
f(ξ + ∆ξ)− f(ξ −∆ξ)

2∆ξ
+O(∆ξ2).

(2.5)

Similarly higher-order approximations of the first derivative can be obtained using general-

ized forward, backward or central difference stencils. In many aeromechanical systems, there
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are several thousand design variables; thus finite difference method is limited to smaller

optimization problems.

Obtaining higher derivatives: The concepts of finite difference method are general and

applicable to higher derivatives of function with respect to ξ as well. For example, the second

derivative of function is approximated using central differences as

d2f(ξ)

dξ2
=
f(ξ + ∆ξ)− 2f(ξ) + f(ξ −∆ξ)

∆ξ2
+O(∆ξ2). (2.6)

The accuracy of finite difference method is strongly influenced by the choice of the step size

∆ξ and numerical loss of precision due to subtractive cancellations. Its computational cost

scales linearly with the number of design variables, making this method computationally

unsuitable for functions with large number of input variables.

2.2.1.2 Complex Step Method

The complex step approximation [27, 28] of first derivative is obtained by perturbing the

imaginary part of function input as

df(ξ)

dξ
=
f(ξ + ∆ξi)

∆ξ
+O(∆ξ2), (2.7)

where the design variable ξ + 0i is perturbed by adding an imaginary component 0 + ∆ξi.

The complex-step method is second-order accurate; therefore the truncation error of associ-

ated Taylor series expansion decreases quadratically when the perturbation size is reduced.

Unlike the finite-difference method, this method does not suffer from lack of precision due to

subtractive cancellation (as there is no subtraction involved), which enables the use of very

small perturbation step sizes to produce highly accurate derivative estimates. However, the

complex-step method is computationally more expensive compared to the finite-difference

method due to the use of complex number arithmetic. In Figure 2.5 the accuracy of derivative
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approximations obtained using the two numerical methods (finite differences and complex

step) are compared on a test function. Note that the slope of lines correspond to the order

of accuracy of the approximation. It can be seen that, for the finite difference methods, sub-

tractive cancellations take effect as step sizes get smaller. Unlike the complex step method,

there is always a practical limit to the accuracy of derivative approximations when finite

differences are used.
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Figure 2.5: Absolute error in approximated derivatives obtained from FDM and CSM for
decreasing perturbation sizes.

Obtaining higher derivatives: Higher dimensional numbers such as quaternions or hyper-

dual numbers can be used to approximate higher derivatives. However, this approach is not

common in numerical and scientific computing libraries. Thus the idea of attributing ad-

ditional imaginary dimensions to real numbers to compute higher derivatives is rather less

explored, but there have been some aerospace applications of this technique (see Fike and

Alonso [29], Fike et al. [30]).
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2.2.2 Computational Methods

The computational methods act on the principle of obtaining the computer code for evalu-

ating the derivatives from the computer code of the function itself.

2.2.2.1 Algorithmic (Automatic) Differentiation

Automatic differentiation (AD) is based on the application of the chain rule of differentiation

to the computer code evaluating a function of interest. This approach produces computer

code to evaluate first- and second-derivatives of the function. When the computer code

is executed derivatives that are accurate to machine precision are obtained. AD methods

are a promising avenue for research in obtaining sensitivities and there have been many

applications of this method within and outside aerospace research [31–38]. The generated

code to compute derivatives may or may not be in its algebraically simplified form and thus

the code may not be optimal in terms of number of floating point operations (FLOPS).

2.2.3 Semianalytical Methods

The semianalytical methods decompose the total derivative as a combination of partial

derivatives that are explicitly known (or approximated) and total derivatives that are im-

plicitly solved using algebraic solution techniques. Mathematically, these methods can be

derived as follows:

df(ξ)

dξ
=

explicit︷ ︸︸ ︷
∂f(ξ)

∂ξ
+

implicit︷ ︸︸ ︷
∂f

∂q

dq

dξ

=
∂f(ξ)

∂ξ
− ∂f

∂q

[
∂q

∂R

]
∂R

∂ξ

=
∂f(ξ)

∂ξ
− ∂f

∂q

[
∂R

∂q

]−1
∂R

∂ξ

(2.8)

In practice, we can compute the residual R and the Jacobian matrix
[
∂R

∂q

]
and can use

the numerical inverse of the Jacobian matrix
[
∂R

∂q

]−1
in place of

[
∂q

∂R

]
. The analytical
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methods are divided into two categories based on the setup of algebraic equations as direct

and adjoint-variable methods as

df(ξ)

dξ
=
∂f(ξ)

∂ξ
−

adjoint λ︷ ︸︸ ︷
∂f

∂q

[
∂R

∂q

]−1
∂R

∂ξ

=
∂f(ξ)

∂ξ
− ∂f

∂q

[
∂R

∂q

]−1
∂R

∂ξ︸ ︷︷ ︸
direct φ

.

(2.9)

The semianalytical methods provide us a systematic way to evaluate derivatives numerically.

This process involves the solution of a linear system of equations to determine the implicit

contributions. These analytical methods are based on the assumption that the partial deriva-

tives are known whereas the total derivatives are not obtainable by analytical means. When

even the partial derivatives are difficult to obtain or algebraically cumbersome, AD methods

are used to supply them to the adjoint or direct sensitivities framework. The finite difference

method can also be used for the purpose of providing partial derivatives at the expense of

speed, scalability and accuracy.

2.2.3.1 Direct Sensitivity Method

From Equation 2.9 we can see that the direct method defines decomposition coefficients as

φi =

[
∂R

∂q

]−1
∂R

∂ξi
. (2.10)

The direct method is computationally the most efficient method for large number of output

functions, as the linear system (2.10) is independent of the number of functions f(ξ). From

a different point of view, it requires the solution of a linear system governing the direct

sensitivity variables, for each component of the vector of design variables ξi. Therefore,

the computational cost of the direct method grows proportional to the number of design

variables. In many applications, not all design variables are independent of each other. For
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example, the design variables are constrained to manufacturing and aesthetic considerations

such as smoothness and curvature. In such cases, there is a scope to reduce the number of

effective design variables through formation of design variable groups, and liking mechanisms

among groups. Thus, the conjunction of direct sensitivity method with design variable linking

approaches [39] can make this method more practical. The applications of the direct method

can be found in the works of Belegundu and Arora [40], Adelman and Haftka [41], Haftka

and Adelman [42], Bhalerao et al. [43] and Dopico et al. [44].

2.2.3.2 Adjoint Variable Method

From Equation 2.9 we can see that the adjoint method finds decomposition coefficients as

λj =
∂fj
∂q

[
∂R

∂q

]−1
. (2.11)

The adjoint method is complementary to the direct method; it requires the solution of a linear

system for each output function of interest fj(ξ). The computational cost of computing the

derivative of the functions of interest using this method is nearly independent of the number

of design variables. However, the computational cost grows proportional to the number of

functions of interest (indexed as j). Consequently in cases where the number of functions

is large, the adjoint method can become expensive. This is a limiting concern in structural

design based on strength criteria where a large number of stress constraints may be required.

In such cases, constraint aggregation methods [45, 46] can be used to reduce the number

of function, thereby reducing the gradient evaluation cost. The adjoint method has been

applied to structural [3, 40–42, 47], aerodynamic [48–51], coupled aeroelastic [52, 53] and

flexible multibody dynamics cases [44, 54–56]. Cao et al. [54] presented general adjoint

methods for differential algebraic equations in first-order systems, or systems that have been

reduced to first-order form, with applications to multibody dynamics. Nachbagauer et al.

[56] presented an adjoint method for multibody dynamics with focus on applications for
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inverse dynamics and parameter identification for rigid body problems. Dopico et al. [44]

developed an approach for the sensitivity analysis of multibody systems based on Maggi’s

formulation of the governing equations using the direct and adjoint methods. Ding et al. [55]

presented an adjoint method for computing the second derivative of functions of interest.

2.3 Design in the Presence of Uncertainties

Designing systems in the presence of uncertainties can be viewed as composed of two main

phases: uncertainty quantification (the analysis phase) and optimization under uncertainty

(the design phase). The uncertainty quantification (UQ) phase addresses the mathemati-

cal aspects of the uncertainty analysis, whereas the optimization under uncertainty (OUU)

phase addresses the mathematical aspects of formulating design/regulatory requirements as

objective or constraint functions. Figure 2.6 illustrates the UQ–OUU process with high

level choices that one can make at different stages of the process. This section reviews the

pertinent subject along the lines of this classification.

2.3.1 Uncertainty Quantification and its Stages

Uncertainty quantification is a process through which the effects of uncertainties on the

performance of systems are analyzed. It is common to model aeromechanical and many

engineering systems as partial differential equations (PDEs). For example, Euler–Lagrange

equations are used to describe the dynamics and vibration of structures such as aircraft wings,

rotor blades, bridges and buildings. Uncertainties are an inherent part of these mechanical

systems as available input data to PDE models is incomplete and uncertain. Therefore the

mathematical models of these systems should account for the presence of such uncertainties

through uncertainty quantification (UQ) techniques [57–64]. The process of UQ can be

broken down in to three stages as:

1. characterizing the source and form of uncertainties as mathematical functions (e.g.

distribution types, intervals)
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Figure 2.6: A view of optimization under uncertainty process.

2. propagating the input uncertainties through the mathematical model of aeromechanical

systems

3. characterizing the behavior of output functions of interest (e.g. computing mean,

variance, best and worst case behaviors, probabilities of failure)

2.3.1.1 Stage I: Characterization of Input Uncertainties

In the setting of partial differential equations, these uncertainties are a part of input functions,

that collectively refer to the functions describing the distribution of coefficients and physical

properties (e.g. material properties, viscosity), forcing functions (e.g. lift distribution on

wing, controller input), and initial as well as boundary conditions. These uncertainties can

be characterized probabilistically (uses probability theory) or nonprobabilistically (does not

use probability theory).
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(1) Probabilistic Characterization (Aleatory Variables): When deterministic spec-

ification of these input functions become difficult due to the lack of sufficient information,

then probabilistic specification in the form of probability density functions (PDFs) can be

beneficial. For example, instead of specifying a value for the representative force acting on

a mechanical structure, the probability distribution function of force could be a more rel-

evant model of the real scenario. When the input functions are probabilistically specified,

the PDEs that operate on these input functions naturally inherit a probabilistic domain, Y ,

along with the original spatial domain, X , and temporal domain, T . The variables from the

probabilistic domain are referred to as random variables, analogous to spatial and temporal

variables from respective domains. These random variables can arise naturally in the direct

specification of PDE coefficients as random variables, or indirectly from the spatial and tem-

poral discretization of correlated and uncorrelated random fields. Both sources are special

cases of the general scenario where a vector of random variables are present in the problem

(see Gunzburger [64]). Since the input functions contain an additional probabilistic domain,

the deterministic PDEs that operate on these inputs, as well as the output metrics of in-

terest, acquire the probabilistic domain and become stochastic partial differential equations

(SPDEs). This naturally gives rise to the need for development of numerical methods for

partial differential equations with random input functions. It is worth noting that SPDEs

contain derivatives only in spatial and temporal variables; there are no derivatives in terms of

random variables. Thus, from a vector-space point of view, we only need to find a set of basis

functions to span the probabilistic space, where we can decompose probabilistic processes.

This is identical in principle to finding finite-element basis functions to represent distribu-

tion of spatial processes, which analogously extends to finding orthonormal basis functions

to represent probabilistic processes in this context of probabilistic uncertainty quantification.

The mathematical details of this process is described in Chapter 6.
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Figure 2.7: Probabilistic and non probabilistic modeling of uncertainties.

(2) Nonprobabilistic Characterization (Epistemic Variables): Sometimes, it is dif-

ficult to associate probability information with random variables due to lack of sufficient

data. This happens because a large amount of empirical data is necessary to predict the

distribution type in first place. For example, airline operators can predict the distribution of

baggage weights, if they collect and store this data beforehand during check-in. Atmospheric

data such as pressure, temperature, humidity etc. are usually stored in databases and are

available for UQ applications. When data is not available, nonprobabilistic approaches such

as possibility theory, interval analysis, convex modeling and evidence theory (see Keane and

Nair [2]) are used. The simplest non-probabilistic approach is the interval representation of

input uncertainties. Here, the random variable can take any value within the specified inter-

val but the underlying probability distribution is unknown. See Figure 2.7 for an example

of modeling uncertainties in inputs as probability distributions and intervals.

In summary, probabilistic approaches are apt for modeling aleatory uncertainties featuring an

abundance of data and non-probabilistic approaches are suitable for epistemic uncertainties

suffering a data scarcity.
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2.3.1.2 Stage II: Propagation of Input Uncertainties

Uncertainty propagation is the second and predominant step in uncertainty analysis. It is

performed using non-intrusive sampling-based and intrusive projection-based methods (see

Figure 2.6). A high level review of these techniques are presented in the following paragraphs,

whereas the mathematical details are deferred to Chapter 6.

(1) Stochastic Sampling Methods: The first class of techniques for uncertainty prop-

agation are based on the idea of sampling. Sampling based techniques, collectively re-

ferred to as stochastic sampling methods (SSMs) rely on repeated solutions of the deter-

ministic PDE at specified values of uncertain parameters from the probabilistic domain.

Since this approach does not mandate any changes to the existing source code of the PDE

solver, sampling-based techniques are referred to as non-intrusive [65–67]. The most-widely

known sampling based technique for uncertainty propagation is the Monte Carlo (MC) sam-

pling [68, 69]. The MC method draws samples at random and it is the only method that does

not suffer from the curse of dimensionality (the convergence is independent of the number

of random variables), but the rate of convergence is rather limited to O(1/
√
M), where M

is the number of samples. A better selection of samples is offered by quasi-MC sampling

methods (e.g. latin hypercube sampling), but at the cost of incurring a dependence on the

number of variables and thus prone to the curse of dimensionality. The other type, namely,

the quadrature sampling (also referred to as stochastic collocation) [70, 71], exploits the

idea of Gaussian quadrature rules in the selection of sample points. This idea relies on the

smoothness of interpolating polynomials and thus may not be suitable for functions with

discontinuities. Even more restricting is the extension of one-dimensional quadrature rule

to multiple dimensions using tensor product or similar rules, which leads to a very large

number of points. In order to reduce the number of quadrature points, sparse quadrature

methods have been proposed [64, 72, 73]. Since the reduction in number of quadrature points

is achieved by exploiting the smoothness properties, these methods are not suitable for non-
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smooth processes. Another approach is to build surrogate models [74–80] that are trained

using a limited set of points (random, quasi-random or quadrature) and then replacing ex-

pensive deterministic solutions of PDE with inexpensive evaluations of the surrogate model.

Sometimes the gradient information is also used in the construction of surrogate models

alleviating the curse of dimensionality to an extent [76]. These SSMs are known to offer

great flexibility in using deterministic codes as black-box solvers, and are thus widely used

within the uncertainty analysis literature. Figure 2.8 illustrates the random, quasirandom

and quadrature selection of samples from a two-dimensional random space.
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Figure 2.8: Selection of samples using random and quadrature sampling methods to evaluate
multidimensional integrals.

(2) Stochastic Galerkin Methods: The second class of techniques for uncertainty prop-

agation are based on the idea of Galerkin projection in probabilistic space and are collectively

referred to as stochastic Galerkin methods (SGMs) [61, 81, 82]. Based on the construction of

approximation to the probabilistic space, SGMs can be further classified into a few subcat-

egories. The use of globally orthonormal polynomials for the approximation of probabilistic

space has led to the development of methods based on spectral expansion [72, 83], where

the entries in basis set have global support. This approach is also referred to as polynomial

chaos expansions in the literature. Since the basis functions have global support the spectral

expansion type methods are not the ideal choice if there exists discontinuities of the solution

27



in terms of probabilistic parameter space. This motivates the use of basis functions with

local support, similar to localized finite-element type constructions that can treat discon-

tinuities. Based on the spatial discretization method some approaches are referred to as

stochastic finite element method [57–59, 84–86] and stochastic finite volume methods [87].

All these SGMs operate on the principle of projecting (decomposing) stochastic functions in

probabilistic (stochastic) space using weighted inner products, where the weighing functions

are the probability density functions of the random variables. These inner products are de-

fined as multidimensional integrals, and are numerically approximated using aforementioned

multidimensional quadrature rules. Thus, multidimensional quadrature rules are used in

both sampling-based and projection-based uncertainty propagation approaches. The SGMs

differ from SSMs in that they directly solve the SPDEs instead of solving the deterministic

PDE multiple times. The SGM is amenable for the development of specialized algorithms

aiming to exploit the nature of equations in stochastic solvers that perform computations in

an efficient manner. However, this development requires significant effort in terms of special-

ized solvers, thus leading to its classification as intrusive methods [72]. The semi-intrusive

approach for stochastic projection presented in this work is aimed to alleviate this difficulty

and simplify the implementation process.

In summary, the sampling-based methods are simple to use, as they treat the entire de-

terministic solution framework as black-box. However, projection-based methods require

explicit source code modifications to perform integration in probabilistic spaces. Therefore,

the application of projection-based methods is inhibited due to the extra effort involved in

code development.

2.3.1.3 Stage III : Characterization of Output Uncertainties

The step of characterization of output uncertainties follow after the propagation of input

uncertainties through the system models and the evaluation of metrics of interest. This stage

is dependent on the first stage of uncertainty quantification; if nonprobabilistic methods are
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used to represent input uncertainties, then only nonprobabilistic information can be used

to describe the behavior of outputs of the system. For example, when nonprobabilistic

input bounds are processed into the analysis model, only bounds on the output metrics

of interest can be constructed. Similarly, when inputs are probabilistically modeled, then

probability distribution of the outputs can be obtained, along with probabilistic moments

such as mean, variance and standard deviation. This output information can be used to

formulate optimization under uncertainty problems. Figure 2.9 illustrates this coupled input–

output characterization process.
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Figure 2.9: Characterization of output uncertainties based on the characterization of input
uncertainties.

2.3.2 Optimization Under Uncertainty

The inclusion of uncertainty analysis within numerical optimization process is referred to as

optimization under uncertainty (OUU). Within the OUU literature problems are typically

classified as robustness-based formulations [88–105] and reliability-based formulations [106–

108]. Table 2.1 provides a comparative summary of these formulations. Regardless of how

the OUU problems are verbally named, the actual nature of the OUU problem (robust,
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Table 2.1: Summary of robust and reliability optimization.

Characteristic Robust Optimization Reliability Optimization

definition a product design approach that
facilitates reduction of perfor-
mance variation

a product design approach aiming
to reduce the probability of fail-
ure as much as possible

area of emphasis the central part of probability dis-
tributions are studied (high prob-
ability events)

tail end of the probability dis-
tributions are investigated (low-
probability events)

objective function minimize the probability of fail-
ure

minimize the variance of objective
function

computes statistical moments and probabil-
ity distributions

involves the computation of prob-
abilities of rare events

reliable, or both) is defined by the mathematical statement of the objective and constraint

functions. In this section, first we introduce a general optimization problem without the

inclusion of uncertainties and later compare it to the problem statement where uncertainties

are included.

2.3.2.1 Deterministic Formulation

A deterministic optimization problem can be written as

minimize
ξ

F (ξ)

subject to G(ξ) ≤ 0

H(ξ) = 0

require
dF (ξ)

dξ
,
dG(ξ)

dξ
,
dH(ξ)

dξ

(2.12)

where ξ are the uncertain design variables, F (ξ) is the objective function, G(ξ) are the

inequality constraint functions and H(ξ) are the equality constraint functions. The need

for the derivative information arises with the choice of using gradient-based optimization

algorithms, that are computationally efficient for large problems.
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2.3.2.2 Probabilistic Optimization Under Uncertainty Formulation

Historically, OUU problems have evolved separately as robust or reliable formulations. How-

ever, when designing systems in the presence of uncertainties, the designer is concerned

about both robustness and reliability aspects of the design. For instance, the airplane

should be designed to ensure fuel efficiency amidst of uncertain wind gusts (robustness)

without compromising on the safety aspects (reliability). We find that robustness discus-

sions arise on the side of objective function whereas reliability discussions arise on the side

of constraints. Figure 2.10 explains this idea along with mathematical statements that effect

them. These mathematical statements are applicable only for probabilistically modeled un-

certainties, whereas non-probabilistic models have different mathematical statements. The

probabilistic moments such as the mean E[F (y(ξ))], variance V[F (y(ξ))], standard deviation

S[F (y(ξ))] and probability P[G(y(ξ)) ≤ 0] need to be evaluated to formulate a probabilistic

OUU problem.

Design Variables: The design variable vector ξ can contain deterministic variables and

random variables as the ones subject to design. As far as the deterministic variables are

concerned there is no ambiguity in the choice of variables as they refer to one number. In

principle, the random variables can not be directly subject to design as they can take an

infinite number of values. However, their probabilistic moments such as mean, variance,

skewness and kurtosis can be subject to design. Although it is exciting to notice the possi-

bility of having µξ (the first moment) and higher moments as design variables, the reality is

the higher moments are not in our control. The higher moments are simply mathematical

a degrees of freedom that can be subject to optimization. Hypothetically, even if we give

the control of choosing σξ (the second moment) to the optimizer, the optimizer would want

to drive σξ to 0. This only implies that the designer should eliminate all uncertainties (i.e.

the variability), but we are interested in OUU because the variability σξ is non zero and

quantified to a number. Therefore, throughout this work when random variables are a part
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design
variables

constraints objective

Optimization Under Uncertainty

uncertaintyreliability robust

Deterministic Optimization

ξG(ξ) F (ξ)

Optimization Under Uncertainty

y(ξ)E[G(ξ)] + β · S[G(ξ)] (1−α)E[F (ξ)]+α ·S[F (ξ)]

Figure 2.10: Origination of robustness and reliability arguments from the space of determin-
istic optimization as soon as uncertainties are introduced.

of design vector, only the first moment (mean) is subject to design.

ξ = [ ξ1, ξ2,︸ ︷︷ ︸
deterministic

, y1(µξ3), y2(µξ4)︸ ︷︷ ︸
random

] (2.13)
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Objective Function: The objective of minimizing the expected performance along with

its variability can be stated mathematically as

minimize
ξ

(1− α) · E[F (y(ξ))]︸ ︷︷ ︸
expected performance

+ α · S[F (y(ξ))]︸ ︷︷ ︸
performance variability

(2.14)

with user-specified weights as α ∈ [0, 1] that can be interpreted as parameter controlling

robustness. Equation (2.14) can be viewed as a multiobjective optimization problem or as

augmenting the mean objective with a weighted penalization using standard deviation. Some

authors use two unconstrained weights α1 and α2 as well as variance in place of standard

deviation [77].

Constraint Function: The designer may want to enforce directly that the probability of

inequality constraint violation is less than a small number, for instance as P[G(y(ξ)) ≤ 0] ≥

b%. The probabilistic moments such as mean, variance and standard deviations are compu-

tationally easier to evaluate compared to the direct evaluation of probabilities. Therefore,

an explicit enforcement of probabilities are difficult, where one can use implicit moment

matching formulations (see Parkinson et al. [109], Du and Chen [105], Du and Chen [110])

to achieve the same effect. The probability statement can be restated as

P[G(y(ξ)) ≤ 0] ≥ b% −→ E[G(y(ξ))]︸ ︷︷ ︸
location of constraint manifold

+ β · S[G(y(ξ))]︸ ︷︷ ︸
shifting constraint manifold

≤ 0 (2.15)

where b is the desired probability and β ∈ [0,∞) can be interpreted as a parameter controlling

reliability. The enforcement of equality constraints is rather tricky; see Rangavajhala et al.

[111] for an overview of treatment of equality constraints. The simplest method is ensuring

that the the optimal solution is sought along the manifold pertaining to mean of equality

constraint, which is ensuring that the mean of the equality constraint is satisfied as

E[H(y(ξ))] = 0. (2.16)
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Probabilistic OUU Problem Statement: Therefore, a general OUU problem embed-

ding optimality, robustness and reliability design considerations can be stated as

minimize
ξ

(1− α)E[F (y(ξ))] + α · S[F (y(ξ))]

subject to E[G(y(ξ))] + β · S[G(y(ξ))] ≤ 0

E[H(y(ξ))] = 0

require
dE[F (y(ξ))]

dξ
,
dE[G(y(ξ))]

dξ
,
dE[H(y(ξ))]

dξ

dS[F (y(ξ))]

dξ
,
dS[G(y(ξ))]

dξ

(2.17)

The optimization under uncertainty problem statement (2.17) helps to explain how the

subjects reviewed in this chapter (temporal physics, gradient evaluation using adjoint method

and uncertainty analysis) are connected to form the scope of the thesis:

• The evaluation of functions of interest F (y(ξ)), G(y(ξ)) and H(y(ξ)) falls within

the realm of temporal physical analysis

• The evaluation of probabilistic moments of functions of interest E[F ], V[F ] and

S[F ] falls within the realm of uncertainty analysis

• The evaluation of derivatives of probabilistic moments of functions of interest
dE[F ]

dξ
,
dV[F ]

dξ
and

dS[F ]

dξ
falls within the realm of sensitivity analysis

The proposed work of the thesis falls within the span of these three areas as illustrated

schematically in Figure 2.11 with design applications to aeromechanical systems.

2.4 Specific Research Objectives

Figure 2.12 shows the mathematical process undertaking the proposed adjoint gradient en-

abled UQ-OUU framework. The static nonlinear physical analysis and corresponding linear

sensitivity analysis solution techniques are well established in the current literature. The
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optimizing
aeromechanical

systems
∈

{(1)⊗(2)⊗(3)}

(1)
temporal
physical
analysis

(2)
temporal

uncertainty
analysis

(3)
temporal
sensitivity
analysis

derivatives of probabilistic moments
of functions of interest

probabilistic moments
of functions of interest

functions of interest

Figure 2.11: A schematic diagram of the areas of mathematical developments required for
adjoint-enabled UQ-OUU framework for time dependent systems.

required new tasks for the proposed framework are highlighted in red. The detailed aspects

of these high level goals are discussed in the remainder of this section along with pertaining

novelties underlying this work.

2.4.1 Generalized Newton Method for Second-Order ODEs

In order to perform time-accurate analysis of physics, the first mathematical task is solving

nonlinear ODE/DAE systems arising from flexible multibody dynamics and evaluating met-

rics of interest such as stress, strains, failure etc. This objective can be stated mathematically

as:
solve

u(t,ξ),u̇(t,ξ),ü(t,ξ)
R(t, ξ, u(t, ξ), u̇(t, ξ), ü(t, ξ)) = 0

evaluate F (t, ξ, u(t, ξ), u̇(t, ξ), ü(t, ξ)).

(2.18)

This extension of static analysis to time dependent analysis is approached from a philo-

sophical standpoint of seeking to solve second-order DAE systems without converting them
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solve
u(ξ)

R(ξ, u(ξ)) = 0

evaluate F (ξ, u(ξ))

Nonlinear Algebraic System

solve
u(t,ξ),u̇(t,ξ),ü(t,ξ)

R(t, ξ, u(t, ξ), u̇(t, ξ), ü(t, ξ)) = 0

evaluate F (t, ξ, u(t, ξ), u̇(t, ξ), ü(t, ξ))

Nonlinear ODE System

solve
u(t,y(ξ)),u̇(t,y(ξ)),ü(t,y(ξ))

R(t, y(ξ), u(t, y(ξ)), u̇(t, y(ξ)), ü(t, y(ξ))) = 0

evaluate E [F (t, y(ξ), u(t, y(ξ)), u̇(t, y(ξ)), ü(t, y(ξ)))]

V [F (t, y(ξ), u(t, y(ξ)), u̇(t, y(ξ)), ü(t, y(ξ)))]

S [F (t, y(ξ), u(t, y(ξ)), u̇(t, y(ξ)), ü(t, y(ξ)))]

Nonlinear Stochastic ODE System

(a) Temporal physical analysis

define L(◦, λ(ξ)) = R(◦) + λ(ξ)F (◦)
where ◦ = ξ, u(ξ)

solve
λ(ξ)

∂L(◦, λ(ξ))
∂u

= 0

evaluate
dF (◦, λ(ξ))

dξ
=

∂F (◦)
∂ξ

+ λ(ξ)
∂R(◦)
∂ξ

Linear Algebraic System

define L(◦, λ(t, ξ)) = R(◦) + λ(t, ξ)F (◦)
where ◦ = t, ξ, u(t, ξ), u̇(t, ξ), ü(t, ξ)

solve
λ(t,ξ)

∂L(◦, λ(t, ξ))
∂u

− d

dt

(
∂L(◦, λ(t, ξ))

∂u̇

)
+

d2

dt2

(
∂L(◦, λ(t, ξ))

∂ü

)
= 0

evaluate
dF (◦, λ(t, ξ))

dξ
=

∂F (◦)
∂ξ

+ λ(t, ξ)
∂R(◦)
∂ξ

Linear ODE System

define L(◦, λ(t, y(ξ))) = R(◦) + λ(t, y(ξ))F (◦)
where ◦ = t, y(ξ), u(t, y(ξ)), u̇(t, y(ξ)), ü(t, y(ξ))

solve
λ(t,y(ξ))

∂L(◦, λ(t, y(ξ)))
∂u

− d

dt

(
∂L(◦, λ(t, y(ξ)))

∂u̇

)
+

d2

dt2

(
∂L(◦, λ(t, y(ξ)))

∂ü

)
= 0

evaluate
dE [F (◦, λ(t, y(ξ)))]

dξ
,
dV [F (◦, λ(t, y(ξ)))]

dξ
,
dS [F (◦, λ(t, y(ξ)))]

dξ

Linear Stochastic ODE System

(b) Sensitivity analysis

Figure 2.12: An illustration of steps required to enable the integration of uncertainty quan-
tification, temporal analysis and adjoint sensitivities (boxed in red).

to first-order equations. Such an approach will enhance the body of techniques available

for numerical solution of flexible multibody systems beyond Generalized-α methods. Other

fields like chaotic dynamics can also benefit from this approach as their governing equations

contain as high as sixth-order derivatives in time (see Chlouverakis and Sprott [20]), and one

does not need an equivalent set of first-order equations to solve the system. From an implicit

solution process perspective, this mainly necessitates the generalization of Newton–Raphson

method. Therefore this goal reduces to the generalization of Newton method for implicit

multistep and multistage time marching methods such as BDF, ABM and DIRK.

2.4.2 Implicit Analysis of Stochastic Time Dependent Systems

With the inclusion of uncertainties the DAEs/ODEs of flexible multibody system become

stochastic DAEs/ODEs. The analysis problem can be stated mathematically as follows

solve
u(t,y(ξ)),u̇(t,y(ξ)),ü(t,y(ξ))

R(t, y(ξ), u(t, y(ξ)), u̇(t, y(ξ)), ü(t, y(ξ))) = 0. (2.19)
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Once the stochastic state fields u(t, y(ξ)), u̇(t, y(ξ)) and ü(t, y(ξ)) are determined, the proba-

bilistic moments such as the mean E [F ], variance V [F ] and standard deviation S [F ] can be

evaluated. As Krenk and Gutirez [59] note, projection-based methods for problems involving

nonlinearities have not yet reached a mature stage. This is partly due to the difficulty in

deriving explicit stochastic equations in the presence of nonlinearities [72]. In this work we

propose to form stochastic algebraic equations implicitly and circumvent the requirement

for explicit derivation of stochastic equations, which is a hurdle in the easier adaptation of

projection-based methods. When the governing deterministic PDEs take complex nonlin-

ear coupled forms, the explicit derivation of stochastic equations (in algebraic form) may

not be possible as pointed by Xiu [72]. We acknowledge this observation and also point

out that in reality, the explicit equations are not necessary and can be made an implicit

part of computational machinery seeking the solution to SPDEs. We find and show that

the stochastic residuals and Jacobians can be assembled on the fly; thus explicit stochastic

algebraic equations are not a necessity. For example, it is sufficient if one is able to form

Jacobian-vector products implicitly to be able to solve a linear system Ax = b. Similarly, it

is sufficient to have deterministic algebraic equations resulting from the spatial discretization

method of choice, for being able to solve the corresponding stochastic problem. In this work

we show the applicability of this guiding principle by demonstrating on problems ranging in

complexities.

2.4.3 Time Dependent Discrete Adjoint Sensitivities

The availability of adjoint-derivatives allows one to perform optimization under uncertainty

(OUU) efficiently, in order to produce engineering designs that are robust and reliable. This

can be achieved in two parts discussed below.

• First we extend the static adjoint sensitivity analysis to time dependent adjoint sensi-

tivity analysis for BDF, ABM, DIRK and Newmark implicit time marching methods.

In the spirit of generality, we appeal to abstract descriptor form of governing equa-
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tions (2.1) and functions of interest in the presentation of equations without making

contextual arguments on flexible multibody dynamics. This approach will enable the

use of derived set of discrete equations for a wide range of applied mathematical prob-

lems beyond flexible multibody dynamics.

• Next, we extend the deterministic time dependent adjoint sensitivity analysis into

stochastic time dependent adjoint sensitivity analysis, by addressing the propagation

of uncertainties through adjoint equations. The principle of reusability of determin-

istic implementations for stochastic physical analysis applies to stochastic sensitivity

analysis as well. As a result, the stochastic adjoint equations are formed without need

for explicitly setting them up.

2.5 Foundational Principles

The work of this thesis lies in the treatment of time domain and probabilistic domain in math-

ematical models and the development pertaining solution mechanisms to solve engineering

design optimization problems of the form (2.17). In achieving this goal, we introduce/follow

the following principles that permeate and guide the mathematical developments presented

in this thesis:

1. In the treatment of time domain, the governing equations are kept in their natural sec-

ond (higher) order form from theoretical formulation to numerical solution. Using this

principle, we demonstrate the solution process using existing time marching methods

such as BDF, ABM, DIRK and Newmark to solve the system directly in higher-order

form.

2. In the treatment of probabilistic domain, we propose a principle of reusability of de-

terministic implementations and apply it not just for stochastic physical analysis but

also for sensitivity analysis. We refer to this as semi-intrusive method for uncertainty

propagation which is a synthesis of intrusiveness and non-intrusiveness.
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3. Finally, being interested in the generality of mathematical developments and computer

implementation, we use the principle of abstraction that maximizes the generality. This

paves a perfect layout for programming solution techniques; indeed, abstraction is one

of the key concepts of object-oriented programming languages. Abstraction is hiding

unnecessary details and exposing only information that is relevant to the task at hand.

For example, R(t, ξ, u(t, ξ), u̇(t, ξ)) = 0 shall serve as an abstraction for:

• u(t)− ξu̇(t) = 0 (a linear ODE)

• cos(u(t))× u̇(t)− u̇(t)3

ξ
= 0 (a nonlinear ODE)
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Part II

Treatment of Time Domain in Physical

Analysis and Sensitivity Analysis

Problems
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CHAPTER 3

SEMIANALYTICAL SENSITIVITIES FOR STATIONARY SYSTEMS

... the idea of enlarging reality by including “tentative” possibilities

and then selecting one of these by the condition that it minimizes a

certain quantity, seems to bring purpose to the flow of natural events.

Cornelius Lanczos [1893–1974]

Introduction. Let us use the term zeroth-order systems to denote physical processes that

lack time derivative (or derivative in corresponding independent variable). The equations

governing zeroth-order systems are thus algebraic in nature, as opposed to first and second-

order processes modeled as differential equations. An example of zeroth-order system can be

a body at rest responding instantaneously to an external stimulus modeled as an algebraic

equation. In this chapter let us consider semianalytical methods for sensitivity analysis of

systems modeled by algebraic equations. This will provide sufficient basis and intuition

for the derivation of these equations in the context of second-order differential equations in

Chapter 4.

3.1 Solution of Zeroth-Order Systems

Consider a system of nonlinear equations R = R(q(ξ), ξ), where ξ are design variables and

q = q(ξ) are the state variables which are an implicit function of the design variables ξ via

the governing nonlinear equations. As a general procedure, the state variables q(ξ) are found

by solving the nonlinear system R = 0 using an iterative scheme such as Newton-Raphson

method. Although well established, the mathematical details of linearization and iteration

are described next, for a self-contained discussion. First, we obtain a series expansion of the
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nonlinear function R about the current iterate qk:

R (qk + ∆qk, ξ) = R (qk, ξ) +
∂R

∂q
(qk, ξ) ∆qk +

1

2

∂2R

∂q2
(qk, ξ) ∆qk

2 + . . . ≤ εR (3.1)

which is required to be zero upto some tolerance, to consider the nonlinear system solved.

Consider only upto the linear part of the expansion (3.1) (since we are interested in repeatedly

solving linear systems) and rewrite as follows:

∂R

∂q
(qk, ξ) ∆qk = −R(qk, ξ) (3.2)

which is solved for ∆qk using some suitable method for the solution of linear system. This

enables us to find a new linearization point qk+1 = qk + ∆qk. The linearization and linear

system solve for update, are continued until some suitable criteria is satisfied. As a subtle

but important detail, in the above iterative procedure the design variables ξ are known and

therefore it was not necessary to carry out an expansion of R about ξ.

3.2 Methods for Obtaining First Derivative (Gradient)

We are interested in some abstract function F = F (q(ξ), ξ), that is a function of the state

variables that were just determined and design variables that are known. In many applica-

tions such as optimal design and optimal control, we require the first-order and second-order

dependence of this function F on the design variables ξ: the gradient
dF

dξ
and Hessian

d2F

dξ2
.

3.2.1 Obtaining First Derivative (Gradient)

If the implicit dependence of q on ξ is known, then this merely amounts to assembling terms

in chain rule of differentiation as:

dF

dξ
=
∂F

∂q

dq

dξ︸︷︷︸
implicit

+
∂F

∂ξ
(3.3)
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However, in general, the implicit dependence
dq

dξ
is not known. Thus we need to resort to

some sophisticated technique to obtain this information, in order to construct the derivative

(3.3). Above all, we do not have a governing system of equations for
dq

dξ
, i.e., we lack a

direct set of relations to solve. This motivates the need for development of such equations

through mathematical techniques. For this purpose we define a new functional, called the

Lagrangian as follows:

L(q(ξ), λ(ξ), ξ) = F (q(ξ), ξ) + λ(ξ)R(q(ξ), ξ). (3.4)

We have introduced a new unknown function λ(ξ), referred to as the Lagrange multiplier,

which is used to form a linear combination of the two functionals F and R. The domain of

the Lagrangian L is bigger than the domain of the function of interest F and the governing

physical equations R.

Equivalence of L and F We shall first explore the conditions under which the new

function (3.4) and the function of interest F are identical. Noting that we solve for the

nonlinear equations using Newton’s method such that R ≤ εR. Therefore,

L(q(ξ), λ(ξ), ξ) = F (q(ξ), ξ) + λ(ξ)εR. (3.5)

As long as εR → 0, it is trivial to see that one recovers the identity relation between between

L and F . Therefore, the two functionals L and F are identical except for the existence of

an additional dimension λ in L, and provided that the governing equations are solved to a

tight tolerance.

Differentiating the Lagrangian Now we shall continue exploring the flexibility that the

auxiliary variable λ(ξ) offers to address the problem of unknown dependence
dq

dξ
. Note that,

(i) capturing the dependence or (ii) being orthogonal to the dependence are the solutions
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one can expect. Recall that the derivative of the original function is given by (3.3). Now,

differentiating the Lagrangian (3.4) with respect to ξ, we get

dL
dξ

(q(ξ), λ(ξ), ξ) =
dF

dξ
(q(ξ), ξ) +

d

dξ
(λ(ξ)R(q(ξ), ξ))

=
dF

dξ
(q(ξ), ξ) +

dλ(ξ)

dξ �
���

��:0
R(q(ξ), ξ) + λ(ξ)

dR

dξ
(q(ξ), ξ)

=

(
∂F

∂q

dq

dξ
+
∂F

∂ξ

)
+ λ(ξ)

(
∂R

∂q

dq

dξ
+
∂R

∂ξ

)
(3.6)

We anticipate that
dL
dξ

=
dF

dξ
, since L and F are identical. Therefore, the following inner

product ought to vanish, for equivalence of derivatives:

〈
λ(ξ)

∣∣∣∣∣

(
∂R

∂q

dq

dξ
+
∂R

∂ξ

)〉
= 0. (3.7)

This relation is indeed the mathematical flexibility that the Lagrange Multipliers offer to

solve the problem of unknown q dependence of ξ.

3.2.2 A Direct Method

Out of the many possibilities where the inner product is zero, the trivial solution where:

∂R

∂q

dq

dξ
+
∂R

∂ξ
= 0 (3.8)

is known as the method of direct sensitivities. This linear system can be solved for the

unknown
dq

dx
, and can be used to evaluate the total derivative of the Lagrangian which is

identical to the total derivative of the functional when R ≤ εR ≈ 0. This is called the

direct method as we determine the implicit dependence directly by solving a linear system

of equations.
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3.2.3 An Indirect (Adjoint) Method

We shall now explore what other options we have from (3.6). Suppose if we regroup terms

in (3.6) as follows:
dL
dξ

=

(
∂F

∂q
+ λ

∂R

∂q

)
dq

dξ
+

(
∂F

∂ξ
+ λ

∂R

∂ξ

)
(3.9)

By the same token as before, the following condition is another set of mathematical possi-

bilities that we get by introducing Lagrange multipliers:

〈(
∂F

∂q
+ λ

∂R

∂q

) ∣∣∣∣∣
dq

dξ

〉
= 0 (3.10)

The trivial case where
∂F

∂q
+ λ

∂R

∂q
= 0 (3.11)

yields us the condition that is used to solve for the Lagrange multiplier λ, and is referred to

as the adjoint method.

3.2.4 An Illustrative Example

We consider a system governed by linear algebraic equation. A spring with stiffness constant

ξ responds to an external stimulus b and displaces by an amount q, is modeled as:

R := R(q(ξ), ξ) = ξq − b

Let us define a quantity of interest

F := F (q(ξ), ξ) =
1

2
ξq2.

Also, let the spring stiffness ξ be the variable subject to design. The known partial derivatives

are:
∂F

∂ξ
=

1

2
q2,

∂R

∂ξ
= q,

∂F

∂q
= ξq and

∂R

∂q
= ξ.
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1. Exact Derivative: For this simple system the implicit derivative is known as

dq

dξ
= − b

ξ2
= −q

ξ

which can be used directly assemble the exact analytical derivative using chain rule as follows

dF

dξ
=
∂F

∂ξ
+
∂F

∂q

dq

dξ
=

1

2
q2 + (ξq)

(
−q
ξ

)
= −1

2
q2.

Often, the implicit dependence is not known and thus we work with the assumption that it

is not readily available.

2. Direct Method: In the case of the direct method, the implicit derivative is directly

computed by means of solving the linear system

dq

dξ
= −∂R

∂ξ

/
∂R

∂q
= −q

ξ
.

This implicit derivative can be used to assemble the first derivative as

dL
dξ

=
∂F

∂ξ
+
∂F

∂q

dq

dξ
=

1

2
q2 + (ξq)

(
−q
ξ

)
= −1

2
q2.

3. Adjoint Method: Using the adjoint method we find the adjoint variable by solving a

linear system

λ = −∂F
∂q

/
∂R

∂q
= −q,

which can be used to assemble the required derivative as

dL
dξ

=
∂F

∂ξ
+ λ

∂R

∂ξ
=

1

2
q2 + (−q)(q) = −1

2
q2.

Summary of obtaining first derivatives. Using abstractions of governing equations and

functionals of interest, we derived two established state-of-the-art approaches for obtaining
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the derivatives of functionals with respect to the independent parameter and outlined other

avenues for computing the derivatives. It is noted that in all cases, the linear nature of

Lagrangian results in linear system solves such as (3.8) and (3.11). We will explore the

time dependent adjoint sensitivity analysis details using similar abstractions and principles

in Chapter 4.

47



CHAPTER 4

TIME MARCHING AND DISCRETE-ADJOINT FOR SECOND-ORDER

SYSTEMS

Introduction. This chapter presents numerical solution methods for the governing equa-

tions of flexible multibody dynamics using implicit time marching methods, as well as the

development of associated discrete-adjoint equations. The implicit time marching methods

considered are:

1. Newmark method [11, 12] (single-step),

2. Backward Difference Formulas (BDF) [14, 15] (multistep),

3. Adams–Bashforth–Moulton method (ABM) [21, 22] (multistep),

4. Diagonally Implicit Runge–Kutta (DIRK) [24, 25] (multistage).

Starting from a given set of initial conditions q0 and q̇0, these time marching schemes use

the state variable values from previous time steps to evaluate the subsequent values of state

variables. The subscript, k, on the state variables refer to the corresponding time parameter

value, tk. In this work, a constant step size, h = tk − tk−1, is employed for time marching.

The scalar coefficients of time marching denoted as α, β and γ are used for forming linear

approximations of the state variables at each time step. These coefficients are derived based

on desired order of accuracy and stability requirements.

4.1 Governing Equations of Motion and Continuous Adjoint

In this section, we use variational principles to derive the governing equations for flexible

multibody systems and continuous adjoint-based sensitivities. Our approach is to operate
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on a broader paradigm, until the contextual arguments are used to recover Euler-Lagrange

and adjoint equations.

4.1.1 Variational Principle

We begin with Lagrangians that are function of the state variables and their first as well

as second time derivatives. It is easy to see that q = q(t) denotes a set of curves (paths,

trajectories or functions) that the components of the state variables trace over time, and

there are as many scalar curves as the number of state variables. Similarly, a Lagrangian

can be seen as a curve in 3m+ 1 dimensional space spanned by q, q̇, q̈ and t. The length A

of the Lagrangian curve within the time interval [t0, tf ] is represented as a line integral along

the curve

A[q̈, q̇, q] =

∫ tf

t0

L(q̈, q̇, q, t) dt. (4.1)

Consider the following variations in state trajectories

q(t)→ q(t) + δq(t),

q̇(t)→ q̇(t) + δq̇(t),

q̈(t)→ q̈(t) + δq̈(t),

(4.2)

where δq(t), δq̇(t) and δq̈(t) are arbitrary changes to the corresponding original trajectories,

that vanish at the end points t0 and tf . Thus, the varied paths have the boundary conditions

that

δq(t0) = δq(tf ) = δq̇(t0) = δq̇(tf ) = δq̈(t0) = δq̈(tf ) = 0. (4.3)

In order to study the effect of these varied paths on the length A, we use Taylor’s series

expansion of the Lagrangian upto first-order terms as

L(q̈+δq̈, q̇+δq̇, q+δq, t) ≈ L(q̈, q̇, q, t)+
∂L(q̈, q̇, q, t)

∂q
δq(t)+

∂L(q̈, q̇, q, t)

∂q̇
δq̇(t)+

∂L(q̈, q̇, q, t)

∂q̈
δq̈(t),

(4.4)

49



and similarly the functional

A[q̈ + δq̈, q̇ + δq̇, q + δq] ≈ A[q̈, q̇, q] + δA[q̈, q̇, q]. (4.5)

The higher-order terms in the expansion are omitted to keep the analysis simpler, although

with an intent of mitigating the incurred truncation error by taking small perturbations in

the neighborhood of the reference values of expansion. The first variation of the functional

A is

δA =

∫ tf

t0

L(q̈ + δq̈, q̇ + δq̇, q + δq, t) dt−
∫ tf

t0

L(q̈, q̇, q, t) dt

=

∫ tf

t0

(
∂L
∂q̈
δq̈ +

∂L
∂q̇
δq̇ +

∂L
∂q
δq

)
dt

=

∫ tf

t0

[
d2

dt2

(
∂L
∂q̈

)
− d

dt

(
∂L
∂q̇

)
+
∂L
∂q

]
δq dt.

(4.6)

Note that integration by parts and boundary conditions (4.3) are used in arriving at the above

result. We are interested in finding the critical curves q(t), q̇(t) and q̈(t) of the functional

A that have the property of rendering the length A unchanged to its first-order expansion

in Taylor’s series, when its arguments are perturbed to q(t) + δq(t), etc. In other words, we

invoke the Hamilton’s principle that the first variation of functional, δA, vanishes to zero

for critical trajectories yielding

∂L
∂q
− d

dt

(
∂L
∂q̇

)
+
d2

dt2

(
∂L
∂q̈

)
= 0. (4.7)

4.1.2 Euler-Lagrange Equations

The Lagrangian functions pertaining to flexible-multibody dynamic systems are known to

be functions of the state variables and their first time derivatives, i.e., L = L(q̇, q, t). By

specializing (4.7) to such Lagrangians that are a function of kinetic and potential energies

50



of the system, we recover the much revered Euler-Lagrange equations

∂L
∂q
− d

dt

(
∂L
∂q̇

)
= 0 (4.8)

The alternate form of Euler–Lagrange equations is obtained as

∂L
∂q
− ∂L
∂q
q̇ − ∂L

∂q̇
q̈ − ∂

∂t

(
∂L
∂q̇

)
(4.9)

The above second-order differential equation (4.9) is represented in abstract descriptor form

as R(t, ξ, q̈, q̇, q). The unknown states variables and their time derivatives can be determined

using numerical time marching from initial conditions specified at t = t0. This process is

commonly referred to as forward/state solution mode in the literature.

4.1.3 Continuous Adjoint

We now turn our attention to the problem of finding the sensitivities of a functional of interest

with respect to design variables ξ, using Hamilton’s principle. To derive the equations, we

now form a Lagrangian by augmenting the functional of interest, with the inner product of

the adjoint variables λ = λ(t) and governing equations as follows

L(t, ξ, q̈, q̇, q) = F (t, ξ, q̈, q̇, q) + λ(t, ξ)TR(t, ξ, q̈, q̇, q), (4.10)

The curve for λ(t) is arbitrary except at t = tf where it vanishes i.e., λ(tf ) = 0. The

Lagrangian (4.10) can be evaluated only after the state variables are determined from the

forward solution mode and we only know the value of λ at the final time tf . Therefore, the

solution to the problem of determining the unknown adjoint variables starts at the final time

tf and marching backwards in time towards the initial time t0. This process is referred to as

the reverse/adjoint solution mode in the literature. The reversal of time coordinate amounts

to transposition of linear algebra objects and flipping of signs of odd-time derivatives. It
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is convenient to introduce a dummy time variable τ whose coordinate direction is reversed.

The result is the following governing equations for the adjoint problem

∂LT
∂q

+
d

dτ

(
∂LT
∂q̇

)
+

d2

dτ 2

(
∂LT
∂q̈

)
= 0. (4.11)

Using the definition of adjoint Lagrangian (4.10), we get

∂F

∂q

T

+
∂R

∂q

T

λ+
d

dτ

(
∂F

∂q̇

T

+
∂R

∂q̇

T

λ

)
+

d2

dτ 2

(
∂F

∂q̈

T

+
∂R

∂q̈

T

λ

)
= 0. (4.12)

4.1.4 Governing Equations of Motion

The equations governing the motion of flexible multibody systems can be derived using a

number of different methods [4, 112]. This work employs an approach based on the con-

strained Euler–Lagrange equations that leads to a system of differential algebraic equations

(DAEs). The system of DAEs consists of both a set of differential equations and a set of al-

gebraic constraints that restricts the kinematics using Lagrange multipliers. One advantage

of using the Euler–Lagrange equations is that they can be numerically verified for consis-

tency with the kinetic and potential energy expressions and the constraint equations using

finite-difference or complex-step methods. The Lagrangian for the equations of motion is

defined as

L(ẇ, w) , T (ẇ, w)− V (w) (4.13)

where w is a vector that contains the displacements and Euler parameters for rotation ma-

trix parametrization, and T (ẇ, w) and V (w) are the kinetic and potential energy of the

system, respectively. The kinetic energy and potential energies are computed as integrals

over each finite element [4, 113, 114]. In this work, the kinematics of the flexible bodies are

restricted through a set of holonomic constraints of the form g(w) = 0, where the extension

to nonholonomic constraints is straightforward. The Jacobian of the kinematic constraints

is A = ∂g/∂w. With these definitions, the governing equations of motion in second-order
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descriptor form are

R(t, ξ, q̈, q̇, q) ,



d

dt

(
∂L
∂ẇ

)
− ∂L
∂w
− ATµ

g(w)


 = 0. (4.14)

Here the vector q = (w, µ) includes both the degrees of freedom w and the Lagrange

multipliers µ. Note that the vector of design variables, ξ, is included to reflect the dependence

of the system of equations on design variables. In the following sections, it will be necessary

to compute the Jacobian of the governing equations with respect to the state variables and

their derivatives. These Jacobian matrices always appear as a linear combinations of the

form

J = γ
∂R

∂q̈
+ β

∂R

∂q̇
+ α

∂R

∂q
,

where α, β, and γ are scalar coefficients. The descriptor form (4.14) provides the basis for dif-

ferent element types implemented in the framework based on the finite element method. The

elements within the framework, at present, consist of rigid bodies, flexible quadratic beam

elements employing a Timoshenko beam formulation, and flexible bi-quadratic shell elements

employing a Reissner–Mindlin formulation. To avoid shear locking, the beam and shell ele-

ments employ a mixed interpolation of tensorial components (MITC) formulation [113, 114].

In addition, kinematic constraints are implemented within the same element hierarchy, in-

cluding the lower kinematic pairs [4, 115].

4.2 Newmark Method

The Newmark family of integrators are single-step methods that use state variable values

and their time derivatives from the previous step. The pioneering work of this method were

by Fox and Goodwin [11] and Newmark [12]. This method was originally developed for

the numerical solution of problems in structural dynamics including linear elastic studies,

dynamic loading and vibrations due to earthquake. It has subsequently found applications
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in flexible multibody dynamics over the years. The order of accuracy, p, of the Newmark

scheme depends on the choice of the coefficients, β and γ, as listed in Table 4.1. The

Newmark method is now a part of Generalized-α class of methods presented by Chung and

Hilbert [13].

Table 4.1: The coefficients of Newmark family of methods and their corresponding orders of
accuracy.

Method β γ Order

Implicit Fox-Goodwin [11] 1/12 1/2 3
Implicit linear acceleration 1/6 1/2 2

Implicit average constant acceleration 1/4 1/2 2
Implicit central difference 0 1/2 2

Explicit 0 0 1

4.2.1 Solution of the State Variables

4.2.1.1 State Approximation Hypothesis

The primary unknowns of the Newmark method are the second time derivatives of the state

variables q̈k at each time step k. The p-th order state approximations are:

q̇k = q̇k−1 + (1− γ)hq̈k−1 + γhq̈k +O(hp)

qk = qk−1 + hq̇k−1 +
1− 2β

2
h2q̈k−1 + βh2q̈k +O(hp).

(4.15)

The state approximations (4.15) are simply weighted linear combinations of state vector

functions as illustrated in Figure 4.1.

4.2.1.2 Solution of the Nonlinear System

The nonlinear governing equations at each step, Rk(tk, ξ, q̈k, q̇k, qk) = 0, are linearized with

respect to q̈k as follows

[
∂Rk

∂q̈k
+ γh

∂Rk

∂q̇k
+ βh2

∂Rk

∂qk

]
∆q̈k = −Rk(tk, ξ, q̈k, q̇k, qk). (4.16)
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Figure 4.1: Weighted linear combination of states yielding the velocity (left) and position
(right) states for Newmark method using state approximation hypothesis Sk and Tk.

The state variables and its first time derivatives (velocities) are approximated using Equa-

tion (4.15), for an estimated value of the acceleration state variables (second time deriva-

tives), at a known time, tk. The linear system (4.16) is then solved for the primary update

∆q̈nk (incremental accelerations), at each iteration, n, of the nonlinear solution. The sec-

ondary and tertiary updates required for the state variables and their first time derivatives

are readily obtained by scaling the acceleration update using the Newmark coefficients. The

resulting update formulas are

q̈n+1
k = q̈nk + ∆q̈nk ,

q̇n+1
k = q̇nk + γh∆q̈nk ,

qn+1
k = qnk + βh2∆q̈nk .

(4.17)

The iterative updates to the state variables and their derivatives are continued until the

governing equations are solved to the required tolerance. The accuracy of adjoint derivatives

rely on the accuracy of the solution of the governing equations. Therefore, it is important

that the discrete nonlinear system (4.16) is solved to a tight tolerance.
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4.2.2 Solution of the Adjoint Variables

4.2.2.1 Formation of the Lagrangian

The state approximations of the Newmark time marching scheme given in Equation (4.15)

are reformulated as following residuals

Sk = q̇k−1 + (1− γ)hq̈k−1 + γhq̈k − q̇k,

Tk = qk−1 + hq̇k−1 +
1− 2β

2
h2q̈k−1 + βh2q̈k − qk.

(4.18)

The adjoint variables, λk, ψk and φk are introduced as respective unknown weights, to the

governing equations, Rk, the state approximation equations, Sk, and Tk, arising from the

Newmark scheme, for each time step, k. The Lagrangian is formed as the following linear

combination of functions from the span of q̈(t, ξ)⊗ q̇(t, ξ)⊗ q(t, ξ)⊗ ξ ⊗ t:

L =
N∑

k=0

hFk +
N∑

k=0

hλTkRk +
N∑

k=0

ψTk Sk +
N∑

k=0

φTk Tk. (4.19)

The central idea is to represent the functional, Fk, as a linear combination of the other equa-

tions, and identify trajectories φ(t, ξ), ψ(t, ξ) and λ(t, ξ) that are invariant to perturbations

in q(t, ξ), q̇(t, ξ) and q̈(t, ξ), respectively. An illustration of the formation of Lagrangian for

Newmark method is shown in Figure 4.2.

4.2.2.2 The Adjoint Equations

The system of equations to solve for the adjoint variables at each time step is obtained

from the stationary points of the Lagrangian with respect the state variables and their time

derivatives. The number of partial derivative terms that exist in the adjoint system of

equations, can be graphically determined from Figure 4.2, based on the occurrences of qk,

q̇k and q̈k as inputs to equations F , R, S and T , at different time steps; see Table 4.2 for a

list of number of terms in the adjoint system of equations.
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Figure 4.2: The weighted linear combinations of equations with corresponding adjoint vari-
ables forming the Lagrangian for Newmark method.

1. Equation for φk: Setting ∂L/∂qk = 0 yields

∂Tk
∂qk

T

φk +
∂Tk+1

∂qk

T

φk+1 + h
∂Rk+1

∂qk

T

λk+1 + h
∂Fk+1

∂qk

T

= 0. (4.20)
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Table 4.2: The number of terms in the adjoint system of equations for Newmark family of
integrators.

T S R F Total

φk 2 1 1 4
ψk 1 2 2 2 7
λk 2 2 5 5 14

Further simplifications result in

φk = φk+1 + h

[
∂Rk+1

∂qk+1

]T
λk+1 + h

{
∂Fk+1

∂qk+1

}T
. (4.21)

It can be noticed that the four terms of Equation (4.21) correspond to the occurrences of

the primal variable qk as inputs to equations during forward solution history.

2. Equation for ψk: Using ∂L/∂q̇k = 0:

∂Sk
∂q̇k

T

ψk +
∂Sk+1

∂q̇k

T

ψk+1 +
∂Tk+1

∂q̇k

T

φk+1 + h
∂Rk+1

∂q̇k

T

λk+1 + h
∂Fk+1

∂q̇k

T

= 0. (4.22)

This simplifies to

ψk = ψk+1 + hφk+1 + h

[
∂Rk+1

∂q̇k+1

+ h
∂Rk+1

∂qk+1

]T
λk+1 + h

{
∂Fk+1

∂q̇k+1

+ h
∂Fk+1

∂qk+1

}T
. (4.23)

The seven terms in Equation (4.23) represent and accumulate contributions from residual-

s/equations that were affected by q̇k during the forward mode.

3. Equation for λk: Setting ∂L/∂q̈k = 0 yields the equation to solve for the adjoint vari-

able, λk,

h

1∑

i=0

∂Rk+i

∂q̈k

T

λk+i + h

1∑

i=0

∂Fk+i
∂q̈k

T

+
1∑

i=0

∂Sk+i
∂q̈k

T

ψk+i +
1∑

i=0

∂Tk+i
∂q̈k

T

φk+i = 0. (4.24)
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Rearranging the terms results in the following linear system for λk

[
∂Rk

∂q̈k
+ γh

∂Rk

∂q̇k
+ βh2

∂Rk

∂qk

]T
λk =−

{
∂Fk
∂q̈k

+ γh
∂Fk
∂q̇k

+ βh2
∂Fk
∂qk

}T

− 1

h

{
γhψk + βh2φk

}T

−
[
(1− γ)h

∂Rk+1

∂q̇k+1

+
1− 2β

2
h2
∂Rk+1

∂qk+1

]T
λk+1

−
{

(1− γ)h
∂Fk+1

∂q̇k+1

+
1− 2β

2
h2
∂Fk+1

∂qk+1

}T

− 1

h

{
(1− γ)hψk+1 +

1− 2β

2
h2φk+1

}T
.

(4.25)

The fourteen terms in (4.25) can be graphically interpreted in Figure 4.2, as occurrences of

the primal state variable q̈k as inputs argument to equations in the time history.

4.2.2.3 Evaluation of Total Derivative:

The determination of adjoint variables λ(t, ξ), φ(t, ξ) and ψ(t, ξ) allows evaluating the total

derivative of the function of interest with respect to the design variables ξ as

df

dξ
=

N∑

k=0

h
∂Fk
∂ξ

+
N∑

k=0

hλTk
∂Rk

∂ξ
+

N∑

k=0

ψTk
∂Sk
∂ξ

+
N∑

k=0

φTk
∂Tk
∂ξ

. (4.26)

Since, the state approximation equations Sk and Tk are independent of the design variables,

ξ, it follows that
df

dξ
=

N∑

k=0

h
∂Fk
∂ξ

+
N∑

k=0

hλTk
∂Rk

∂ξ
. (4.27)

This total derivative is numerically verified on a test problem with 12 different performance

metrics of interest using the complex-step method (see Figure 4.3).

4.3 Backward Difference Formulas (BDF)

The BDF method was first proposed by Curtiss [14] and Henrici [15]. The BDF method is an

implicit multistep method based on finite differences: the higher-order difference operators
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Figure 4.3: Complex-step verification of the Newmark adjoint scheme for 12 different func-
tions of interest with various perturbation step sizes.

are obtained by repetitive application of the first-order difference operator. As a result, the

first-derivative approximation requires state variable values at p+ 1 points, while the second

derivative approximation requires state variables at 2p + 1 points, where p is the order of

accuracy. The BDF method is suitable for the solution of stiff ODEs and DAEs and several

solution packages, such as ODEPACK/LSODE [9], and DASSL [10], employ this method. For a

BDF method that uses constant step size h the interpolation weights are shown in Table 4.3.

4.3.1 Solution of the State Variables

Table 4.3: BDF interpolation weights up to an approximation order of six.

Order p αp0 αp1 αp2 αp3 αp4 αp5 αp6

1 1 -1
2 3/2 -2 1/2
3 11/6 -3 3/2 -1/3
4 25/12 -4 3 -4/3 1/4
5 137/60 -5 5 -10/3 5/4 -1/5
6 49/20 -6 15/2 -20/3 15/4 -6/5 1/6
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4.3.1.1 State Approximation Hypothesis

The primary unknowns of the BDF time marching scheme are the state variables qk at each

time step k. The first and second time derivatives of the state variables q̇k and q̈k are obtained

using

q̇k =

p∑

i=0

αi
h
qk−i +O(hp),

q̈k =

2p∑

i=0

βi
h2
qk−i +O(hp).

(4.28)

The coefficients αi and βi depend on the order of approximation, p. The first and second

time derivatives of the state variables are linear combinations of the state variables scaled

with BDF coefficients, as illustrated in Figure 4.4.

TkSk
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q̇k
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qk

qk−p

α0

h

α2

h
α1

h

q̈k qk

qk−1

β0

h2

β1

h2

β2

h2

β2p

h2
αp

h

qk−2

qk−2p

Figure 4.4: A weighted linear combination of the state variables with scaled BDF coefficients
yielding the first (left) and second time derivatives of state variables (right). These relations
are respectively labeled as the state approximation equations Sk and Tk.

4.3.1.2 Solution of the Nonlinear System

Once the time derivatives of states have been approximated using Equation (4.28), the

implicit system of nonlinear equations at k−th time step becomes

Rk(tk, ξ, q̈k, q̇k, qk) = 0. (4.29)
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This nonlinear system of equations is solved iteratively using Newton’s method. The iterative

updates to the unknown variables are obtained by solving a linearization of the governing

equations with respect to the primary unknowns qk as follows

[
β0
h2
∂Rk

∂q̈k
+
α0

h

∂Rk

∂q̇k
+
∂Rk

∂qk

]
∆qk = −Rk(tk, ξ, q̈k, q̇k, qk). (4.30)

The secondary and tertiary updates to the first and second time derivatives of the state

variables are readily obtained by scaling the state variable update ∆qk using the BDF coef-

ficients, at each iteration n of the nonlinear solution. The resulting update formulas to the

state variables are
qn+1
k = qnk + ∆qnk ,

q̇n+1
k = q̇nk +

α0

h
∆qnk ,

q̈n+1
k = q̈nk +

β0
h2

∆qnk .

(4.31)

The use of the secondary and tertiary updates in Equation (4.31) is preferred since the

original backwards difference formulas (4.28) typically require more vector operations. The

iterative updates to the state variables and their first and second time derivatives are contin-

ued until the governing equations are solved to a specified tolerance. The accuracy of adjoint

derivatives rely on the accuracy of the solution of the governing equations. Therefore it is

important that the discrete nonlinear system (4.29) is solved to a tight tolerance.

4.3.2 Solution of the Adjoint Variables

4.3.2.1 Formation of the Lagrangian

The adjoint equations are derived using a Lagrangian formulation. The time integral of the

functional of interest is discretized as follows,

f(ξ) =

∫ T

0

F (t, ξ, q̈, q̇, q) dt ≈
N∑

k=0

hFk (tk, ξ, q̈k, q̇k, qk) . (4.32)
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The inner product of the governing equations with the adjoint variables, λ, is approximated

as follows ∫ T

0

λTR(t, ξ, q̈, q̇, q) dt ≈
N∑

k=0

hλTkRk(tk, ξ, q̈k, q̇k, qk). (4.33)

The state approximation residuals of the BDF method are introduced as follows

Sk =

p∑

i=0

αi
h
qk−i − q̇k,

Tk =

2p∑

i=0

βi
h2
qk−i − q̈k.

(4.34)

The adjoint variables ψk and φk are associated with state approximation residuals Sk and

Tk, respectively. With these definitions, the Lagrangian is defined as the following linear

combination:

L =
N∑

k=0

hFk +
N∑

k=0

hλTkRk +
N∑

k=0

ψTk Sk +
N∑

k=0

φTk Tk. (4.35)

The adjoint variables λk, ψk and φk, are the unknown weights in the linear combina-

tion (4.35). Once they are determined the total derivative is readily available as a linear

combination involving the same weights. The formation of Lagrangian is illustrated in Fig-

ure 4.5 along with corresponding inputs to the equations Rk, Sk, Tk and Fk. The similarity

in inputs to the governing equations Rk, and the functional, Fk are due to their identical

mathematical forms.

4.3.2.2 The Adjoint Equations:

The system of equations to solve for the adjoint variables is obtained from the stationary

points of the Lagrangian with respect to the state variables and their first and second time

derivatives at each time step. The number of terms in the adjoint system of equations as a

function of the order of BDF method is listed in Table 4.4.
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Figure 4.5: A graphical illustration of the weighted linear combination of equations with
corresponding adjoint variables forming the Lagrangian for the BDF method.

1. Equation for φk: The equations to solve for φk are obtained using ∂L/∂q̈k = 0. It

follows that ∂Tk
∂q̈k

T
φk = 0, which simplifies further to φk = 0.

2. Equation for ψk: The equations to solve for ψk are obtained using ∂L/∂q̇k = 0. It

follows that ∂Sk
∂q̇k

T
ψk = 0, which simplifies to ψk = 0.
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Table 4.4: The number of terms in the adjoint system of equations for p-th order BDF
method.

T S R F Total

φk 1 1
ψk 1 1
λk 2p+ 1 p+ 1 3p+ 3 3p+ 3 9p+ 8

3. Equation for λk: The set of equations to solve for λk are obtained using ∂L/∂qk = 0.

It follows that

0 = h

[
β0
h2
∂Rk

∂q̈k
+
α0

h

∂Rk

∂q̇k
+
∂Rk

∂qk

]T
λk + h

p∑

i=1

αi
h

∂Rk+i

∂q̇k+i

T

λk+i + h

2p∑

i=1

βi
h2
∂Rk+i

∂q̈k+i

T

λk+i

+ h

{
β0
h2
∂Fk
∂q̈k

+
α0

h

∂Fk
∂q̇k

+
∂Fk
∂qk

}T
+ h

p∑

i=1

αi
h

∂Fk+i
∂q̇k+i

T

+ h

2p∑

i=1

βi
h2
∂Fk+i
∂q̈k+i

T

+

p∑

i=0

αi
h
ψk+i +

2p∑

i=0

βi
h2
φk+i

(4.36)

The 9p+8 terms in Equation (4.36) arise from the occurrences of the states, qk, as arguments

to equations at different time steps, as illustrated in Figure 4.5. The contributions due to ψk

and φk are zero, which eliminates 3p+ 2 terms. Finally, rearranging the terms and dividing

by h yields the following linear system to solve for λk:

[
β0
h2
∂Rk

∂q̈k
+
α0

h

∂Rk

∂q̇k
+
∂Rk

∂qk

]T
λk =−

{
β0
h2
∂Fk
∂q̈k

+
α0

h

∂Fk
∂q̇k

+
∂Fk
∂qk

}T

−
p∑

i=1

αi
h

∂Rk+i

∂q̇k+i

T

λk+i −
2p∑

i=1

βi
h2
∂Rk+i

∂q̈k+i

T

λk+i

−
p∑

i=1

αi
h

∂Fk+i
∂q̇k+i

T

−
2p∑

i=1

βi
h2
∂Fk+i
∂q̈k+i

T

,

(4.37)

with 6p+ 6 terms.
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Figure 4.6: Complex-step verification of the BDF adjoint scheme for 12 different functions
of interest with various perturbation step sizes.

4.3.2.3 Evaluation of Total Derivative:

Once the adjoint variables have been determined, the total derivative of the functional of

interest with respect to the design variables, ξ, is the following linear combination:

df

dξ
=

N∑

k=0

h
∂Fk
∂ξ

+
N∑

k=0

hλTk
∂Rk

∂ξ
+

N∑

k=0

ψTk
∂Sk
∂ξ

+
N∑

k=0

φTk
∂Tk
∂ξ

. (4.38)
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Since, the state approximation equations Sk and Tk are independent of the design variables,

ξ, it follows that
df

dξ
=

N∑

k=0

h
∂Fk
∂ξ

+
N∑

k=0

hλTk
∂Rk

∂ξ
. (4.39)

This total derivative is numerically verified on a test problem using complex-step method

(see Figure 4.6).

4.4 Adams–Bashforth–Moulton

The Adams–Bashforth–Moulton (see Bashforth and Adams [21] and Moulton [22]) family of

linear multistep methods use the past solution values to construct the solution at current step.

The ABM methods are based on numerical integration of the polynomial that interpolates

solution values. The number of values used to construct the solution determines the order

of accuracy and stability of the method. The ABM method is a part of packages such as

EPISODE [8] and LSODE [9], and has been applied to solve stiff problems. The interpolation

coefficients of the implicit ABM method for constant step size h are shown in Table 4.5.

Table 4.5: Implicit ABM coefficients upto an approximation order of six.

Order p αp0 αp1 αp2 αp3 αp4 αp5

1 1
2 1/2 1/2
3 5/12 8/12 -1/12
4 9/24 19/24 -5/24 1/24
5 251/720 646/720 -264/720 106/720 -19/720
6 475/1440 1427/1440 -798/1440 482/1440 -173/1440 27/1440

4.4.1 Solution of the State Variables

4.4.1.1 State Approximation Hypothesis

The primary unknowns of the ABM family of methods are the acceleration state variables q̈k

at each time step k. The first time derivative of state variables, q̇k, are obtained by numerical
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integration of the second time derivative of states as follows

q̇k = q̇k−1 +

p−1∑

i=0

hαiq̈k−i +O(hp). (4.40)

The state variables, qk, are obtained by numerical integration of the first time derivative of

states as follows

qk = qk−1 +

p−1∑

i=0

hαiq̇k−i +O(hp). (4.41)

The schematic representation of the ABM state approximations is shown in Figure 4.7.
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q̈k−i

hα
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hα
i

hα0q̇kq̈k
hα0

qk−1

∑p−1
i=0

Figure 4.7: A weighted linear combination of state variables with scaled ABM coefficients
yielding the first time derivative of states (left) and the state variables (right).

4.4.1.2 Solution of the Nonlinear System:

The system of governing equations Rk(tk, ξ, q̈k, q̇k, qk) = 0 is linearized with respect to the

primary unknown variable q̈k of the ABM time marching scheme at each time step k as

follows: [
∂Rk

∂q̈k
+ hα0

∂Rk

∂q̇k
+ h2α2

0

∂Rk

∂qk

]
∆q̈k = −Rk(tk, ξ, q̈k, q̇k, qk). (4.42)

The state variables and the first time derivatives are approximated using Equations (4.41)

and (4.40), for an estimated value of q̈k. The linearization of the governing equations (4.42)

is then solved for the primary update ∆q̈nk , at each iteration, n, of the nonlinear solution.
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The secondary updates to state variables are readily obtained by scaling the primary update

using the ABM coefficients. The resulting update formulas to the state variables and their

time derivatives are
q̈n+1
k = q̈nk + ∆q̈nk ,

q̇n+1
k = q̇nk + hα0∆q̈

n
k ,

qn+1
k = qnk + h2α2

0∆q̈
n
k .

(4.43)

The iterative updates to the state variables and their time derivatives are continued until

the governing equations are solved to required tolerance.

4.4.2 Solution of the Adjoint Variables

4.4.2.1 Formation of the Lagrangian

The governing equations and functional of interest follow same treatment discussed previ-

ously for other methods. The state approximations of the ABM time marching scheme given

in equations (4.40) and (4.41) are expressed as the following residuals

Sk = q̇k−1 + h

p−1∑

i=0

αiq̈k−i − q̇k,

Tk = qk−1 + hα0

(
q̇k−1 +

p−1∑

i=0

hαiq̈k−i

)
+

p−1∑

i=1

hαiq̇k−i − qk.
(4.44)

The term hα0q̇k is expanded out in terms of the primary unknown q̈k for eliminating the

coupling of adjoint equations within each time step. The adjoint variables λk, ψk and φk

are introduced as respective unknown weights, to the governing equations, Rk, the state

approximation equations, Sk, and Tk, arising from the ABM scheme, for each time step, k.

The geometric intuition in forming the Lagrangian is as follows. All four functions Fk, Rk,

Sk and Tk lie within the span of q̈(t, ξ) ⊗ q̇(t, ξ) ⊗ q(t, ξ) ⊗ ξ ⊗ t. The goal is to represent

the function of interest Fk as a linear combination of other functions Rk, Sk and Tk from the
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same subspace by associating weights λk, ψk and φk. The Lagrangian is written as

L =
N∑

k=0

hFk +
N∑

k=0

hλTkRk +
N∑

k=0

ψTk Sk +
N∑

k=0

φTk Tk. (4.45)

The formation of the Lagrangian for the ABM method is illustrated in Figure 4.8. The
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Figure 4.8: A weighted linear combination of equations with corresponding adjoint variables
forming the Lagrangian for ABM method.

number of terms that occur in the adjoint system of equations for each adjoint variable (see

Table 4.6) can be determined graphically from Figure 4.8.
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Table 4.6: Table listing the number of terms in the adjoint system of equations for ABM
method.

T S R F Total

φk 2 1 1 4
ψk p 2 p+1 p+1 3p+4
λk p p 2p+1 2p+1 6p+2

4.4.2.2 The Adjoint Equations:

The system of equations to solve for the adjoint variables is obtained from the stationary

points of the Lagrangian with respect to the position, velocity and acceleration state vari-

ables, at each time step, k.

1. Equation for φk: Setting ∂L/∂qk = 0 yields

∂Tk
∂qk

T

φk +
∂Tk+1

∂qk

T

φk+1 + h
∂Rk+1

∂qk

T

λk+1 + h
∂Fk+1

∂qk

T

= 0. (4.46)

This simplifies to

φk = φk+1 + h

[
∂Rk+1

∂qk+1

]T
λk+1 + h

{
∂Fk+1

∂qk+1

}T
. (4.47)

2. Equation for ψk: Setting ∂L/∂q̇k = 0 yields

∂Sk
∂q̇k

T

ψk +
∂Sk+1

∂q̇k

T

ψk+1 +

p−1∑

i=1

∂Tk+i
∂q̇k

T

φk+i + h

p−1∑

i=1

∂Rk+i

∂q̇k

T

λk+i + h

p−1∑

i=1

∂Fk+i
∂q̇k

T

= 0. (4.48)

Further simplifications result in the adjoint variable, ψk, as a linear combination:

ψk = ψk+1 + hα0φk+1 + h

[
∂Rk+1

∂q̇k+1

+ hα0
∂Rk+1

∂qk+1

]T
λk+1 + h

{
∂Fk+1

∂q̇k+1

+ hα0
∂Fk+1

∂qk+1

}T

+ h

p−1∑

i=1

αiφk+i + h

p−1∑

i=1

[
hαi

∂Rk+i

∂qk+i

]T
λk+i + h

p−1∑

i=1

{
hαi

∂Fk+i
∂qk+i

}T
.

(4.49)
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3. Equation for λk: Setting ∂L/∂q̈k = 0 yields the equation to solve for the adjoint vari-

able, λk,

h

p−1∑

i=0

∂Rk+i

∂q̈k

T

λk+i + h

p−1∑

i=0

∂Fk+i
∂q̈k

T

+

p−1∑

i=0

∂Sk+i
∂q̈k

T

ψk+i +

p−1∑

i=0

∂Tk+i
∂q̈k

T

φk+i = 0. (4.50)

Expanding the derivative terms, separating out current and previous determined terms,

dividing by h and rearranging for the unknown adjoint variable λk results in the following

linear system:

[
∂Rk

∂q̈k
+ hα0

∂Rk

∂q̇k
+ h2α2

0

∂Rk

∂qk

]T
λk =−

{
∂Fk
∂q̈k

+ hα0
∂Fk
∂q̇k

+ h2α2
0

∂Fk
∂qk

}T

− 1

h

{
hα0ψk + h2α2

0φk
}

−
p−1∑

i=1

[
hαi

∂Rk+i

∂q̇k+i
+ hα0hαi

∂Rk+i

∂qk+i

]T
λk+i

−
p−1∑

i=1

{
hαi

∂Fk+i
∂q̇k+i

+ hα0hαi
∂Fk+i
∂qk+i

}T

− 1

h

p−1∑

i=1

{hαiψk+i + hα0hαiφk+i} .

(4.51)

The partial derivative terms in the linear system correspond to the occurrences of q̈k as

inputs to equations R, S, T and F in the time history, as illustrated in Figure 4.8. The

determination of adjoint variables allows evaluating the total derivative of the functional

of interest with respect to the design variables, using Equation (4.39). See Figure 4.9 for

numerical verification of the total derivative using complex-step method on a simple test

problem.

4.5 Diagonally Implicit Runge–Kutta

Runge–Kutta methods belong to the class of multistage methods for solving differential

equations. They are termed as multistage methods as they require solutions at intermediate
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Figure 4.9: Complex-step verification of the ABM adjoint scheme for 12 different functions
of interest with various perturbation step sizes.

stages to progress from step tk−1 to tk. Butcher [23] extended explicit Runge–Kutta method

to Implicit Runge–Kutta (IRK) method, and furthermore Alexander [24] and Cash [25]

developed Diagonally Implicit Runge–Kutta (DIRK) method. The coefficients that define

the DIRK method are arranged in a tabular format as shown in Table 4.7, and is commonly

referred to as the Butcher’s tableau. The lower triangular nature of the tableau enables the

Table 4.7: Butcher’s tableau of DIRK coefficients.

Stage β1 β2 · · · βs

1 α11 0 0 0 τ1
2 α21 α22 0 0 τ2

...
... . . . 0

...
s αs1 αs2 · · · αss τs

successive solution of the nonlinear governing equations at each stage. Note that the tableau

fully populated in the case of an IRK scheme, resulting in full coupling among all stages. Due

to the availability of one-stage-second-order, two-stage-third-order and three-stage-fourth-

order DIRK methods developed by Alexander [24], it is preferred to IRK methods.
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4.5.1 Solution of the State Variables

The development of DIRK scheme for second-order descriptor systems and the corresponding

time dependent discrete-adjoint are discussed next.

4.5.1.1 Stage Approximations Hypothesis

The governing equations are solved at intermediate time steps, tki, referred to as the stages.

The intermediate stage state variables and their first and second time derivatives are denoted

as uki, u̇ki and üki, respectively. The stage state approximation relations are

u̇ki = q̇k−1 + h
i∑

j=1

αijükj,

uki = qk−1 + h
i∑

j=1

αiju̇kj.

(4.52)

The indices i and j to refer to row and column of the coefficients in the Butcher’s tableau

shown in Table 4.7. The schematic representation of the intermediate stage approximations

is shown in Figure 4.10.
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Figure 4.10: The intermediate stage state variables of DIRK are formed as a linear combi-
nation.
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4.5.1.2 State Approximation Hypothesis

The state variables at time, tk, are expressed as follows

q̈k =
s∑

i=1

βiüki,

q̇k = q̇k−1 + h

s∑

i=1

βiüki,

qk = qk−1 + h

s∑

i=1

βiu̇ki

(4.53)

and is illustrated in Figure 4.11.
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Figure 4.11: The state variables and their time derivatives at k-th time step formed as a
linear combination.

4.5.1.3 Solution of the Nonlinear System

The nonlinear system of equations to be solved, at each stage, i, and time step, k, is

Rki(tki, ξ, üki, u̇ki, uki) = 0. This can be solved in a manner similar to Newmark and ABM

methods discussed previously. The key difference here is that the nonlinear system is solved

at s-intermediate stages for each time step. The linearized form of the nonlinear system to

be solved repeatedly at each stage is,

[
∂Rki

∂üki
+ hαii

∂Rki

∂u̇ki
+ h2α2

ii

∂Rki

∂uki

]
∆üki = −Rki(tki, ξ, üki, u̇ki, uki). (4.54)
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The update formulas for the stage state variables are

ün+1
ki = ünki + ∆ünki,

u̇n+1
ki = u̇nki + hαii∆ü

n
ki,

un+1
ki = unki + h2α2

ii∆ü
n
ki.

(4.55)

The iterative updates to the stage state variables and derivatives continue until the governing

equations are solved to the required tolerance.

4.5.2 Solution of the Adjoint Variables

4.5.2.1 Formation of the Lagrangian:

The state approximations of DIRK time marching scheme given in Equation (4.53) are

reformulated as the following residuals

Sk = q̇k−1 + h
s∑

i=1

βiüki − q̇k,

Tk = qk−1 + h
s∑

i=1

βiu̇ki − qk.
(4.56)

The adjoint variables λki, ψk and φk are associated with the governing equations at each stage,

Rki, and the state approximation equations, Sk, and Tk, arising from the DIRK scheme, for

each time step, k. The Lagrangian is written as

L =
N∑

k=0

h

s∑

i=1

βiFki +
N∑

k=0

h

s∑

i=1

βiλ
T
kiRki +

N∑

k=0

ψTk Sk +
N∑

k=0

φTk Tk. (4.57)

The governing equations and functions of interest follow slightly different treatment for DIRK

since it is a multistage method. Note that h arises from the discretization of the continuous

integral into N time intervals and βi arises from the discretization of each time interval

into s stages. The formation of the Lagrangian is schematically shown in Figure 4.12. The
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Figure 4.12: A weighted linear combination of equations with corresponding adjoint variables
forming the Lagrangian for DIRK method.

number of terms that occur in the adjoint system of equations for each adjoint variable can

be determined graphically from Figure 4.12 and is listed in Table 4.8. The number of terms

listed in Table 4.8 can be seen to exist in the following adjoint system of equations.
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Table 4.8: Table listing the number of terms in the adjoint system of equations for DIRK
method.

T S R F Total

φk 2 s s 2+2s
ψk s 2 2s 2s 2+5s
λk s-i+1 1 2(s-i)+1 2(s-i)+1 5(s-i)+1

1. Equation for φk: Setting ∂L/∂qk = 0 yields

∂Tk
∂qk

T

φk +
∂Tk+1

∂qk

T

φk+1 + h

s∑

i=1

βi
∂Rk+1,i

∂qk

T

λk+1,i + h

s∑

i=1

βi
∂Fk+1,i

∂qk

T

= 0. (4.58)

This simplifies to

φk = φk+1 + h
s∑

i=1

βi
∂Rk+1,i

∂uk+1,i

T

λk+1,i + h
s∑

i=1

βi
∂Fk+1,i

∂uk+1,i

T

. (4.59)

2. Equation for ψk: Setting ∂L/∂q̇k = 0 yields

∂Sk
∂q̇k

T

ψk +
∂Sk+1

∂q̇k

T

ψk+1 +
s∑

i=1

βi
∂Tk+1

∂q̇k

T

φk+1 + h
s∑

i=1

βi
∂Rk+1,i

∂q̇k

T

λk+1,i + h
s∑

i=1

βi
∂Fk+1,i

∂q̇k

T

= 0.

(4.60)

This becomes

ψk = ψk+1 + h
s∑

i=1

βiφk+1 + h
s∑

i=1

βi

[
∂Rk+1,i

∂u̇k+1,i

+ h
i∑

j=1

αij
∂Rk+1,i

∂uk+1,i

]T
λk+1,i

+ h
s∑

i=1

βi

{
∂Fk+1,i

∂u̇k+1,i

+ h

i∑

j=1

αij
∂Fk+1,i

∂uk+1,i

}T

.

(4.61)

Using the properties of DIRK coefficients:
∑s

i=1 βi = 1 and
∑i

j=1 αij = τi,

ψk = ψk+1 + hφk+1 + h

s∑

i=1

βi

[
∂Rk+1,i

∂u̇k+1,i

+ hτi
∂Rk+1,i

∂uk+1,i

]T
λk+1,i

+ h

s∑

i=1

βi

{
∂Fk+1,i

∂u̇k+1,i

+ hτi
∂Fk+1,i

∂uk+1,i

}T
.

(4.62)

78



3. Equation for λki: Taking ∂L/∂üki = 0 yields

h

s∑

j=i

βj
∂Rkj

∂üki

T

λkj + h

s∑

j=i

βj
∂Fkj
∂üki

T

+
∂Sk
∂üki

T

ψk +
∂Tk
∂üki

T

φk = 0. (4.63)

Applying chain rule and expanding the terms results in

0 = hβi
∂Rki

∂üki
+ h

s∑

j=i+1

βj

[
hαji

∂Rkj

∂u̇kj
+ h2
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αjpαpi
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}T

+ hβiψk +

(
h

s∑
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βjhαji

)
φk.

(4.64)

Dividing by h and rearranging for the unknown adjoint variable λki results in the following

linear system

βi

[
∂Rki

∂üki
+ hαii

∂Rki

∂u̇ki
+ h2α2

ii

∂Rki

∂uki

]T
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∂uki
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∂Rkj
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αjpαpi
∂Rkj
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]T
λkj

−
s∑

j=i+1

βj

{
hαji

∂Fkj
∂u̇kj
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j∑

p=i

αjpαpi
∂Fkj
∂ukj

}T

− βiψk −
(

s∑

j=i

βjhαji

)
φk.

(4.65)

The total derivative is computed in an analogous manner to other methods as follows

dF

dξ
=

N∑

k=0

h

s∑

i=1

βi
∂Fki
∂ξ

+
N∑

k=0

h

s∑

i=1

βiλ
T
ki

∂Rki

∂ξ
. (4.66)

The numerical verification of total derivative computed using adjoint method (4.66) using

complex-step method is shown in Figure 4.13.
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Figure 4.13: Complex-step verification of the DIRK adjoint scheme for 12 different functions
of interest with various perturbation step sizes.

4.6 Implementation of the Adjoint Method

General flexible multibody dynamics simulation tools contain a large library of flexible and

rigid elements, joints, dampers, and a wide variety of kinematic constraints that can be used

to model multibody systems. The implementation of the discrete adjoint imposes additional

requirements on each component of the simulation. These additional requirements must be

handled carefully in order to maintain an efficient and accurate adjoint implementation. This

section presents the organization and implementation of the proposed adjoint sensitivities,

that is designed to be modular and extensible to facilitate an expanding library of flexible

and rigid elements in TACS [3]. The adjoint equations derived in this chapter contain:
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1. The derivatives of the function of interest and the governing equations with respect to

the state variables,

2. The derivatives of the function of interest and the governing equations with respect to

the design variables, and

3. The products of the adjoint variables with the derivatives the governing equations

respect to the state variables.

These three primary terms are implemented using a library that contains four interfaces:

Element, Function, Assembler and Integrator. The organization and relationships be-

tween these four interfaces are shown in Figure 4.14. This organization allows for the separa-

tion of functionality that enables the underlying element and function library to be extended

without having to change the adjoint implementation. The functionality of these interfaces

are explained in the remainder of this section.

Adjoint Implementation

«interface»
Assembler

functions : Function
elements : Element

1. Product of Adjoint and Residual State Variable Sensitivity
2. Function State Variable Sensitivity
3. Product of Adjoint and Residual Design Variable Sensitivity
4. Function Design Variable Sensitivity

«interface»
Integrator

assembler : Assembler

1. Evaluate Adjoint
2. Evaluate Total Derivative

«interface»
Function

1. Add Function State Variable Sensitivity
2. Add Function Design Variable Sensitivity

«interface»
Element

1. Add Residual State Variable Sensitivity
2. Add Residual Design Variable Sensitivity

has
1

has
1..* has

1..*

Figure 4.14: Class diagram illustrating the architecture of adjoint-based gradient implemen-
tation.
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4.6.1 Element Interface

The element library contains beam, shell, and rigid-body elements as well as kinematic con-

straints including the lower kinematic pairs. These elements implement a common Element

interface by providing specific implementations for the abstract prototypes based on the

governing equations of motion. This interface contains two routines required for the adjoint

implementation:

1. The computation of element-wise Jacobian matrices that are used by the Assembler

to evaluate the global transpose Jacobian in the linear adjoint system.

2. The evaluation of the derivative of element-wise product of the residuals and the adjoint

variables with respect to the design variables. This routine is used to evaluate the total

derivative.

As new elements are added to the multibody dynamics library, they are required to implement

these two routines so that they can be seamlessly merged in the existing framework.

4.6.2 Function Interface

The Function interface contains similar prototypes as the Element interface. The interface

provides the derivatives of function of interests for design optimization which include two

primary function-level routines:

1. The evaluation of the element-wise derivative of the functional integrand with respect

to the state variables and their time derivatives.

2. The element-wise computation of the derivative of the functional integrand with respect

to the design variables, required for the total derivative.

The functions are evaluated over all or a subset of elements in the domain.
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4.6.3 Assembler Interface

The Assembler interface is designed to operate on a collection of Element and Function

instances. The routines provided in this interface assemble the partial derivative terms

necessary for sensitivity analysis and place them in global matrices and vectors. These

operations depend only on the prototypes defined in Element and Function interfaces, rather

than on the specific implementations of element and function types. This dependency of the

Assembler on Element and Function interfaces is shown in Figure 4.14.

4.6.3.1 Solving the Adjoint Equations

The first set of Assembler routines are required for the solution of the adjoint equations.

These functions compute the transpose Jacobian-vector product of the governing equations

with respect to the state variables

χ← χ+

[
γ
∂R

∂q̈
+ β

∂R

∂q̇
+ α

∂R

∂q

]T
χ, (4.67)

and the derivative of the functional integrand with respect to state variables

χ← χ+

[
γ
∂F

∂q̈
+ β

∂F

∂q̇
+ α

∂F

∂q

]
. (4.68)

Here χ is a place-holder for a state vector determined from the context of the adjoint equa-

tions. The inputs to these routines are scalar constants for each partial derivative (α, β,

and γ) and the state variables, q, and their time derivatives, q̇, and q̈. The state variables

and their time derivatives are stored to disk during the solution phase and reloaded when

marching backwards in time during the adjoint solution process. This reduces the amount

of memory required when the number of time steps is large. The routines (4.67) and (4.68)

are used frequently in the discrete adjoint implementations.
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4.6.3.2 Evaluating the Total Derivative

The second set of assembly-level routines are needed to evaluate the total derivative of the

functional of interest. These routines compute the product of the adjoint variables with the

derivative of the governing equations with respect to design variables

χ← χ+ α
∂R

∂ξ

T

χ, (4.69)

and the derivative of the functional integrand with respect to design variables

χ← χ+ α
∂F

∂ξ

T

. (4.70)

Here the inputs consist of a scalar α, the design variables ξ, and the state variables, q, and

their time derivatives, q̇, and q̈. The output for both of these routines is a vector with the

same dimension as the design variable vector. The routines (4.69) and (4.70) are used once

at each stage to accumulate the contributions to the total derivative.

4.6.4 Integrator Interface

The class implementing the Integrator interface completes the evaluation the adjoint vari-

ables and the computation of the total derivative and provides it to the optimizer. The

Integrator interface contains an instance of Assembler, which enables it to evaluate the

partial derivative terms from the governing equations and the functions of interest, and scale

them with the appropriate coefficients, as dictated by the adjoint equations. Note that the

Integrator does not interact directly with Element and Function interfaces, but instead

uses the Assembler interface, as shown in Figure 4.14. This class contains routines that

implement DIRK specific operations and is used repeatedly in a time loop starting from

the final time step and ending at the initial time step. The Assembler set of routines used

by the Integrator are designed to work for any adjoint method corresponding to other
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time marching schemes such as Backwards Difference Formula, Adams-Bashforth-Moulton,

or Newmark’s method. The implementation of other time-integration methods requires only

a new implementation of the Integrator interface.

Summary. In this chapter, the mathematical details of implicit solution process of ini-

tial value problems arising from time dependent systems is discussed. The state approx-

imation hypothesis supplied by the time marching method, is used in conjunction with a

generalized Newton–Raphson iteration scheme to solve the implicit nonlinear system. The

discrete adjoint equations used to obtain semianalytical sensitivities of functions of interest

are presented. In the spirit of generality, the equations are presented for a general order of

accuracy p and the abstraction of equations as R(t, ξ, q̈, q̇, q) and F (t, ξ, q̈, q̇, q). This allows

the application of the derived equations for any time dependent physical system fitting the

mathematical form, and solved using multistep/multistage time marching method of p-th

order of accuracy with a constant step size h. Finally, the implementation details of time

dependent adjoint equations in a modular manner is presented.
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CHAPTER 5

MULTIBODY DYNAMICS AND ADJOINT BASED DETERMINISTIC

OPTIMIZATION

For since the fabric of the universe is most perfect and the work of a

most wise Creator, nothing at all takes place in the universe in which

some rule of maximum or minimum does not appear.

Leonard Euler [1707-1783]

Introduction. The intent of this chapter is to show the physical application of the time

marching and adjoint sensitivity framework presented in Chapter 4 to design optimization

problems in the context of flexible multibody dynamics. We start with simple dynamical

system such as a pendulum and build upon complexity by adding flexible bodies, kinematic

constraints and motion actuators. We end this chapter with a rotorcraft optimization appli-

cation.

5.1 Triple Pendulum

~FA
~FI

~FC

~FB

1

2

3

Fixed spherical joint

Spherical joint

Revolute joint

Figure 5.1: The schematic of the triple pendulum system.
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5.1.1 Analysis Setup

Figure 5.1 shows the triple pendulum system with three rigid bodies which are denoted as

B = {A, B, C} and three kinematic constraints at the points P = {1, 2, 3}. The properties

of the bodies and the kinematic constraints are listed in Tables 5.1 and 5.2, respectively. The

body axes are chosen such that one of the orthogonal axes are aligned with the geometrical

dimensions of the body to simplify the calculation of the inertial properties. The bodies are

assumed to have constant material density.

Table 5.1: List of bodies in the pendulum system and their properties.

Body Type Mass Length Width Thickness

A Rigid 1.0 1.0 0.1 0.1
B Rigid 2.0 2.0 0.1 0.1
C Rigid 3.0 3.0 0.1 0.1

Table 5.2: List of kinematic constraints in the pendulum system and their properties.

Joint Type Components

1 Spherical FI and body A
2 Revolute (hinge) Bodies A and B
3 Revolute (hinge) Bodies B and C

5.1.2 Dynamics

Figure 5.2 shows the timelapse of motion of the bodies in the system over a duration of

three seconds. The effect of the revolute joint can be seen where the adjacent bodies in the

joint are constrained to rotate about a locally-aligned axis. Figure 5.3 shows the changes

in the potential and kinetic energies of the system over a 10 second time interval. Since

non-conservative forces are not modeled, such as joint friction, the sum of the potential

and kinetic energy should remain constant. Figure 5.3a illustrates the complementary trend

of energy transfer between kinetic and potential energies. However, the limited numerical

accuracy of the time integration scheme introduces an energy defect that can grow over time.
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Figure 5.2: Motion of the triple pendulum over the first 3 seconds.

To assess this error, Figure 5.3 shows the energy loss over the same time period. Note that

over the entire simulation, the energy loss is about 2× 10−3 J.
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Figure 5.3: Plot of the potential, kinetic and total energies with time for the pendulum system.
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Figure 5.4: Gradient verification study with the complex-step method using step sizes of 10−4,
10−8, 10−12, and 10−16.

5.1.3 Adjoint Gradients

Figure 5.4 shows a complex-step verification of the adjoint-gradient computed using BDF

method. The verification study compares the derivative of Kreisselmeier–Steinhauser [45,

46, 116] aggregation of velocity with respect to a series of design variables consisting of

initial configuration variables and inertial properties. The KS function approximates the

maximum velocity achieved over the time interval of the simulation. Each component of

the gradient exhibits a relative accuracy on the order of 10−12, illustrating near machine

precision accuracy of all gradients.

5.2 Trebuchet (Catapult)

Trebuchets have been used for warfare from fifth century B.C till medieval times. In this

section we study the multibody dynamics of trebuchet and apply it to an optimization

problem of achieving maximum range of the projectile. The trebuchet works to transfer the

potential energy of the counterweight to impart kinetic energy to the projectile mass.
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5.2.1 Analysis Setup
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Figure 5.5: The schematic of the trebuchet system.

The trebuchet is created using five bodies given by B = {A, B, C, D, E}, and five kinematic

constraints labeled P = {1, 2, 3, 4, 5} as shown in Figure 5.5. The kinematic constraints

at points 1, 2 and 3 are revolute, while the other joints at points 4 and 5 are modeled as

spherical. The whole trebuchet assembly rotates about the axle at point 5. The body axes

are chosen to enable convenient calculation of inertial properties. Table 5.3 contains the

list of bodies and their geometric/material properties. Figure 5.6 depicts the motion of the

Table 5.3: List of bodies in the trebuchet system and their properties.

Body Name Density Length Width Thickness

A Counter weight 25 4 4 1
B Connecting link 10 0.5 0.5 2
C Arm 2 20 0.5 2
D Projectile link 10−2 0.2 0.5 6
E Projectile 10−2 1 1 1

trebuchet system obtained using BDF method. The trebuchet arm starts from a horizontal

orientation and reaches a near vertical position as it rotates about the axle. Note that the

axle is not shown explicitly. The angular momentum of the swinging motion generated by

the counterweight is transferred as linear momentum to the projectile mass through the

arm and projectile link. Figure 5.7 shows the kinetic and potential energy in the trebuchet
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Figure 5.6: Motion of the trebuchet

system over the time history of the simulation. During the motion, the potential energy of

the system, stored primarily in the counterweight is transferred to kinetic energy. The total
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energy of the system is conserved, since no non-conservative forces are modeled. The time

integration error produces a small change of less than 3 × 10−2 J in the total energy in the

system, as shown in Figure 5.7. This energy loss can be reduced by utilizing a smaller time

integration step size.
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Figure 5.7: Plot of the potential, kinetic and total energies with time for the trebuchet system.

5.2.2 Trebuchet optimization

The objective of optimization problem is to maximize projectile range, which is estimated

using the kinematics of the projectile motion under gravity. The precise release point of the
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projectile is not calculated. Instead, we use the optimal release point by taking the maximum

of the projectile range if it were released at any time during the entire trebuchet motion. We

estimate this maximum range using the KS function, in a similar manner to the maximum

velocity function described above. We also impose a constraint that the projectile must clear

a barrier of specified height at a location down range along the path of the projectile. The

present trebuchet problem consists of six design variables and one constraint. The six design

variables consist of the mass of the different components within the trebuchet system and an

initial condition variable governing the release height of the counterweight. Figure 5.8 shows

(a) Initial design (b) Optimized design

Figure 5.8: Figure illustrating the initial and final trebuchet designs.

the initial and optimized trebuchet designs. Note that the counterweight release height is

unconstrained at the final design point. The release height is selected such that the motion of

the counterweight is synchronized with the arm and projectile motion to achieve maximum

velocity at the release point.
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5.3 Four-Bar Mechanism

5.3.1 Analysis Setup

0.24 m

0.12 mBar 1

Bar 2

Bar 3

1
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Misaligned joint

Bar 1 and 2
Bar 3

16 mm
8 mm

Ω3 = 0.6 rad/s

Bar cross sectionsB

C

DA

Figure 5.9: The four-bar mechanism problem used for dynamics verification of TACS.

Figure 8.14 illustrates the setup of the four-bar mechanism (see Bauchau et al. [1]). Three

bars AB, BC and CD of the mechanism are joined together using revolute connections. An

imaginary fourth bar exists in the mechanism between the points A and D. The revolute

joints at the points A, B, and D, have an axis of rotation that is perpendicular to the plane of

the mechanism. The revolute joint at point C is misaligned by an angle of 5◦, rotated about

the direction of the bar CD. Bars AB and BC are of the same cross-section, while bar CD

has a smaller and more flexible cross section. The bars in the mechanism are modeled using

quadratic beam elements that are derived from Timoshenko beam theory. The rotation of

bar AB about point A of the mechanism is driven at an angular rate of Ω3 = 0.6 rad/s.

5.3.2 Motion and Internal Forces

When the bars are rigid, the four-bar mechanism locks and motion is inhibited. However,

when the bars are modeled as flexible, motion becomes possible since the bars can bend

to overcome the locking behavior. The motion of the four-bar mechanism is illustrated in

Figure 5.10 as a time lapse. If joint C were not misaligned, the bars would rotate in phase.
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Figure 5.10: The time evolution of flexible four-bar mechanism

However, due to the presence of misalignment, the third bar never completes a full rotation,

while the first bar drives the motion. Figure 5.11 shows a comparison of the axial force
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Figure 5.11: Comparison of TACS and Dymore [1] predictions of force and bending moment
in bar AB at mid-span.

and bending moment in bar AB at the mid-span compared with the same predictions using

Dymore [1]. The force and moment predictions can be seen to be in excellent agreement for

this benchmark problem.
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5.4 Rotorcraft Hub Dynamics

Typical rotorcraft hub assemblies fall under teetering, fully-articulated, hingeless and bear-

ingless categories. These types differ in the mechanism used to achieve desired flight modes,

such as hover or forward flight, and maneuvers, such as roll, pitch and yaw. To achieve these

desired flight modes, the control mechanism must impart collective and cyclic control inputs

to the blades through the swashplate driven by the push rods. The hub and control chain

dynamics are a central part of the rotorcraft flight control system and must be accurately

modeled to achieve good performance prediction.

5.4.1 Model Description

Figure 5.12: The baseline structural model of rotorcraft hub assembly with its parts labeled.

The control chain used for changing the pitch of rotor blades via appropriate inputs to

the swashplate is investigated as the motion of interest. The representative four-bladed rotor

hub assembly model used for this application is shown in Figure 5.12. The model consists of

rigid bodies, kinematic constraints, flexible bodies and actuators. The four rotor blades are

modeled as flexible using shell elements whereas the remaining parts are modeled as rigid
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bodies. The kinematic constraints and actuators used in the rotor assembly are listed in

Table 5.4. The push rods are connected to translational actuators that feed time dependent

periodic motions, given by u(t) = u0 sin(Ωtt), where Ωt is the assumed translational control

signal frequency. This driven motion will be used as the basis for the study of different

rotorcraft simulation scenarios in the examination of the rotor hub dynamics. The central

shaft is connected to a rotational driver with a angular rate of Ωr = 109.12 rad/s. This

structural model contains a total of 28, 640 degrees of freedom. The geometric modeling

and meshing parametrization of rotor hub parts is performed using the open-source program

GMSH [117]. The inertial properties are obtained directly from the geometry of each part.

Table 5.4: List of constraint types and motion actuators associated with different bodies in
hub assembly model.

Constraint/Actuator Part 1 Part 2

Rotational actuator shaft –

Translational actuator push rod –

Spherical constraint lower swashplate sphere
Spherical constraint upper swashplate pitch link
Spherical constraint pitch link pitch horn
Spherical constraint lower swashplate pitch rod
Spherical constraint lower swashplate upper push link

Revolute constraint lower swashplate upper swashplate
Revolute constraint shaft pitch horn
Revolute constraint baseplate lower push link
Revolute constraint lower push link upper push link

Cylindrical constraint sphere shaft

Fixed constraint baseplate –

5.4.1.1 Dynamics

The rotor hub apparatus is studied for (a) collective (b) longitudinal cyclic and (c) lateral

cyclic pitch control imparted through the three push rods at 90◦, 180◦ and 270◦ from a

horizontal reference axis. These conditions are summarized in Table 5.5. The corresponding

97



(a) collective (b) longitudinal cyclic

(c) lateral cyclic

Figure 5.13: Contour plots showing the vertical displacement of bodies during the motion in
millimeters.

time evolution of the configuration of the rotor assembly is simulated using two-stage, third-

order diagonally implicit Runge–Kutta method employing a time step size corresponding

to 1◦ per step at the angular rate 109.12 rad/s. Figure 5.13 presents the hub assembly at

different time instances for each flight scenario listed in Table 5.5. The contours illustrate

the tilting of the swashplate mechanism that produces a pitching motion for each of the

blades. In the collective case, the blades attain equal blade pitch, which would produce a

net upward aerodynamic force during flight. In the longitudinal and lateral cyclic cases, the

pitch of the blades varies as a function of the azimuthal angle and would produce longitudinal

and lateral aerodynamic moments during flight. Therefore, this model combined with the

control actuation inputs, can represent different flight scenarios and readily lends itself to a

multiscenario optimization case which will be demonstrated later in this section.
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Table 5.5: Sinusoidally modulated control amplitudes supplied to the push rods to produce
different flight scenarios.

Control Motion Push rod 1 Push rod 2 Push rod 3

Collective blade pitch
control

vertical 0.050 sin(Ωtt) 0.050 sin(Ωtt) 0.050 sin(Ωtt)

Longitudinal cyclic
blade pitch control

forward/pitch 0.025 sin(Ωtt) 0.025 sin(Ωtt) 0.050 sin(Ωtt)

Lateral cyclic blade
pitch control

sideways/roll 0.025 sin(Ωtt) 0.050 sin(Ωtt) 0.025 sin(Ωtt)

5.4.2 Adjoint Gradient Verification

Figure 5.14 shows the absolute difference between the adjoint derivatives and the complex-

step derivatives on the vertical axis for twelve test functionals indexed on the horizontal

axis, for different orders of the DIRK time integration method. The functionals used for this
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Figure 5.14: Complex-step verification of the DIRK adjoint formulation of different orders
of accuracy with 12 functionals with a perturbation size δ = 10−16.

verification are the structural mass (index 1), the average structural compliance (index 2),

the KS aggregates of the von Mises failure criterion (indices 3 and 4), and the induced ex-

ponential aggregates [46] of the von Mises failure criterion (indices 5 to 12). Table 5.6 shows

the magnitude of discrete adjoint sensitivities along with corresponding complex-step sensi-
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tivities. The digits in boldface represent the entries differing from the complex-step method.

From Table 5.6 and Figure 5.14 it can be seen that the adjoint-based derivative exhibits

Table 5.6: Comparison of complex-step and discrete adjoint derivatives for fourth-order
DIRK with a perturbation size δ = 10−16.

Functional Complex-step Adjoint

Structural Mass 250.0000000000000 249.9999999999999
Compliance -0.008903780405108 -0.008903780457068
KS (discrete) -2.510549172940552 -2.510549173663148
KS (continuous) -2.505178929745161 -2.505178930486006
Induced (exponential) -2.511154336312865 -2.511154337069819
Induced (discrete exponential) -2.516692488940226 -2.516692489679126
Induced (discrete exponential squared) -0.002788026920568 -0.002788026930265
Induced (exponential squared) -0.002762476355788 -0.002762476365353
Induced (power) -4.676554025570486 -4.676554028759453
Induced (discrete power) -4.715417147892726 -4.715417151435161
Induced (power squared) -0.006574319319522 -0.006574319341451
Induced (discrete power squared) -0.006679489586803 -0.006679489609466

an accuracy of 8 to 14 significant digits for different functionals. Thus, the adjoint-based

gradient evaluation capability achieves sufficient accuracy for gradient-based optimization.

5.4.3 Rotorcraft Optimization Demonstration

The rotorcraft hub is now subject to gradient-based design optimization including all three

analysis scenarios (flight-modes) described above.

5.4.3.1 Optimization Problem

The objective of this optimization case is to minimize the mass of the of the rotor blades

subject to stress constraints such that the von Mises failure ratio aggregated in space and

time domains does not exceed 25% of maximum allowable value. A mass objective is chosen

since more realistic rotor design objectives require multidisciplinary design criteria that can-

not be evaluated without a coupled aeroelastic simulation. The design variables consist of

the thicknesses of 48 spanwise panels modeling the rotor blades. Note that the thickness is
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constant in the chordwise direction. The cross-sectional geometry is held constant through-

out the span for this demonstration case. Smoothness requirements are imposed such that

thicknesses of successive spanwise panels do not change more than 1mm. The optimization

problem is stated mathematically as follows:

minimize
ξ

mass = m(ξ),

subject to ḡk(ξ) = ξk − ξk+1 ≤ 1mm, ∀k = 1, . . . 47, (smoothness requirement)

ḡk(ξ) = ξk+1 − ξk ≤ 1mm, ∀k = 1, . . . 47, (smoothness requirement)

ḡk(ξ) = 1− 4.0
σkks
σkmax

≥ 0, ∀k = 1, . . . 3, (stress constraint)

bounds 10mm ≤ ξ ≤ 20mm.
(5.1)

Each blade is assigned the same set of design variables so that all blades are identical during

design. The time dependent analysis and gradient evaluation for each of the three cases are

performed in parallel using five processors. Both the mass objective and the smoothness

constraints are independent of the structural state variables and their gradients are obtained

analytically using straightforward differentiation. The time dependent adjoint formulation

developed in this work is used to evaluate the three stress constraint gradients. The opti-

mization problem with 48 design variables, 3 stress constraints from each flight scenario, and

94 smoothness constraints, is solved using the SLSQP optimizer within the python package

pyOpt [118].

5.4.3.2 Optimization Results

Optimization History: Figure 5.15 shows the optimization convergence history. The

optimization took 73 iterations starting from an initial design of 2 cm thickness throughout,

to converge to infeasibility and optimality tolerance of 10−4. Note that the mass and stress

constraint infeasibilities are normalized with respect to their values at the initial design.

The mass of the blades (shown in red) decreases immediately from the starting point and
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stays nearly constant throughout the rest of optimization. The stress constraint imposed

on the lateral blade pitch flight scenario (shown in green) becomes feasible after about

50 iterations. Finally the stress constraints on longitudinal cyclic (shown in orange) and

collective pitch (shown in blue) are satisfied near the termination of optimization algorithm.

The optimization produced a design that has all three stress constraints active. The optimizer

required 222 function evaluations and 88 gradient evaluations. On average, the forward

analysis and gradient evaluation took 33 and 8 minutes, respectively, on five processors.
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Figure 5.15: History of optimization showing the changes in normalized constraint infeasi-
bility and objective values.

Optimized Design: The final blade design thickness distribution produced by the opti-

mizer is shown in Figure 5.16. Since the blades have identical design variables, only the

optimized thickness from one blade is shown. The optimizer reduced the mass by decreasing
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Figure 5.16: Comparison of thickness of initial (top) and optimized (bottom) designs in
millimeters.

the blade thicknesses towards the tip. The panel thickness gradually decreases along the

span until it reaches the lower bound at the tip, thereby reducing the stress at the root.

The gradual variation of panel thickness is a result of enforcing the smoothness constraints

in the problem formulation. Figure 5.17 compares the instantaneous stress normalized by

design stress in the blades after one full rotation. The optimized stresses are lower for all

three flight scenarios. The optimizer thickens the shell elements near the root of the blade

that experience higher stress to comply with the stress requirements. In addition, there

are notable differences in stress distribution patterns between each flight scenario, which is

anticipated from the differences in dynamics.

Summary. In this chapter, we presented applications of the implicit solution methods

and adjoint framework on problems from flexible multibody dynamics. For the rotorcraft

optimization application, high-fidelity structural dynamics, efficient sensitivity analysis using

the adjoint method, along with the parallel processing capabilities have effectively reduced

the optimization time.
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(a) collective

(b) longitudinal cyclic

(c) lateral cyclic

Figure 5.17: Comparison of normalized stress failure ratios of initial (left) and optimized
(right) blades for different flight scenarios at 360◦ azimuth.
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Part III

Treatment of Probabilistic Domain in

Time Dependent Physical Analysis and

Sensitivity Analysis Problems
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CHAPTER 6

MATHEMATICAL PRELIMINARIES OF UNCERTAINTY ANALYSIS – A

LINEAR ALGEBRA APPROACH

Introduction. The goal of this chapter is to provide the mathematical preliminaries un-

derlying uncertainty propagation techniques. The chapter is structured such that for each

probability distribution type:

1. the transformation of probability spaces

2. the numerical approximation of integrals through quadrature

3. the construction of orthonormal basis functions

are discussed. A detailed review of probability theory is beyond the scope of this work;

however, for the presentation of sampling and projection-based uncertainty propagation, this

chapter provides sufficient background. A simpler presentation of UQ techniques discussed

in this thesis is attributed to the fact that we perform probabilistic computations from a

linear algebra perspective using concepts such as weighted-inner-products. We lay out this

chapter with an interpretation that the probability density functions are the weighting kernel

functions of the definition of inner products.

6.1 Probability Distribution Functions in Physical and Standard Spaces

Probability distribution functions such as the probability density function (PDF) and the

cumulative distribution function (CDF) characterize the distribution of a random variable

(denoted as y) in stochastic (probabilistic) domain Y . Let us denote the standard stochastic

space as Z and the corresponding standard random variable be denoted as z. There is a con-

vention that the standard form of a probability distribution is one that has location parameter
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as zero and scale parameter as one. Therefore, by shifting and scaling standard distributions

we obtain the corresponding general physically-applicable distribution and viceversa. Let us

denote the physical stochastic space as Y and the corresponding physical random variable

be denoted as y. Although, we should work with physical probability spaces for physical

relevance, the standard probabilistic domains are very useful in efficient numerical computa-

tions. For instance, numerical tools such as random number generators (to produce random

samples), quadrature nodes and weights (to evaluate integrals), orthogonal polynomials (to

construct stochastic vector space) are built based on standard probability density functions

defined on Z, and simple transformation of variables and bounds can be applied to make

these techniques applicable for the physical stochastic space Y . Often, some numerical pack-

ages (e.g., Python based NumPy) apply different rules for standardization, and provide nodes

and weights to evaluate integrals using quadrature. Therefore, in this work, the probabilistic

quadrature space is referred to as X with x as the corresponding variable. An illustration

of relation between different probabilistic spaces is shown in Figure 6.1. Therefore, one

must be cognizant of the fact that different standardization are used with the derivation of

orthonormal polynomials and quadrature libraries, and appropriate transformations ought

to be carried out. If quadrature capabilities are solely developed based on standard distri-

butions, we will be able to omit the nonstandard space and work within standardized and

physical probability spaces in computations.

6.1.1 Uniform Distribution

The uniform distribution of a random variable y ∈ [a, b] ⊂ R is denoted as U(y; a, b). Its

probability density function is the mapping ρyu(y) : [a, b]→ [0, 1] defined as

ρyu(y) = ρyu(y; a, b) :=
1

b− a. (6.1)
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Figure 6.1: Probabilistic spaces their roles (shown in red) in UQ computations.

In the case of uniform distribution the transformation between standard uniform z ∈ Z and

physical uniform random variable y ∈ Y is

y = a+ (b− a)z (6.2)

and the corresponding inverse transformation is

z =
y − a
b− a . (6.3)

Note that the standardized stochastic domain is denoted as Z = [0, 1]. The standard uniform

probability density function is

ρzu(z) = ρzu(z; 0, 1) := 1. (6.4)
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6.1.2 Normal Distribution

Normal or Gaussian distribution of random variable y ∈ [−∞,∞] is denoted as N (y;µ, σ2)

where µ and σ2 are fixed parameters characterizing the location and stretch of the distribu-

tion, and y is the physical random variable. The physical normal probability density function

is

ρyn(y) = ρyn(y;µ, σ2) :=
1

σ
√

2π
exp

[
−1

2

(
y − µ
σ

)2
]
. (6.5)

The transformation between standard normal z ∈ Z and physical normal random variable

y ∈ Y is

y = µ+ σz (6.6)

and the corresponding inverse transformation is

z =
y − µ
σ

. (6.7)

When the random variable has zero mean and unit variance (a rule for standardization), it

results in standard normal PDF

ρzn(z) = ρzn(z; 0, 1) :=
1√
2π

exp

(
−1

2
z2
)
. (6.8)

Note that 1/
√

2π refers to the area under the curve exp(−z2/2).

6.1.3 Exponential Distribution

We denote an exponential distribution of random variable y ∈ [µ,∞) ⊂ R as E(y;µ, β). Its

probability density function is the mapping ρye(y) : [µ,∞)→ [0, 1] defined as

ρye(y) = ρye(y;µ, β) :=
1

β
exp

[
−
(
y − µ
β

)]
. (6.9)
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The standard exponential distribution pertains to µ = 0 (location) and β = 1 (scale). The

standard exponential probability density function is

ρze(z) = ρze(z; 0, 1) := exp(−z). (6.10)

The transformation between standard exponential z ∈ Z and physical exponential random

variable y ∈ Y is

y = µ+ βz (6.11)

and the corresponding inverse transformation is

z =
y − µ
β

. (6.12)

Note that the standardized stochastic domain is denoted as Z = [0,∞).

Summary. The PDFs introduced here play the role of weighting kernel functions used in

inner products. We recall that inner products are evaluated using integrals, which in turn

are numerically approximated using quadrature rules. The domain (independent-axis) of

the kernel functions acts as the lower and upper bound on the integrals. Note that the

domain (or limits) is not always from [−∞,+∞], and depends on the distribution type.

Therefore, one must exercise caution in evaluating these integrals, particularly when more

random variables are present, with each variable (probabilistic dimension) possibly having

different domains.

6.2 Statistical Measures as Inner Products

Now, we formally define the probabilistic measures of interest that are used in the formulation

of optimization under uncertainty problem (2.17).
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6.2.1 Probability

The PDFs are useful in evaluating the probability of occurrence of random events. If one

considers a random event as the occurrence of random variable within the interval [a, b], then

the probability of occurrence of the random event is

P[a ≤ y ≤ b] =
〈

1
∣∣∣ 1
〉Y
ρy(y)

=

∫ b

a

ρy(y) dy. (6.13)

where ρy(y) is the probability density function of the random variable y ∈ Y . This probability

is the area under the PDF within the lower and upper limits of integration.

6.2.2 First Moment: Mean/Expectation

If the distribution of random variable y ∈ Y admits a probability density function ρy(y),

then the expectation of y is defined as

E[y] =
〈

1
∣∣∣ y
〉Y
ρy(y)

=

∫

Y
y ρy(y) dy. (6.14)

Similarly, we can define the expectation (first moment) of a function of random variable

f(y, ·) (referred to as random function) as

E[f(y, ·)] =
〈

1
∣∣∣ f(y, ·)

〉Y
ρy(y)

=

∫

Y
f(y, ·) ρy(y) dy. (6.15)

Remark on the role of random variables and functions in differential equations:

Differential equations often contain unknown parameters that are specified as inputs to run

the numerical solution method to solve for the state variables. To accurately represent cer-

tain physical scenarios, we model the unknown parameters to be a function of probabilistic

random variables. As a consequence, the state functions acquire the dependence of random

variables and become probabilistic random functions. It is of use to refer to Figure 2.12

outlining the solution process in abstract form, where ξ refers to the input parameters that

111



emerge from the probabilistic domain under the premise that they are uncertain and depen-

dent on random variable y with some known probability distribution. As a result we obtain

the random state functions such as u(y(ξ), ·), where · signifies the possible presence/absence

of other domains (e.g., temporal, spatial).

6.2.3 Second Moment: Variance

If the distribution of random variable y ∈ Y admits a probability density function ρy(y),

then the variance (second moment) of y is defined as

V[y] =
〈

(E[y]− y)
∣∣∣ (E[y]− y)

〉Y
ρy(y)

=

∫

Y
(E[y]− y)2 ρy(y) dy.

(6.16)

With algebraic simplifications, the variance of y can be written equivalently as

V[y] = E[y2]− E[y]2. (6.17)

Similarly, variance of a random function f(y, ·) is defined as

V[f(y, ·)] =
〈
E[f(y, ·)]− f(y, ·)

∣∣∣ E[f(y, ·)]− f(y, ·)
〉Y
ρy(y)

=

∫

Y
(E[f(y, ·)]− f(y, ·))2ρy(y) dy.

(6.18)

With algebraic simplifications, the variance of f(y, ·) can be written equivalently as

V[f(y, ·)] = E[f(y, ·)2]− E[f(y, ·)]2. (6.19)

If the above integrals/inner products could not be evaluated by analytical means, quadrature

rules discussed in Section 6.4 are useful in obtaining numerical estimates.
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6.3 Types of Random Variables

6.3.1 Independent Random Variables

Let y1 and y2 be two random variables. They are independent of each other if

P[y1, y2] = P[y1]P[y2]. (6.20)

This is a consequence of the independence of probability density functions on each other

leading to the construction of the joint PDF as product of individuals PDFs

ρy(y1, y2) = ρy1(y1)× ρy2(y2). (6.21)

6.3.2 Uncorrelated Random Variables

Let y1 and y2 be two random variables. They are uncorrelated of each other if

E[y1, y2] = E[y1]E[y2] (6.22)

Independent random variables are uncorrelated, but uncorrelated random variables are not

always independent. In this work, the random variables are assumed to be independent

as a simplifying assumption. In the general case, we ought to work with joint probability

distributions of the form ρy(y1, y2) and follow the mathematical steps.

6.4 Quadrature Rules for Inner Products in Probabilistic Spaces

For random variable y from physical probabilistic domain Y with probability density function

ρy(y), we define inner product as follows

〈
g1(y)

∣∣∣ g2(y)
〉Y
ρy(y)

=

∫

Y
g1(y)ρy(y)g2(y) dy. (6.23)
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The probabilistic measures in Section 6.2 are defined using inner products of the form (6.23).

Thus the evaluation of inner products of the form (6.23) is of natural interest in stochastic

computations.

6.4.1 Quadrature Approximation of Inner Products

Quadrature rules are used for numerical approximation of integrals arising from inner prod-

ucts using a finite number of evaluations of the integrand. In stochastic computations,

quadrature rules are useful in many scenarios such as:

• the evaluation of probabilities as

〈
1(y)

∣∣∣ 1(y)
〉Y
ρy(y)

=

∫

Y
1(y)ρy(y)1(y) dy ≈

M∑

i=1

αyi 1(yi)1(yi) (6.24)

• the evaluation of statistical moments of f(y); for example, the mean is

〈
1
∣∣∣ f(y)

〉Y
ρy(y)

=

∫

Y
1(y)ρy(y)f(y) dy ≈

M∑

i=1

αyi 1(yi)f(yi). (6.25)

• the formation of (i, j)th entry in Jacobian matrices with two corresponding basis ele-

ments ψi(y) and ψj(y) as

〈
ψi(y)

∣∣∣ ψj(y)
〉Y
ρy(y)

=

∫

Y
ψi(y)ρy(y)ψj(y) dy ≈

M∑

i=1

αyiψi(yi)ψj(yi). (6.26)

The effect of ρy(y) is accounted within the weights αy, and by our construction the sum of

weights is unity :
∑M

i=1 α
y
i = 1. The number of quadrature pointsM can be determined based

on the polynomial degree, d, of the full integrand. We may use the fact that quadrature rules

with M nodes exactly evaluates polynomial integrands of degree upto 2d− 1. On the other

hand, when the integrand f(y) does not admit a known functional form, the number of

evaluations M is usually chosen based on computational budget considerations or iterative
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convergence criteria. The weight αyi and nodes yi are chosen based on probability distribution

of random variable y ∈ Y .

6.4.2 Normal Distribution : Gauss–Hermite Quadrature

Consider two random functions f1(y) and f2(y) where y ∼ N (µ, σ2) ∈ Y . Using the definition

of inner product and transformation of variables

〈
f1(y)

∣∣∣ f2(y)
〉Y
ρyn(y)

=

∫ +∞

−∞
f1(y)

exp
(
−1

2

(
y−µ
σ

)2)

σ
√

2π
f2(y) dy

=

∫ +∞

−∞
f1 (µ+ σz)

exp
(
−1

2
(z)2

)
√

2π
f2 (µ+ σz) dz

=
〈
f1 (µ+ σz)

∣∣∣ f2 (µ+ σz)
〉Z
ρzn(z)

(6.27)

Let y be a normally distributed random variable in domain Y with mean µ and standard

deviation σ. Gauss-Hermite quadrature rule provides nodes yi and weights αyi for optimal

numerical approximation of integrals such as

∫ ∞

−∞
f(y)

e−
1
2( y−µσ )

2

σ
√

2π︸ ︷︷ ︸
ρyn(y)

dy ≈
M∑

i=1

αyi f(yi). (6.28)

where ρyn(y) is the Gaussian probability density function.

6.4.2.1 Transforming Nonstandard to Physical Quadrature

Gauss–Hermite quadrature approximates inner products/integrals such as

〈
1(ξ)

∣∣∣ f(ξ)
〉X
ρξn(ξ)

=

∫ ∞

−∞
e−ξ

2

︸︷︷︸
ρξn(ξ)

f(ξ) dξ ≈
M∑

i=1

αξif(ξi) (6.29)

and provide corresponding nodes ξi and weights αξi – which can not be directly applied to

inner products/integrals arising in physical probabilistic domain Y . In this case, notice that
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ξ ∈ X = [−∞,∞] is the same domain of integration in (6.28), but a nonstandard density

function of exp(−ξ2) used to derive the nodes ξi and weights αξi . Although we have obtained

the identities relating Y and Z, we are left with the task of identifying transformation

from nonstandard space X to standard space Y . For this, let us perform transformation of

variables by defining

ξ =
y − µ
σ
√

2
and dξ =

dy

σ
√

2
. (6.30)

Rearranging this, we get

y = µ+ σ
√

2ξ and dy = σ
√

2dξ. (6.31)

With this transformation (6.28) becomes

∫ ∞

−∞
f(y)

e−
1
2( y−µσ )

2

σ
√

2π
dy =

∫ ∞

−∞
f(µ+ ξσ

√
2)

e−ξ
2

σ
√

2π
(σ
√

2) dξ

≈ 1√
π

M∑

i=1

αξif(µ+ σ
√

2ξi).

(6.32)

Recognizing the new weights as

αyi = αξi/
√
π (6.33)

results in the following quadrature form

∫ ∞

−∞
f(y)

e−
1
2( y−µσ )

2

σ
√

2π︸ ︷︷ ︸
ρyn(y)

dy ≈
M∑

i=1

αyi f(yi) =
M∑

i=1

αξi√
π
f(µ+ σ

√
2ξi). (6.34)

Note that the weight αyi add up to unity :
∑

i α
y
i = 1.
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6.4.2.2 Transforming Physical Quadrature to Standard Quadrature

Let us now determine the weights αzi and nodes zi for performing numerical integration in

standard stochastic domain Z. Using the transformation z = y−µ
σ

we obtain

∫ ∞

−∞
f(y)

e−
1
2( y−µσ )

2

σ
√

2π
dy =

∫ ∞

−∞
f(µ+ σz)

e−
1
2
(z)2

√
2π

dz. (6.35)

Thus the corresponding quadrature approximations follow the relation

M∑

i=1

αyi f(yi) =
M∑

i=1

αzi f(µ+ σz). (6.36)

We summarize the relations observed from the above development as follows

M∑

i=1

αyi f(yi) =
M∑

i=1

αzi f(µ+ σz) =
M∑

i=1

αξi√
π
f(µ+ σ

√
2ξi)

αyi = αzi = αξi/
√
π

yi = µ+ σzi = µ+ σ
√

2ξi

(6.37)

6.4.3 Uniform Distribution : Gauss–Legendre Quadrature

Consider two random functions f1(y) and f2(y) where y ∼ U(a, b) ∈ Y . Using the definition

of inner product and transformation of variables

〈
f1(y)

∣∣∣ f2(y)
〉Y
ρyu(y)

=

∫ b

a

f1(y)

(
1

b− a

)
f2(y) dy

=

∫ 1

0

f1 (a+ (b− a)z) (1)f2 (a+ (b− a)z) dz

=
〈
f1 (a+ (b− a)z)

∣∣∣ f2 (a+ (b− a)z)
〉Z
ρzu(z)

(6.38)

Let y be a uniformly distributed random variable in domain Y = [a, b]. Gauss-Legendre

quadrature rule provides nodes yi and weights αyi for optimal numerical approximation of
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integrals such as ∫ b

a

1

b− a︸ ︷︷ ︸
ρyu(y)

f(y) dy ≈
M∑

i=1

αyi f(yi). (6.39)

6.4.3.1 Transforming Nonstandard to Physical Quadrature

Numerical implementations of Gauss–Legendre quadrature assume the form

〈
1(ξ)

∣∣∣ f(ξ)
〉X
ρξu(ξ)

=

∫ 1

−1
(1)︸︷︷︸
weight

f(ξ) dξ ≈
M∑

i=1

αξif(ξi). (6.40)

The domain of integration X = [−1, 1] is different than Y = [a, b]. Let us scale and shift the

nonstandard probabilistic space X as follows

y =
b+ a

2︸ ︷︷ ︸
shift

+
b− a

2︸ ︷︷ ︸
scale

ξ and dy =
b− a

2
dξ. (6.41)

Using the above transformation in (6.39) results in

∫ b

a

1

b− a︸ ︷︷ ︸
ρyu(y)

f(y) dy =

∫ +1

−1

1

b− af
(
b+ a

2
+
b− a

2
ξ

)
b− a

2
dξ

≈ 1

2

M∑

i=1

αξif

(
b+ a

2
+
b− a

2
ξi

) (6.42)

Comparing with (6.39) we recognize the new weights as

αyi = αξi/2 (6.43)

which leads to the following discrete approximation for the original integral

∫ b

a

1

b− a︸ ︷︷ ︸
ρyu(y)

f(y) dy ≈
M∑

i=1

αyi f(yi). (6.44)
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6.4.3.2 Transforming Physical Quadrature to Standard Quadrature

Let us now determine the weights αzi and nodes zi for performing numerical integration in

standard stochastic domain Z for uniform distribution in [a, b]. Using the transformation

z = y−a
b−a we obtain

∫ b

a

f(y)
1

b− a dy =

∫ 1

0

f(a+ (b− a)z)(1) dz. (6.45)

Thus the corresponding quadrature approximations follow the relation

M∑

i=1

αyi f(yi) =
M∑

i=1

αzi f(a+ (b− a)z). (6.46)

We summarize the relations observed from the above development as follows

M∑

i=1

αyi f(yi) =
M∑

i=1

αzi f(a+ (b− a)zi) =
1

2

M∑

i=1

αξif

(
b+ a

2
+
b− a

2
ξi

)

αyi = αzi = αξi/2

yi = a+ (b− a)zi =
b+ a

2
+
b− a

2
ξi

(6.47)

6.4.4 Exponential Distribution : Gauss–Laguerre Quadrature

Consider two random functions f1(y) and f2(y) where y ∼ E(µ, β) ∈ Y . Using the definition

of inner product and transformation of variables

〈
f1(y)

∣∣∣ f2(y)
〉Y
ρye(y)

=

∫ +∞

µ

f1(y)
1

β
exp

(
−y − µ

β

)
f2(y) dy

=

∫ +∞

−∞
f1 (µ+ σz)

exp
(
−1

2
(z)2

)
√

2π
f2 (µ+ σz) dz

=
〈
f1 (µ+ σz)

∣∣∣ f2 (µ+ σz)
〉Z
ρze(z)

(6.48)
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6.4.4.1 Transforming Nonstandard to Physical Quadrature

Gauss–Laguerre quadrature provides approximation for integrals of the form

〈
1(x)

∣∣∣ f(x)
〉X
ρxe (x)

=

∫ ∞

0

exp(−x)f(x) dx ≈
M∑

i=1

αxi f(xi). (6.49)

The Gauss–Laguerre quadrature provides corresponding nodes xi and weights αxi . Let us

consider the transformation of the above integral from X to Y . For this let us perform

transformation of variables by defining

x =
y − µ
β

and dx =
dy

β
. (6.50)

Rearranging this, we get

y = µ+ βx and dy = βdx. (6.51)

Using the above transformations, the integral becomes

∫ ∞

0

exp(−x)f(x) dx =

∫ ∞

0

1

β
exp

(
−y − µ

β

)
f

(
y − µ
β

)
dy (6.52)

6.4.4.2 Transforming Physical Quadrature to Standard Quadrature

For this let us perform transformation of variables by defining

z =
y − µ
β

and dz =
dy

β
. (6.53)

Rearranging this, we get

y = µ+ βz and dy = βdz. (6.54)
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Using the above transformations, the integral becomes

∫ ∞

0

exp(−z)f(z) dz =

∫ ∞

0

1

β
exp

(
−y − µ

β

)
f

(
y − µ
β

)
dy (6.55)

We summarize the relations observed from the above development as follows

M∑

i=1

αyi f(yi) =
M∑

i=1

αzi f(µ+ βzi) =
M∑

i=1

αxi f (µ+ βxi)

αyi = αzi = αxi

yi = µ+ βzi = µ+ βxi

(6.56)

6.5 Orthonormal Polynomials as Basis Functions

Our ultimate goal is to construct the probabilistic space Y using a set of N basis functions

as

Y = span{ψ̂y0(y), ψ̂y1(y), . . . , ψ̂yN(y)}. (6.57)

Here, the notation ·̂ represents the orthogonality and normality of polynomials, similar in

purpose to Cartesian unit vectors êx, êy, and êz, and the superscript denotes the variable

y that acts as argument. There are numerous possibilities for the choice of basis functions

and their corresponding supports (local and global supports). We consider only polynomial

functions with global support in this work. Although we can select any set of independent

basis functions (for example Y = span{1, y, y2, . . . , yN}), by construction we intend to make

the basis functions ψ̂y(y) orthonormal to one another, which turns out to be efficient when

decomposing (comparing) two stochastic functions, say f(y) and g(y) from the probabilistic

domain with PDF as the weight. The decomposition coefficients are directly obtained in an

orthonormal basis compared to a non-orthonormal basis where a system of equations needs

to be solved to obtain such coefficients. Orthonormality of two basis functions ψ̂yi (y) and
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ψ̂yj (y) is mathematically written as

〈
ψ̂yi (y)

∣∣∣ ψ̂yj (y)
〉Y
wy(y)

=

∫

Y
ψ̂yi (y)wy(y)ψ̂yj (y) dy =





1 if i = j

0 if i 6= j

, (6.58)

where wy(y) ≥ 0 for y ∈ Y is a non-zero weighting function in probabilistic domain Y .

The inner product (6.58) can be interpreted as a weighted-inner product corresponding to

a positive definite weight function wy(y). If wy(y) = 1 we get the standard inner product.

The probability density functions (PDF) (denoted as ρy(y)) are very useful choice for weight

functions as they are positive-define. The orthonormal polynomial set is derived for standard

distributions and transformation of variables is used to apply them for physical domain. The

standardization is usually done with zero location and unit stretch as distribution parameters.

The PDFs used in this work are listed in Table 6.1.

Table 6.1: Physical and standard probability density functions.

Distribution Notation ρy(y) Standardization ρz(z)

Gaussian/Normal N (y;µ, σ)
1

σ
√

2π
exp

[
−1

2

(
y − µ
σ

)2
]

z =
y − µ
σ

1√
2π

exp

(
−1

2
z2
)

Uniform U(y; a, b)
1

b− a z =
y − a
b− a 1

Exponential E(y;µ, β) 1
β

exp
[
−
(
y−µ
β

)]
z =

y − µ
β

exp(−z)

6.5.1 Orthonormal Hermite Polynomials

Let z be the standardized normal random variable z = y−µ
σ

. The applicable weight function

is the standardized probability density function (6.8). The first five Hermite polynomials are
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H
z

0(z) = 1

H
z

1(z) = z

H
z

2(z) = z2 − 1

H
z

3(z) = z3 − 3z

H
z

4(z) = z4 − 6z2 + 3

(6.59)

These Hermite polynomials follow two term recursive relation

H
z

d(z) = z H
z

d−1(z)− (d− 1)H
z

d−2(z) (6.60)

where d is the degree of the polynomial.

Orthogonality of Hermite polynomials. It is easy to see that these Hermite polyno-

mials are orthogonal to each other with Gaussian PDF as the weight. For example

〈
H
z

0(z)
∣∣∣ Hz

1(z)
〉Z
ρzn(z)

=

∫ ∞

−∞
(1)

(
exp−

z2

2√
2π

)z

(z) dz = 0

〈
H
z

1(z)
∣∣∣ Hz

2(z)
〉Z
ρzn(z)

=

∫ ∞

−∞
(z)

(
exp−

z2

2√
2π

)
(z2 − 1) dz = 0

〈
H
z

3(z)
∣∣∣ Hz

2(z)
〉Z
ρzn(z)

=

∫ ∞

−∞
(z3 − 3z)

(
exp−

z2

2√
2π

)
(z2 − 1) dz = 0

(6.61)

This is due to the symmetry of the integrand with respect to the horizontal z-axis.
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Normality of Hermite polynomials. The squared length (norm) of each polynomial

can be found as

〈
H
z

0(z)
∣∣∣ Hz

0(z)
〉Z
ρzn(z)

=

∫ ∞

−∞
(1)

(
exp−

z2

2√
2π

)
(1) dz = 0 = 0!

〈
H
z

1(z)
∣∣∣ Hz

1(z)
〉Z
ρzn(z)

=

∫ ∞

−∞
(z)

(
exp−

z2

2√
2π

)z

(z) dz = 1 = 1!

〈
H
z

2(z)
∣∣∣ Hz

2(z)
〉Z
ρzn(z)

=

∫ ∞

−∞
(z2 − 1)

(
exp−

z2

2√
2π

)
(z2 − 1) dz = 2 = 2!

〈
H
z

3(z)
∣∣∣ Hz

3(z)
〉Z
ρzn(z)

=

∫ ∞

−∞
(z3 − 3z)

(
exp−

z2

2√
2π

)
(z3 − 3z) dz = 6 = 3!

〈
H
z

4(z)
∣∣∣ Hz

4(z)
〉Z
ρzn(z)

=

∫ ∞

−∞
(z4 − 6z2 + 3)

(
exp−

z2

2√
2π

)
(z4 − 6z2 + 3) dz = 24 = 4!

(6.62)

Thus we have the norm of Hermite polynomial of order d as

〈
H
z

d(z)
∣∣∣ Hz

d(z)
〉Z
ρzn(z)

= d! (6.63)

Note that the the basis elements Hz

i (z) are not of unit length. Therefore, we divide each

element by its length to make it unit length. The resulting orthonormal Hermite polynomials

are,

Ĥz
0 (z) = 1/

√
0!

Ĥz
1 (z) = z/

√
1!

Ĥz
2 (z) = (z2 − 1)/

√
2!

Ĥz
3 (z) = (z3 − 3z)/

√
3!

Ĥz
4 (z) = (z4 − 6z2 + 3)/

√
4!

(6.64)
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Thus we have the following property about Hermite polynomials depending upon whether

they are normalized

〈
H
z

i (z)
∣∣∣ Hz

j(z)
〉Z
ρzn(z)

= i!× δij =





i! if i = j

0 if i 6= j

(6.65)

and

〈
Ĥz
i (z)

∣∣∣ Ĥz
j (z)

〉Z
ρzn(z)

= δij =





1 if i = j

0 if i 6= j

(6.66)

Figure 6.2 shows the first six Hermite polynomials in normalized and unnormalized forms.
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)
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Figure 6.2: Plot of Hermite and unit Hermite polynomials.

6.5.2 Orthonormal Legendre Polynomials

By using the uniform probability density function ρzu(z) = 1 defined in the interval z ∈

[0, 1] we obtain Legendre orthogonal polynomials using Gram-Schmidt process. The affine

transformation z = y−a
b−a can be used for transforming physical random variable y ∈ [a, b] to

125



standard uniform random variable z ∈ [0, 1]. The first five Legendre polynomials are

P
z

0(z) = 1

P
z

1(z) = 2z − 1

P
z

2(z) = 6z2 − 6z + 1

P
z

3(z) = 20z3 − 30z2 + 12z − 1

P
z

4(z) = 70z4 − 140z3 + 90z2 − 20z + 1

(6.67)

The Legendre polynomials can be obtained using the relation

P
z

d(z) = (−1)d
d∑

k=0



d

k






d+ k

k


 (−z)k (6.68)

where d is the degree of the polynomial.

Orthogonality of Legendre polynomials. It is easy to see that these Legendre poly-

nomials are orthogonal to each other when weighed using the standard uniform probability

density function ρzu(z). For example

〈
P
z

0(z)
∣∣∣ P z

1(z)
〉Z
ρzu(z)

=

∫ 1

0

(1)(1)(2z − 1) dz = 0

〈
P
z

1(z)
∣∣∣ P z

2(z)
〉Z
ρzu(z)

=

∫ 1

0

(2z − 1)(1)(6z2 − 6z + 1) dz = 0

〈
P
z

3(z)
∣∣∣ P z

2(z)
〉Z
ρzu(z)

=

∫ 1

0

(20z3 − 30z2 + 12z − 1)(1)(6z2 − 6z + 1) dz = 0

. (6.69)

This is due to the symmetry of the integrand with respect to the midpoint of the interval

[0, 1] which is 0.5.
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Normality of Legendre polynomials. The squared length (norm) of each Legendre

polynomial can be found as

〈
P
z

0(z)
∣∣∣ P z

0(z)
〉Z
ρzu(z)

=

∫ 1

0

(1)(1)(1) dz = 1 =
1

2(0) + 1
〈
P
z

1(z)
∣∣∣ P z

1(z)
〉Z
ρzu(z)

=

∫ 1

0

(2z − 1)(1)(2z − 1) dz =
1

3
=

1

2(1) + 1
〈
P
z

2(z)
∣∣∣ P z

2(z)
〉Z
ρzu(z)

=

∫ 1

0

(6z2 − 6z + 1)(1)(6z2 − 6z + 1) dz =
1

5
=

1

2(2) + 1

(6.70)

Thus we have the norm of Legendre polynomial of order d as

〈
P
z

d(z)
∣∣∣ P z

d(z)
〉Z
ρzu(z)

=
1

2(d) + 1
. (6.71)

Therefore, we can define unit orthogonal Legendre polynomials using normalization

P̂ z
d (z) = P

z

d(z)
√

(2(d) + 1). (6.72)

Following the above rule, the first few orthonormal Legendre polynomials are the following

P̂ z
0 (z) =

√
1(1)

P̂ z
1 (z) =

√
3(2z − 1)

P̂ z
2 (z) =

√
5(6z2 − 6z + 1)

P̂ z
3 (z) =

√
7(20z3 − 30z2 + 12z − 1)

P̂ z
4 (z) =

√
9(70z4 − 140z3 + 90z2 − 20z + 1)

(6.73)

In summary, we have the following property about orthogonal and orthonormal Legendre

polynomials

〈
P
z

i (z)
∣∣∣ P z

j(z)
〉Z
ρzu(z)

=
1

2(i) + 1
× δij =





1
2(i)+1

if i = j

0 if i 6= j

(6.74)
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and

〈
P̂ z
i (z)

∣∣∣ P̂ z
j (z)

〉Z
ρzu(z)

= δij =





1 if i = j

0 if i 6= j

(6.75)

Figure 6.3 shows the first six Legendre polynomials in normalized and unnormalized forms.
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Figure 6.3: Plot of Legendre and unit Legendre polynomials.

6.5.3 Orthonormal Laguerre Polynomials

The Laguerre polynomials are derived using standard exponential PDF (6.10) as the weight

function for orthogonalization. The first five orthogonal Laguerre polynomials are

L
z

0(z) = +1

L
z

1(z) = −z + 1

L
z

2(z) = +z2 − 4z + 2

L
z

3(z) = −z3 + 9z2 − 18z + 6

L
z

4(z) = +z4 − 16z3 + 72z2 − 96z + 24

(6.76)
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Orthogonality of Laguerre polynomials. It is easy to see that these Laguerre polyno-

mials are orthogonal to each other. For example

〈
L
z

0(z)
∣∣∣ Lz1(z)

〉Z
ρze(z)

=

∫ ∞

0

(1) exp (−z) (−z + 1) dz = 0

〈
L
z

1(z)
∣∣∣ Lz2(z)

〉Z
ρze(z)

=

∫ ∞

0

(−z + 1) exp (−z) (+z2 − 4z + 2) dz = 0

〈
L
z

3(z)
∣∣∣ Lz2(z)

〉Z
ρze(z)

=

∫ ∞

0

(−z3 + 9z2 − 18z + 6) exp (−z) (+z2 − 4z + 2) dz = 0

(6.77)

Normality of Laguerre polynomials. The squared length (norm) of each Laguerre poly-

nomial can be found as

〈
L
z

0(z)
∣∣∣ Lz0(z)

〉Z
ρze(z)

=

∫ ∞

0

(1)2 exp (−z) dz = 0!2

〈
L
z

1(z)
∣∣∣ Lz1(z)

〉Z
ρze(z)

=

∫ ∞

0

(−z + 1)2 exp (−z) dz = 1!2

〈
L
z

2(z)
∣∣∣ Lz2(z)

〉Z
ρze(z)

=

∫ ∞

0

(+z2 − 4z + 2)2 exp (−z) dz = 2!2

〈
L
z

3(z)
∣∣∣ Lz3(z)

〉Z
ρze(z)

=

∫ ∞

0

(−z3 + 9z2 − 18z + 6)2 exp (−z) dz = 3!2

〈
L
z

4(z)
∣∣∣ Lz4(z)

〉Z
ρze(z)

=

∫ ∞

0

(+z4 − 16z3 + 72z2 − 96z + 24)2 exp (−z) dz = 4!2

(6.78)

Thus we have the norm of Laguerre polynomial of order d as

〈
L
z

d(z)
∣∣∣ Lzd(z)

〉Z
ρze(z)

= d!2. (6.79)

Therefore, we can define unit orthogonal Laguerre polynomials using normalization

L̂zd(z) =
L
z

d(z)

d!
. (6.80)

129



Following the above rule, the first few orthonormal Laguerre polynomials are the following

L̂z0(z) =
1

0!
(1)

L̂z1(z) =
1

1!
(−z + 1)

L̂z2(z) =
1

2!
(+z2 − 4z + 2)

L̂z3(z) =
1

3!
(−z3 + 9z2 − 18z + 6)

L̂z4(z) =
1

4!
(+z4 − 16z3 + 72z2 − 96z + 24)

(6.81)

In summary, we have the following property about orthogonal and orthonormal Laguerre

polynomials

〈
L
z

i (z)
∣∣∣ Lzj(z)

〉Z
ρze(z)

= i!2 × δij =





i!2 if i = j

0 if i 6= j

(6.82)

and

〈
L̂zi (z)

∣∣∣ L̂zj(z)
〉Z
ρze(z)

= δij =





1 if i = j

0 if i 6= j

(6.83)

The orthonormal Laguerre polynomials follow two term recursive relation

L̂zd(z) =
(2d− 1− z) L̂zd−1(z)− (d− 1) L̂zd−2(z)

d
(6.84)

where d is the degree of the polynomial. If one uses the recursion (6.84), there is no additional

normalization necessary. Figure 6.4 shows the first six Laguerre polynomials in normalized

and unnormalized forms.

6.5.3.1 Orthonormal Basis Set via Gram-Schmidt Process

Given a set of initial non-orthonormal polynomials spanning the standard probabilistic space

Z, we construct an orthogonal and orthonormal set of polynomial basis functions spanning
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Figure 6.4: Plot of Laguerre and unit Laguerre polynomials.

the same space Z

Z = span{ψi(z)}Ni=1
initial set

= span{ψi(z)}Ni=1
orthogonal set

= span{ψ̂i(z)}Ni=1
orthonormal set

(6.85)

This is done using a Gram–Schmidt process. The first step is orthogonalization of initial

basis functions which is

ψ
z

k(z) = ψzk(z)−
k−1∑

j=1




〈
ψzk(z)

∣∣∣ ψzj(z)
〉Z
wz(z)〈

ψ
z

j(z)
∣∣∣ ψzj(z)

〉Z
wz(z)


ψ

z

j(z) ∀k = 1, 2, . . . , N. (6.86)

The resulting orthogonal polynomial functions ψzk(z) need not be of unit length. Thus, the

second and final step of Gram–Schmidt process is normalization of orthogonal set {ψzk(z)}Nk=1

which is

ψ̂zk(z) = ψ
z

k(z)

/√〈
ψ
z

k(z)
∣∣∣ ψzk(z)

〉Z
wz(z)

∀ k = 1, 2, . . . , N. (6.87)

Although we can construct an orthonormal set numerically using the above procedure given

an initial set of functions and a PDF as weight, it is efficient to derive orthonormal polynomial

functions for convenient choices of weighting functions. We summarize the orthonormal

polynomials derived using Gram–Schmidt process using probability density functions ρz(z)

as weighting functions wz(z) in Table 6.2.
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Table 6.2: Orthonormal polynomials for standard probability distributions.

Hermite Legendre Laguerre

notation Ĥd(z) P̂d(z) L̂d(z)

weight
1√
2π

exp

(
−1

2
z2
)

1 exp(−z)

distribution N (z;µ = 0, σ = 1) U(z; a = 0, b = 1) E(z;µ = 0, β = 1)

orthogonal set Hd(z) P d(z) Ld(z)

0 1 1 1
1 z 2z − 1 −z + 1
...

...
...

...

d zH
z

d−1(z)− (d− 1)H
z

d−2(z) (−1)d
∑d

k=0

(
d
k

)(
d+ k
k

)
(−z)k

(2d− 1− z) L
z

d−1(z)

d

−(d− 1)L
z

d−2(z)

d

normalization Ĥz
d(z) = H

z

d(z)/
√
d! P̂ z

d (z) = P
z

d(z)
√

2d+ 1 L̂zd(z) = L
z

d(z)

6.5.4 Construction of Multivariate Basis from Univariate Bases

There is no ambiguity in basis construction when there is only one variable : we select poly-

nomials of increasing degree. However, when there are more probabilistic random variables,

basis construction can take multiple routes. For this discussion, let us assume that there

are two probabilistic random variables. Let y1 be the first probabilistic random variable

of assumed degree d1 giving rise to N1 = 1 + d1 univariate basis entries, y2 be the second

probabilistic random variable of assumed degree d2 giving rise to N2 = 1 + d2.

6.5.4.1 Tensor Product Rule

If we use the tensor product to construct the bivariate basis Y = Y1 ⊗ Y2 we have N =

N1 ×N2 = (1 + d1)× (1 + d2) bivariate basis functions of the form ψ̂y(y1, y2). In general, if

there are M probabilistic random variables we will generate

N =
M∏

i=1

(1 + di) (6.88)
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M−variate basis functions of the form ψ̂y(y1, y2, . . . , yM). Clearly, the selection of degree for

each probabilistic random variables has a strong impact on the number of terms in the entire

basis set, and we must be cautious of the associated computational expenses when solving

stochastic PDEs.

6.5.4.2 Complete Polynomial Rule

Let dmax = max{d1, d2} be the maximum degree among all random variables. We construct

the bivariate basis set such that for any basis entry, the sum of degrees does not exceed

the maximum degree, that is d1 + d2 ≤ dmax. This offers a better construction of basis set

compared to tensor product construction.

Illustrative Example: Let y1 ∼ N (µ, σ) with d1 = 2, and y2 ∼ U(a, b) with d2 = 3. We

obtain the following basis set using tensor and complete polynomial based constructions

ψ̂(y1, y2) =




basis function total degree construction type

Ĥy
0 (y)P̂ y

0 (y) 0 tensor, complete

Ĥy
0 (y)P̂ y

1 (y) 1 tensor, complete

Ĥy
1 (y)P̂ y

0 (y) 1 tensor, complete

Ĥy
0 (y)P̂ y

2 (y) 2 tensor, complete

Ĥy
1 (y)P̂ y

1 (y) 2 tensor, complete

Ĥy
2 (y)P̂ y

0 (y) 2 tensor, complete

Ĥy
0 (y)P̂ y

3 (y) 3 tensor, complete

Ĥy
1 (y)P̂ y

2 (y) 3 tensor, complete

Ĥy
2 (y)P̂ y

1 (y) 3 tensor, complete

Ĥy
1 (y)P̂ y

3 (y) 4 tensor

Ĥy
2 (y)P̂ y

2 (y) 4 tensor

Ĥy
2 (y)P̂ y

3 (y) 5 tensor




(6.89)
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CHAPTER 7

ADJOINT BASED OPTIMIZATION UNDER UNCERTAINTY USING

PROJECTION AND SAMPLING

Because philosophy arises from awe, a philosopher is bound in his way

to be a lover of myths and poetic fables. Poets and philosophers are

alike in being big with wonder.

Thomas Aquinas

Introduction. We are interested in solving OUU problems embedding optimality, robust-

ness and reliability considerations of the form

minimize
ξ

(1− α) · E[F (ξ, ·)] + α · S[F (ξ, ·)]

subject to E[G(ξ, ·)] + β · S[G(ξ, ·)] ≤ 0

E[H(ξ, ·)] = 0

require
dE[F (ξ, ·)]

dξ
,
dE[G(ξ, ·)]

dξ
,
dE[H(ξ, ·)]

dξ

dS[F (ξ, ·)]
dξ

,
dS[G(ξ, ·)]

dξ

(7.1)

Here, the notation F (ξ, ·) is the short hand notation for F (y(ξ), u(y(ξ)), u̇(y(ξ)), ü(y(ξ))),

acknowledging the presence of state variables and their time derivatives. In this chapter, let

us explore the computation of the quantities necessary to solve (7.1), that are the probabilistic

moments E[F ], V[F ] , S[F ], and design-variable derivatives of probabilistic moments
dE[F ]

dξ
,

dV[F ]

dξ
,
dS[F ]

dξ
. The evaluation of derivatives using the adjoint method has been discussed in

Chapters 2, 3, 4, in the context of stationary systems and time dependent systems. In this

chapter, the extension of adjoint method for probabilistic systems is presented along the line

of sampling and semi-intrusive projection.
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7.1 Nonintrusive Sampling Method

The principle of nonintrusive methods is to repeatedly evaluate the function of interest at

predetermined nodes yi to compute the probabilistic moments and derivatives. The number

of quadrature nodes M is chosen based on the computational budget at hand.

7.1.1 Expectation

The expectation of function is

E[F (y(ξ), ·)] =

∫

Y
ρy(y)F (y(ξ), ·) dy =

〈
1(y(ξ))

∣∣∣ F (y(ξ), ·)
〉Y
ρy(y)

≈
M∑

i=1

αyi × 1(yi)× F (yi(ξ), ·).
(7.2)

The derivative of expectation of function with respect to design variables ξ is

dE[F (y(ξ), ·)]
dξ

=
d

dξ

(∫

Y
ρy(y)F (y(ξ), ·) dy

)
=

∫

Y

∂ (ρy(y)F (y(ξ), ·))
∂ξ

dy

=

∫

Y
ρy(y)

∂F (y(ξ), ·)
∂ξ

dy

= E
[
∂F (y(ξ), ·)

∂ξ

]

≈
M∑

i=1

αyi × 1(yi)×
∂F (yi(ξ), ·)

∂ξ

(7.3)

7.1.2 Variance

The variance of function is

V[F (y(ξ), ·)] = E[F (y(ξ), ·)× F (y(ξ), ·)] − E[F (y(ξ), ·)]× E[F (y(ξ), ·)]

=
〈

1(y(ξ))
∣∣∣ F 2(y(ξ), ·)

〉Y
ρy(y)

−
(〈

1(y(ξ))
∣∣∣ F (y(ξ), ·)

〉Y
ρy(y)

)2

≈
M∑

i=1

αyi × F 2(yi(ξ), ·) −
(

M∑

i=1

αyi × F (yi(ξ), ·)
)2

(7.4)
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The derivative of variance is

dV[F (y(ξ), ·)]
dξ

= E
[
2F (y(ξ), ·)× ∂F (y(ξ), ·)

∂ξ

]
− 2E[F (y(ξ), ·)]× ∂E[F (y(ξ), ·)]

∂ξ

= E
[
2F (y(ξ), ·)× ∂F (y(ξ), ·)

∂ξ

]
− 2E[F (y(ξ), ·)]× E

[
∂F (y(ξ), ·)

∂ξ

]

≈
(

M∑

i=1

αyi × 2F (yi(ξ), ·)×
∂F (yi(ξ), ·)

∂ξ

)
− 2

(
M∑

i=1

αyi × F (yi(ξ), ·)
)

×
(

M∑

i=1

αyi ×
∂F (yi(ξ), ·)

∂ξ

)

(7.5)

7.1.3 Standard Deviation

The standard deviation of function is

S[F (y(ξ), ·)] =
√
V[F (y(ξ), ·) (7.6)

The derivative of standard deviation is

dS[F (y(ξ), ·)]
dξ

=
1

2
√

V[F (y(ξ), ·)]
× ∂V[F (y(ξ), ·)]

∂ξ
(7.7)

The standard deviation and its derivative need no new additional evaluations. Note that

all three probabilistic moments and its derivatives are obtained by repeatedly evaluating:

F (y(ξ), ·), F 2(y(ξ), ·) and ∂F (y(ξ), ·)
∂ξ

. No modifications are necessary to existing source code

that computes F and
∂F

∂ξ
; therefore, this method is referred to as nonintrusive. Figure 7.1

illustrates this process; the red band indicates the nonlinear solution process at each node

and the green band denotes the summation involved in the computation of quantities of

interest.
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Probabilistic
Moments

y1

y2

y3

y4

R (y1, u(y1))
=
0

R (y2, u(y2))
=
0

R (y3, u(y3))
=
0

R (y4, u(y4))
=
0

F (y1, u(y1))
&

∂F
∂ξ (y1, u(y1))

&
F 2(y1, u(y1))

F (y2, u(y2))
&

∂F
∂ξ (y2, u(y2))

&
F 2(y2, u(y2))

F (y3, u(y3))
&

∂F
∂ξ (y3, u(y3))

&
F 2(y3, u(y3))

F (y4, u(y4))
&

∂F
∂ξ (y4, u(y4))

&
F 2(y4, u(y4))

α1

α2

α3

α4

Figure 7.1: Graphical illustration of stochastic sampling with four quadrature nodes.

7.2 Semi-Intrusive Stochastic Galerkin Projection Method

In this section, we present the mathematical details of a semi-intrusive method of performing

Galerkin projection in probabilistic domain to solve OUU problems governed by stochastic

partial differential equations. We apply the finite element method for spatial discretization,

implicit time marching methods for temporal discretization and discrete-adjoint method for
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sensitivity analysis [119, 120]. Our goal is to devise a strategy that parallels the solution

process of deterministic problems and extending it into a stochastic analysis framework.

This will enable the programming implementations to reuse the deterministic capabilities for

spatial and temporal discretizations, while addressing the additional probabilistic domain.

7.2.1 Probabilistic Parameters, Basis and Quadrature

The creation of probabilistic parameters, setup of multivariate basis functions and quadrature

rules used in this work are summarized next (see Chapter 6 for details).

(a) Probabilistic Parameters: We begin with a deterministic framework for PDEs

where we specify coefficients for physical properties, initial and boundary conditions, as

well as forcing functions. In order to incorporate the effect of uncertainties, we model the

PDE inputs as variables that follow certain probability distribution types (see Table 7.1).

This leaves us with a vector of random variables y = [y1, y2, . . . , yM ], where M is the to-

tal number of probabilistically modeled random variables in the problem. Note that the

random variables do not take the role of PDE inputs, but instead the PDE inputs are

functions of random variables – the PDE inputs emerge from probabilistic parameter space.

Table 7.1: Probability distributions, their standardized forms and orthonormal polynomials.

Distribution PDF Standardization Standard PDF Orthonormal Polynomials

Gaussian
1

σ
√

2π
exp

[
−1

2

(
y − µ
σ

)2
]

z =
y − µ
σ

1√
2π

exp

(
−1

2
z2
)

1
0!
, z
1!
, z

2−1
2!

(Hermite)

Uniform
1

b− a z =
y − a
b− a 1

√
1, (2z − 1)

√
3, (6z2 − 6z + 1)

√
5

(Legendre)

Exponential 1
β

exp
[
−
(
y−µ
β

)]
z =

y − µ
β

exp(−z) 1
0!
, −z+1

1!
, z

2−4z+2
2!

(Laguerre)

(b) Probabilistic Basis: We select a set of orthonormal polynomials from the sequence

of polynomials listed in Table 7.1, to serve as univariate basis functions along each proba-
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bilistic dimension based on the distribution type. The simplest option is to limit the highest

allowed degree for each probabilistic variable. An univariate basis can be extended to mul-

tivariate basis using tensor product rule, complete polynomial rule or others. Finally, we

obtain the following orthonormal multivariate basis set

ψ̂(y) = {ψ̂1(y), ψ̂2(y), . . . , ψ̂N(y)}, (7.8)

where N is the total number of multivariate basis functions that act as stochastic degrees of

freedom that are associated with each deterministic spatio-temporal degrees of freedom. As

a consequence of this property, a trivial unicardinal basis set ψ̂(y) = {1} simply recovers the

deterministic problem, which is handy during the verification and validation of stochastic

Galerkin framework. The orthonormality of any two basis functions ψ̂i(y) and ψ̂j(y) is

mathematically defined as

〈
ψ̂i(y)

∣∣∣ ψ̂j(y)
〉Y
ρy(y)

=

∫

Y
ψ̂i(y)ρy(y)ψ̂j(y) dy =





1 if i = j

0 if i 6= j

, (7.9)

where ρy(y) ≥ 0 for y ∈ Y is the probability density function. Since, the orthonormal

polynomial set is derived based on the standard random variable z ∈ Z (see Table 7.1), the

calculus rules for transformation of variables must be used when evaluating inner products

in the physical probabilistic domain Y . Note that the standardization is usually done with

zero location and unit stretch as distribution parameters.

(c) Probabilistic Quadrature: We obtain one dimensional quadrature points based on

the distribution type and perform tensor product along each dimension to setup multivariate

quadrature to approximate integrals arising in projection. We refer to the resulting set of

weights and quadrature points as {αq, yq}Qq=1, where αq refers to the q − th scalar weight,

yq refers to the q − th quadrature point vector, and Q is the total number of quadrature
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points. Instead of full tensor product, the sparse quadrature methods can also be used when

appropriate smoothness justifications can be made; but these are not explored in this work.

7.2.2 Temporal Physical Analysis

The residual of the stochastic governing equations can be written in implicit form as

R (t, y, u(t, y), u̇(t, y), ü(t, y)) = 0

u(0, y) = u0(y)

u̇(0, y) = u̇0(y)

(7.10)

where u(t, y) are the functions characterizing the physical state of the stochastic system,

with their corresponding first and second time derivatives, u̇(t, y) and ü(t, y), respectively.

Note that t is the temporal variable from time domain T , and y is the random variable from

probabilistic domain Y .

7.2.2.1 Formation of Stochastic States

We begin the solution process to (7.10) with the following hypothesis for stochastic state

functions:

u(t, y) ≈
N∑

i=1

ui(t)ψ̂i(y)

u̇(t, y) ≈
N∑

i=1

u̇i(t)ψ̂i(y)

ü(t, y) ≈
N∑

i=1

üi(t)ψ̂i(y)

(7.11)

Eq. (7.11) applies the principle of superposition and separation of variables for solving differ-

ential equations. Due to global support of the basis functions ψ̂(y) used in this work, these

can be referred to as spectral expansion of stochastic fields (polynomial chaos expansions).
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7.2.2.2 Formation of Stochastic Residual

The stochastic residual vector can be computed using repeated evaluations of the determin-

istic residual vector for each quadrature point. The i-th stochastic residual component is the

coefficient resulting from the projection of (7.10) on the i-th basis set component ψ̂i(y):

Ri ,
〈
ψ̂i(y)

∣∣∣ R(t, y, u(t, y), u̇(t, y), ü(t, y))
〉Y
ρy(y)

≈
Q∑

q=1

αqψ̂i(yq)︸ ︷︷ ︸
scalar

R(t, yq, u(t, yq), u̇(t, yq), ü(t, yq))︸ ︷︷ ︸
deterministic residual evaluated at yq

.
(7.12)

We use numerical quadrature to approximate this inner product with Q quadrature points

from the probabilistic space Y . The number of quadrature points necessary can sometimes

be determined a priori from the polynomial degree of the integrand, and can be used to

optimize computations. The full stochastic residual vector takes the form:

R =




R1

R2

...

RN




=




Q∑
q=1

αqψ̂1(yq)R(t, yq, u(t, yq), u̇(t, yq), ü(t, yq))

Q∑
q=1

αqψ̂2(yq)R(t, yq, u(t, yq), u̇(t, yq), ü(t, yq))

...
Q∑
q=1

αqψ̂N(yq)R(t, yq, u(t, yq), u̇(t, yq), ü(t, yq))




(7.13)

The Newton-Raphson iterative process for nonlinear solution [119, 120] of governing equa-

tions (7.10) uses assumed stochastic state values U(t) = [u1(t), u2(t), . . . , uN(t)], based on

which u(t, yq) are evaluated following (7.11). The size of the stochastic residual vector is

N times the size of deterministic residual vector, as a direct consequence of the setup of

the probabilistic basis functions. In physics-based simulations, one works with element-wise

residuals and assembled system-wide residuals; the approach that we present here applies

to system-wide and element-wise residuals. Based on Eqs. (7.12) and (7.13), we show that

the stochastic residual can be computed implicitly using repeated evaluations of the deter-
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ministic residual at predetermined parameter values yq. When one applies sampling-based

approach for uncertainty propagation, the deterministic code is evaluated for samples points

yq based on which statistics of the output metrics are computed as discussed in Section 7.1,

referring to the class of methods as “non-intrusive”. We refer to our approach as “semi”-

intrusive, because the deterministic simulation codes should have the flexibility to update

parameters so as to recompute residuals, which may or may not have been be implemented

a priori based on the software architecture.

7.2.2.3 Formation of Stochastic Jacobian

The stochastic Jacobian matrix (the Jacobian matrix of the stochastic ODE/DAE) can be

computed using repeated evaluations of the deterministic Jacobian (the Jacobian matrix

of the deterministic ODE/DAE) for each quadrature point. The block component of the

stochastic Jacobian is

Ji, j ,
〈
ψ̂i(y)

∣∣∣ J(t, y, u(t, y), u̇(t, y), ü(t, y))
∣∣∣ ψ̂j(y)

〉Y
ρy(y)

≈
Q∑

q=1

αqψ̂i(yq)ψ̂j(yq)︸ ︷︷ ︸
scalar

J(t, yq, u(t, yq), u̇(t, yq), ü(t, yq))︸ ︷︷ ︸
deterministic Jacobian evaluated at yq

(7.14)

where J is the deterministic Jacobian and Q is the number of quadrature points. The full

stochastic Jacobian matrix takes the form

J =




J1, 1 J1, 2 . . . J1, N

J2 1 J2, 2 . . . J2, N

...
... . . . ...

JN, 1 JN, 2 . . . JN,N



. (7.15)

A graphical illustration and scope for parallelism: The formation of stochastic resid-

ual and Jacobian through projection is illustrated in Figure 7.2. As it can be seen, the re-

quired items are the basis functions, quadrature nodes with weights and deterministic resid-
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ual/Jacobian counterparts. The green band refers to the summation involved in quadrature

approximation of inner products. Depending on the implementation of the underlying de-

terministic code, the formation of stochastic residuals and Jacobians can be done in parallel.

⟨
R (y , u(y))

∣∣∣ψ̂j(y)
⟩

R (y1, u(y1)) α1

y1

ψ̂j(y1)

R (y2, u(y2)) α2

y2

ψ̂j(y2)

R (y3, u(y3)) α3

y3

ψ̂j(y3)

R (y4, u(y4)) α4

y4

ψ̂j(y4)

(a) Projection of residual

⟨
ψ̂i(y)

∣∣∣ dRdu (y , u(y))
∣∣∣ψ̂j(y)

⟩
dR
du (y1, u(y1)) ψ̂j(y1)

y1

ψ̂i(y1)

α1

dR
du (y2, u(y2)) ψ̂j(y2)

y2

ψ̂i(y2)

α2

dR
du (y3, u(y3)) ψ̂j(y3)

y3

ψ̂i(y3)

α3

dR
du (y4, u(y4)) ψ̂j(y4)

y4

ψ̂i(y4)

α4

(b) Projection of Jacobian

Figure 7.2: The formation of stochastic residual and Jacobian entries using inner products
approximated using quadrature.

Sparsity and symmetry: The question of the sparsity and symmetry of the stochastic

Jacobian matrix arises naturally in the interest of efficient computations. Since we use

normalized basis functions for projection (orthonormal polynomials), we have a symmetry

stochastic Jacobian. The nonzero entries (sparse entries) of the Jacobian can be determined,

if the polynomial degree of the probabilistically modeled PDE inputs is known. This can

offer significant computational savings and pave way for matrix-free implementations that are

suitable for parallel scaling. The sparsity is also dependent on the choice of basis functions,

and their ordering. The study of sparsity of stochastic Galerkin matrices is reported in Ernst

and Ullmann [81]. In Section 7.2.4, we perform a study on the sparsity patterns resulting
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from basis selection using tensor-product rule and basis selection using complete polynomial

rule for different stateless Jacobians.

7.2.2.4 Initial Conditions

The initial conditions of the stochastic ODE can be formed by reevaluating the deterministic

initial conditions for each quadrature point. The i-th component of the stochastic initial

condition vector is formed as

〈
ψ̂i(y)

∣∣∣ u0(y)
〉Y
ρy(y)
≈

Q∑

q=1

αqψ̂i(y q)︸ ︷︷ ︸
scalar

u0(yq)︸ ︷︷ ︸
deterministic ICs for yq

(7.16)

The treatment of boundary conditions of the PDE follow in a similar fashion.

7.2.3 Adjoint Sensitivity Analysis

For solving the probabilistic OUU problem (2.17), we require the derivatives of the expecta-

tion, standard deviation and variance of the metrics of interest, with respect to the design

variables. The adjoint sensitivity analysis involves solving the adjoint equations and forming

the total derivative based on the adjoint variables. We detail the extension of deterministic

adjoint formulation to stochastic adjoint by reusing the deterministic capabilities. The deter-

ministic adjoint formulations used here are published in Boopathy and Kennedy [119, 120].

7.2.3.1 Expectation Operator

The expectation of metric of interest F (t, y, u(t, y), u̇(t, y), ü(t, y))) denoted as F (y, ·) is

E[F (y, ·)] =
〈
ψ̂1(y)

∣∣∣ F (y, ·)
〉Y
ρy(y)

≈
Q∑

q=1

αqψ̂1(yq)︸ ︷︷ ︸
scalar

F (yq, ·)︸ ︷︷ ︸
deterministic

(7.17)

The deterministic metric is evaluated repeatedly at points corresponding to probabilistic

quadrature to obtain the expectation operator. The derivative of expectation of the metric
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with respect to the design variables follows as

dE [F (y, ·)]
dξ

=
〈
ψ̂1(y)

∣∣∣ dF (y, ·)
dξ

〉Y
ρy(y)
≈

Q∑

q=1

αqψ̂1(yq)︸ ︷︷ ︸
scalar

dF (yq, ·)
dξ︸ ︷︷ ︸

deterministic

. (7.18)

The deterministic adjoint derivative of F (yq, ·) is evaluated as

dF (yq, ·)
dξ

=
∂F (yq, ·)

∂ξ
+ λT (t, yq)

∂R(yq, ·)
∂ξ

, (7.19)

where the stochastic adjoint states

λ(t, y) ≈
N∑

i=1

λi(t)ψ̂i(y) (7.20)

are solved from the linear system




J1, 1 J1, 2 . . . J1, N

J2 1 J2, 2 . . . J2, N

...
... . . . ...

JN, 1 JN, 2 . . . JN,N




T 


λ1

λ2
...

λN




= −




(∂F (·)/∂u)1

(∂F (·)/∂u)2
...

(∂F (·)/∂u)N




(7.21)

The right hand side terms are formed by projecting deterministic terms as

(∂F/∂u)i =
〈
ψ̂1(y)

∣∣∣ ∂F (y, ·)/∂u
〉Y
ρy(y)

≈ αqψ̂1(yq)︸ ︷︷ ︸
scalar

∂F (yq, ·)/∂u︸ ︷︷ ︸
determinisic rhs at yq

(7.22)

In time dependent adjoint formulations, the right hand side terms are composed of contri-

butions that are not solely the partial derivatives of metrics ∂F/∂u (see Chapter 4). In this

scenario, the fully formed right hand side can be projected as outlined in (7.21).
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7.2.3.2 Variance Operator

The variance is

V[F (y, ·)] = E[F 2(y, ·)]− E[F (y, ·)]2

=
〈
ψ̂1(y)

∣∣∣ F 2(y, ·)
〉Y
ρy(y)
−
〈
ψ̂1(y)

∣∣∣ F (y, ·)
〉Y
ρy(y)

2

≈
Q∑

q=1

αqψ̂1(y q)︸ ︷︷ ︸
scalar

F 2(yq, ·)︸ ︷︷ ︸
deterministic

−




Q∑

q=1

αqψ̂1(y q)︸ ︷︷ ︸
scalar

F (yq, ·)︸ ︷︷ ︸
deterministic




2
(7.23)

The derivative of variance follows as

dV[F (y, ·)]
dξ

=
dE[F 2(y, ·)]

dξ
− 2E[F (y, ·)]dE[F (y, ·)]

dξ
(7.24)

where the first term

dE[F 2(y, ·)]
dξ

=
〈
ψ̂1(y)

∣∣∣ 2F (y, ·)dF (y, ·)
dξ

〉Y
ρy(y)

≈
Q∑

q=1

2αqψ̂1(y q)︸ ︷︷ ︸
scalar

F (yq, ·)
dF (yq, ·)

dξ︸ ︷︷ ︸
deterministic

(7.25)

The deterministic adjoint derivative of F 2(yq, ·) is evaluated as

dF 2(yq, ·)
dξ

=
∂F 2(yq, ·)

∂ξ
+ φT (t, yq)

∂R(yq, ·)
∂ξ

. (7.26)

The stochastic adjoint states

φ(t, y) ≈
N∑

i=1

φi(t)ψ̂i(y) (7.27)
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are solved from the linear system




J1, 1 J1, 2 . . . J1, N

J2 1 J2, 2 . . . J2, N

...
... . . . ...

JN, 1 JN, 2 . . . JN,N




T 


φ1

φ2

...

φN




= −




(∂F 2(·)/∂u)1

(∂F 2(·)/∂u)2
...

(∂F 2(·)/∂u)N




(7.28)

The right hand side terms are formed by projecting deterministic terms as

(
∂F 2(y, ·)

∂u

)

i

=
〈
ψ̂1(y)

∣∣∣ 2F (y, ·)∂F (y, ·)
∂u

〉Y
ρy(y)

≈ 2αqψ̂1(yq)︸ ︷︷ ︸
scalar

F (yq, ·)
∂F (yq, ·)

∂u︸ ︷︷ ︸
determinisic rhs at yq

(7.29)

7.2.3.3 Standard Deviation Operator

The standard deviation of a function of interest can be obtained from the variance

S[F (y, ·)] =
√
V[F (y, ·). (7.30)

The derivative of standard deviation is

dS[F (y, ·)]
dξ

=
1

2
√

V[F (y, ·)]
· dV[F (y, ·)]

dξ
(7.31)

7.2.4 Study of Stochastic Projection Matrices

In this section, we are interested in studying the pattern of non-zero entries of the Jacobian

matrices arising in stochastic computations. By knowing the nonzero patterns apriori or

real-time allows one to efficiently perform stochastic numerical computations. The study

of sparsity of stochastic Galerkin matrices is reported in works such as Ernst and Ullmann

[81]. Apart from deducing conditions on when the coefficients are nonzero, we also study the
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numerical aspects such as the minimum possible number of quadrature points for optimal

evaluation of inner products.

7.2.4.1 Entries of the Jacobian Matrix

Let y = [y1, y2, . . . , yN ] be a vector of random variables. If we decompose one of the basis

entry, say ψi(y), with respect to another basis entry, say ψj(y), we get the decomposition

coefficient as either one (when i = j) or zero (when i 6= j) owing to the orthonormality of

basis functions by construction. However, if we project a function, say h(y) = f(y)× ψj(y),

on one of the basis functions ψi(y), we shall get a scalar as the decomposition coefficient,

depending on the actual form of the function f(y). We use the term Jacobian to refer to

the two-dimensional arrangement of decomposition coefficients J (a second-order tensor)

indexed by an ordered tuple (i, j). Formally, the (i,j)-th entry of Jacobian matrix results

from the inner product (projection) defined as

Jij =
〈
ψi(y)

∣∣∣ f(y)
∣∣∣ ψj(y)

〉Y
ρ(y)

=

∫

Y
ψi(y)f(y)ψj(y)ρ(y)dy ≈

Q∑

q=1

αqψi(yq)f(yq)ψj(yq).

(7.32)

Here Q is the total number of multivariate quadrature points and αq are the associated

weights. The sparsity of Jacobian matrix J depends on the functional form of f(y) as it can

be a polynomial function like y2−y, or a trigonometric like sin(y), or a rational function like

1/(1+y2). Although f(y) may assume any functional form as mentioned above, for the type

of partial differential equations of engineering relevance and of interest in this work, f(y)

takes simple polynomial forms and is a placeholder for coefficients of the partial differential

equation.

7.2.4.2 Degree of Integrand and Quadrature Points

Consider a function of three variables f(y1, y2, y3) to assume forms listed in Table 7.2 with

corresponding variable-wise degrees [d1, d2, d3]. Recall that for polynomial function in more
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Table 7.2: Functional forms and corresponding variable-wise degrees.

No. Functional form of f(y) Variable-wise degree

1 y1 [1, 0, 0]
2 y1y2 [1, 1, 0]
3 y32 [0, 3, 0]
4 y21y

2
2 + 3y31y3 + 4y2 [3,2,1]

5 y1y3 + sin(y1) [∞, 0, 1]
6 y1y2 + cos(y1, y3) [∞, 1,∞]
7 y1y2 + exp(y1, y3) [∞, 1,∞]

than one variable, the degree of a term is the sum of exponents of the variables. The total

degree of the polynomial is the maximum of the term-wise degrees. However, instead of

total highest degree, we work with variable-wise highest degrees that facilitates constructing

quadrature rules based on the actual degree of the variable thereby reducing the number

of evaluations of f(y). Recall that the number of quadrature points required to integrate a

function of degree d is Q = 2(d)− 1. Based on this rule, Table 7.3 lists the number of points

and the polynomials that are exactly integrated.

Table 7.3: Degree of operand for different mathematical operations.

number of quadrature points polynomials Pi(y)

1 P0, P1

2 P0, P1, P2, P3

3 P0, P1, P2, P3, P4, P5

7.2.4.3 Sparsity for Tensor and Complete Polynomial Spaces

Let us analyze the sparsity patterns resulting from basis selection using tensor-product rule

and basis selection using complete polynomial rule, on a variety of stateless Jacobian func-

tions. The number of primary off-diagonal bands depend on the nonlinearity of the function

f(y).
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Uncoupled Sparsity From Figure 7.3 we see that there are two primary off-diagonal

bands which in the exponent on the first-random variable.

0 90 180 270 360
0

90

180

270

360 –1.00

–0.80

–0.60

–0.40

–0.20

0.00

+0.20

+0.40

+0.60

+0.80

+1.00

(a) tensor basis

0 26 52 78 105
0

26

52

78

105 –1.00

–0.80

–0.60

–0.40

–0.20

0.00

+0.20

+0.40

+0.60

+0.80

+1.00

(b) complete basis

Figure 7.3: Jacobian of decomposition for f(y) = y21 for d1 = 2, d2 = 0, d3 = 0, d4 = 0.
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Figure 7.4: Jacobian of decomposition for f(y) = y43 for d1 = 0, d2 = 0, d3 = 4, d4 = 0.

From Figure 7.4 we see that there are four primary off-diagonal bands which in the

exponent on the third-random variable.

Coupled Sparsity When there is a coupling among probabilistic dimensions (variables),

for example y1y2 (not y1+y2), we observe secondary bands. Figures 7.6, 7.7 and 7.8 illustrate

the presence of secondary bands resulting from coupling between probabilistic dimensions.
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Figure 7.5: Jacobian of decomposition for f(y) = y1+y2+y3 for d1 = 1, d2 = 1, d3 = 1, d4 = 0.
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Figure 7.6: Jacobian of decomposition for f(y) = y1y2 for d1 = 1, d2 = 1, d3 = 0, d4 = 0.
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Figure 7.7: Jacobian of decomposition for f(y) = y1y2y3 for d1 = 1, d2 = 1, d3 = 1, d4 = 0.
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Figure 7.8: Jacobian of decomposition for f(y) = y1y2y3y4 for d1 = 1, d2 = 1, d3 = 1, d4 = 1.

7.3 Implementation of Semi-Intrusive Stochastic Galerkin Method

We proceed with the subject of computer implementation of semi-intrusive SGM. We be-

gin with the summary of the deterministic and stochastic finite element methodologies in

Table 7.4. The mesh information (nodes and connectivities) are identical between the two

methods, but differ in residual, Jacobians and metrics of interest.

Table 7.4: Summary of deterministic and stochastic finite element methodologies.

Deterministic FEM Stochastic FEM

nodes coordinates of position vectors of
points discretizing the spatial ge-
ometry

coordinates of position vectors of
points discretizing the spatial ge-
ometry

connectivity ordered sequence of nodes define
a deterministic element

the same sequence of nodes define
a stochastic element

state (field) variables spatial and temporal degrees of
freedom

spatial, temporal, and probabilis-
tic degrees of freedom

residuals, Jacobians vectors and matrices that are de-
rived from deterministic ODE

vectors and matrices that are N
times larger than deterministic
ODEs

metrics of interest integrals (or functions of integrals
of) in space and time domains

moments of integrals (or func-
tions of integrals of) in space and
time domains

152



7.3.1 Software Architecture for Element-wise Projection

Often, finite element simulation libraries use object-oriented programming principles such

as abstraction, inheritance and composition. We outline the object-oriented software ar-

chitecture that is used to develop the stochastic finite element framework by extending the

deterministic finite element framework TACS [119, 120]. Figure 7.9 shows the core element-

level software architecture followed in this work. The deterministic finite element framework

Deterministic Element Library

Stochastic Galerkin Plugin

«interface»
Element

Add Residual and Jacobian
Add Residual State Variable Sensitivity
Add Residual Design Variable Sensitivity

Element Type 1

Add Residual and Jacobian
Add Residual State Variable Sensitivity
Add Residual Design Variable Sensitivity

Element Type 2

Add Residual and Jacobian
Add Residual State Variable Sensitivity
Add Residual Design Variable Sensitivity

ProbabilisticSpace

Add Random Parameter
Get Quadarature Points and Weight
Evaluate Orthonormal Basis

StochasticElement
Add Residual and Jacobian
Add Residual State Variable Sensitivity
Add Residual Design Variable Sensitivity

uses

uses use
s

Figure 7.9: The element-level software architecture of semi-intrusive stochastic Galerkin
method for projection in probabilistic space.

for multibody dynamics has a pool of concrete classes implementing the Element interface.

We refer to these concrete classes with generic names Element Type 1 and Element Type

2, but these are often beams, shells, solids, rigid bodies, kinematic constraints in the context

of multibody dynamics. These concrete classes provide us the means to obtain deterministic

residuals, Jacobian matrices, as well as derivatives needed for adjoint sensitivity analysis.

This forms the core of deterministic adjoint-enabled finite element framework. In order to

extend this framework to implement stochastic Galerkin finite element method, we provide

two new classes ProbabilisticSpace and StochasticElement, that function as follows:
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1. The ProbabilisticSpace class acts as a container for probabilistically modeled ran-

dom parameters, as well as is responsible for multivariate basis evaluation and quadra-

ture setup. This class abstracts the different options for basis function evaluation and

quadrature rules.

2. The StochasticElement class implements the Element interface and uses one of the

concrete deterministic element instances. Thus, the StochasticElement is a regular

element through inheritance, and also has a deterministic element through composi-

tion. The composition enables the reuse of underlying deterministic capabilities for

forward analysis and adjoint sensitivity analysis. The inheritance allows us to utilize

the existing assembly, linear algebra and time-marching algorithms.

In addition to the architecture of the element library shown in Figure 7.9, there are other

classes such as the Assembler and the TimeIntegrator responsible for system-wide assem-

bly operations, and implicit time marching, respectively (see Section 4.6 for details). The

evaluation of metrics of interest can be accomplished through a similar setup of Function –

StochasticFunction using ProbabilisticSpace. The evaluation of deterministic metrics

such as stress, compliance and structural mass, happens through specialized implementa-

tions of the Function interface. The StochasticFunction is responsible for computing the

probabilistic moments of such deterministic metrics.

System-wide and Element-wise Projection: We presented the architecture for element-

wise stochastic Galerkin projection. As mentioned earlier in this section, it is also pos-

sible to perform Galerkin projection at the system level operating on larger system wide

matrices and vectors. In order to achieve that, the architecture would involve the same

ProbabilisticSpace class operating on StochasticAssembler extending Assembler inter-

face. Both options are mathematically equivalent, and thus can be decided based on the

convenience of implementation, and software architecture of the deterministic code base.
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7.3.2 Software Algorithms for Element-wise Projection

We present basic computational algorithms forming the core of nonlinear stochastic solution

process. A nonlinear solution process is driven by assembling residuals, Jacobians and initial

conditions (e.g. Newton–Raphson method). The goal here is to present the key mathematical

operations in the form of algorithms, thus the presented algorithms need not be an optimal

implementation for fast computations.

7.3.2.1 Stochastic Element Residual

Let the deterministic residual of an element e be Re (t, y, ue(t, y), u̇e(t, y), üe(t, y)) and the

stochastic residual of element e be Re
(
t, y, U e(t), U̇ e(t), Ü e(t)

)
. The size of stochastic ele-

ment residual vector is N times the size of deterministic element residual vector, where the

integer multiple is the number of basis functions in the orthonormal set. For every orthonor-

mal basis function i = 1, . . . , N , we project the element residual on basis function ψ̂yi (y) and

place the decomposition coefficients in the stochastic element residual array. This projection

is evaluated using numerical quadrature as

〈
ψ̂yi (y)

∣∣∣ Re (t, y, ue(t, y), u̇e(t, y) , üe(t, y))Yρy(y)

〉

≈
Q∑

q=1

αqψ̂
y
i (yq)R

e (t, yq, u
e(t, yq), u̇

e(t, yq), ü
e(t, yq))

(7.33)

We repeatedly evaluate the deterministic element residuals for each value of quadrature

node yq from the probabilistic domain Y . As an input for evaluation of deterministic element

residuals corresponding yq, we need the deterministic state vectors and their time derivatives
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evaluated as

ue(t, yq) ≈
N∑

i=1

U e
i (t)ψ̂yi (yq)

u̇e(t, yq) ≈
N∑

i=1

U̇ e
i (t)ψ̂yi (yq)

üe(t, yq) ≈
N∑

i=1

Ü e
i (t)ψ̂yi (yq).

(7.34)

In an iterative solution process such as Newton–Raphson method for solving nonlinear sys-

tems U e
i (t), U̇ e

i (t), and Ü e
i (t) are available as initial guesses. Thus all information required to

form the stochastic residual by decomposing deterministic residuals on each basis term from

stochastic space is readily available. The Algorithm 1 details the formation of stochastic

residual by projecting deterministic residual on to the probabilistic basis elements.

7.3.2.2 Stochastic Element Jacobian

Let the deterministic Jacobian of an element e be Je (t, y, ue(t, y), u̇e(t, y), üe(t, y)) and the

stochastic Jacobian be J e
(
t, y, U e(t), U̇ e(t), Ü e(t)

)
. The process is similar to the residual

assembly and the projection in stochastic domain is performed as

〈
ψ̂yi (y)

∣∣∣ Je (t, y, ue(t, y), u̇e(t, y) , üe(t, y))
∣∣∣ ψ̂yj (y)

〉Y
ρy(y)

≈
Q∑

q=1

αqψ̂
y
i (yq)J

e (t, yq, u
e(t, yq), u̇

e(t, yq), ü
e(t, yq)) ψ̂

y
j (yq)

(7.35)

The algorithm performing this is shown in Algorithm 2.
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7.3.2.3 Stochastic Initial Conditions

The projection of initial conditions and their time derivatives is performed as follows

〈
ψ̂yi (y)

∣∣∣ ue(0, y)
〉Y
ρy(y)
≈

Q∑

q=1

αqψ̂
y
i (yq)u

e(0, yq)

〈
ψ̂yi (y)

∣∣∣ u̇e(0, y)
〉Y
ρy(y)
≈

Q∑

q=1

αqψ̂
y
i (yq)u̇

e(0, ẏq)

(7.36)

This includes the case where the initial conditions also are dependent on random variables

from probabilistic domain (uncertainty associated with initial conditions). The algorithm for

this projection is shown in Algorithm 3. Usually for a second-order time dependent process,

we require only upto first-time derivatives.

Summary. We presented the details of nonintrusive and semi-intrusive SGM for UQ, along

with details of adjoint sensitivity analysis. We developed the stochastic FEM framework

using simple extensions of the deterministic finite element framework. We discussed the

formation of stochastic Jacobian matrices in detail with emphasis on optimizing quadrature

evaluations alongside the sparsity and symmetry considerations. The application of the

semi-intrusive approach for stochastic finite volume frameworks (FVM) is straight-forward

and intuitive. In the case of stochastic finite volume method, we should work with cell-wise

residuals and Jacobians, as opposed to element-wise residuals and Jacobians in the context

of FEM. Recall that cells are the fundamental units of FVM computations, and elements

are the fundamental units of FEM framework. In this thesis, the semi-intrusive method is

demonstrated on FEM problems; Chatzimanolakis et al. [121] presents a similar exposition

in the context of FVM for Reynolds-Averaged Navier–Stokes without adjoint sensitivity

analysis.
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Algorithm 1 Algorithm for evaluating stochastic element residual from deterministic ele-
ment residual.
Require: pspace # probabilistic space object
Require: delem # deterministic element object
1: function StochasticResidual(pspace, delem, t, U e, U̇ e, Ü e)
2: N ← pspace.getNumBasisFunctions() # number of stochastic basis functions
3: Nnodes ← delem.getNumNodes() # number of element nodes
4: Nddof ← delem.getNumDof() # number of deterministic degrees of freedom
5: Nsdof ← N ×Nddof # number of stochastic degrees of freedom
6: Re = zeros(Nsdof ) # set the stochastic residual to zero
7: for i = 1, N do # loop over basis function set
8: pspace.InitializeQuadrature(i) # optimize number of quadrature points
9: ! Perform projection using quadrature

10: Ri
e = zeros(Nddof ) # zero vector for storage

11: for q = 1, Q do # quadrature loop
12: yq, zq, αq ← pspace.getQuadraturePointsWeight(q)
13: Rq

e, uq
e, u̇eq, ü

e
q = zeros(Nddof ) # zero vectors for storage

14: ! Form state vectors as input for deterministic element
15: for k = 1, N do # loop over basis function set
16: ψq

z
k ← pspace.evaluateBasis(k, zq) # evaluate k-th basis function

17: uq
e ← uq

e + U e[k ×Nddof : (k + 1)×Nddof ]× ψqzk
18: u̇eq ← u̇eq + U̇ e[k ×Nddof : (k + 1)×Nddof ]× ψqzk
19: üeq ← üeq + Ü e[k ×Nddof : (k + 1)×Nddof ]× ψqzk
20: end for
21: ψq

z
i ← pspace.evaluateBasis(i, zq) # evaluate i-th basis function

22: Rq
e ← delem.getResidual(t, yq, uq

e, u̇eq, ü
e
q) # deterministic residual at yq

23: Ri
e ← Ri

e + αq × ψqzi ×Rq
e # Equation (7.33)

24: end for
25: ! Order stochastic residuals nodewise
26: for ii = 1, Nnodes do
27: off ← ii×Nsdof

28: Re[off + i×Nddof : off + (i+ 1)×Nddof ]← Ri
e[ii×Nddof : (ii+ 1)×Nddof ]

29: end for
30: end for
31: return Re

32: end function

The philosophical awe - entropy and order: We began this Chapter with Thomas

Aquinas’ quote on philosophy and awe. It appears that we use quadrature approximation

of integrals in both sampling and projection methods. The question, out of curiosity, on

how two fundamentally different approaches find application in the same context arises with
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awe. The thoughtful admiration lies in the realization that when we use sampling based

approaches, the probabilistic domain Y is treated at the end, whereas when we perform

projection we are indeed treating the probabilistic domain first and the temporal domain at

the end! This simple and naive shuffled treatment of domains leads to remarkably different

solution approaches to the problem of UQ. The mathematical trick of ordering has indeed

manifested itself before – the adjoint and direct sensitivity analysis methods are yet another

mentionable artifacts in the context of this thesis. This makes oneself humbled in the fact

that the discovering new mathematical techniques, often, do not require new formulations,

but rather depends on the perspective from which we approach the solution. It seems

suitable that informal trick of ordering ought to be elevated to the revered status of being

the principle of ordering, alongside the principle of superposition and the principle separation

of variables in the context of solving differential equations in probabilistic-space-time.
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Algorithm 2 Algorithm for evaluating stochastic element Jacobian from deterministic ele-
ment Jacobian.
Require: pspace # probabilistic space object
Require: delem # deterministic element object
1: function StochasticJacobian(pspace, delem, t, U e, U̇ e, Ü e)
2: N ← pspace.getNumBasisFunctions() # number of stochastic basis functions
3: Nnodes ← delem.getNumNodes() # number of element nodes
4: Nddof ← delem.getNumDof() # number of deterministic degrees of freedom
5: Nsdof ← N ×Nddof # number of stochastic degrees of freedom
6: J e = zeros(Nsdof , Nsdof ) # space for stochastic element Jacobian
7: for i = 1, N do # loop over basis function set for rows
8: for j = 1, N do # loop over basis function set for columns
9: pspace.InitializeQuadrature(i, j) # number of quadrature points

10: ! Perform projection using quadrature
11: Jij

e = zeros(Nddof , Nddof ) # space for Jacobian block at i, j
12: for q = 1, Q do # loop over quadrature
13: yq, zq, αq ← pspace.getQuadraturePointsWeight(q)
14: uq

e, u̇eq, ü
e
q = zeros(Nddof ) # space for deterministic state variables at yq

15: ! Form state vectors as input for deterministic element
16: for k = 1, N do
17: ψq

z
k ← pspace.evaluateBasis(k, zq) # evaluate k-th basis function

18: uq
e ← uq

e + U e[k ×Nddof : (k + 1)×Nddof ]× ψqzk
19: u̇eq ← u̇eq + U̇ e[k ×Nddof : (k + 1)×Nddof ]× ψqzk
20: üeq ← üeq + Ü e[k ×Nddof : (k + 1)×Nddof ]× ψqzk
21: end for
22: ψq

z
i ← pspace.evaluateBasis(i, zq) # evaluate i-th basis function

23: ψq
z
j ← pspace.evaluateBasis(j, zq) # evaluate j-th basis function

24: Jq
e = zeros(Nddof , Nddof ) # space for deterministic Jacobian at yq

25: Jq
e ← delem.getJacobian(t, yq, uq

e, u̇eq, ü
e
q) # deterministic Jacobian at yq

26: Jij
e ← Jij

e + αq × ψqzi × Jqe × ψqzj # Equation (7.35)
27: end for
28: ! Order stochastic jacobians nodewise
29: for ii = 1, Nnodes do # outer loop over nodes
30: for jj = 1, Nnodes do # inner loop over nodes
31: istart ← ii×Nsdof + i×Nddof # row start index
32: iend ← jj ×Nsdof + (i+ 1)×Nddof # row end index
33: jstart ← jj ×Nsdof + j ×Nddof # column start index
34: jend ← jj ×Nsdof + (j + 1)×Nddof # column end index
35: J e[istart : iend, jstart : jend]← Jij

e[ii×Nddof : (ii+ 1)×Nddof , jj ×
Nddof : (jj + 1)×Nddof ]

36: end for
37: end for
38: end for
39: end for
40: return J e

41: end function
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Algorithm 3 Algorithm for evaluating stochastic element initial conditions from determin-
istic initial conditions.
Require: pspace # probabilistic space object
Require: delem # deterministic element object
1: function StochasticInitialCondition(pspace, delem, t, U e, U̇ e)
2: N ← pspace.getNumBasisFunctions() # number of stochastic basis functions
3: Nnodes ← delem.getNumNodes() # number of element nodes
4: Nddof ← delem.getNumDof() # number of deterministic degrees of freedom
5: Nsdof ← N ×Nddof # number of stochastic degrees of freedom
6: U e, U̇ e = zeros(Nsdof ) # zero vectors for storage
7: for i = 1, N do # loop over basis function set
8: pspace.InitializeQuadrature(i) # number of quadrature points
9: ! Perform projection using quadrature

10: for q = 1, Q do # loop over quadrature points
11: yq, zq, αq ← pspace.getQuadraturePointsWeight(q)
12: ψq

z
i ← pspace.evaluateBasis(i, zq) # evaluate i-th basis function

13: uq
e, u̇eq ← delem.getInitialConditions(t, yq) # deterministic ICs at yq

14: Ui
e ← Ui

e + αq × ψqzi × uqe # Equation (7.36)
15: U̇ e

i ← U̇ e
i + αq × ψqzi × u̇eq # Equation (7.36)

16: end for
17: ! Order stochastic initial conditions nodewise
18: for ii = 1, Nnodes do # loop overs nodes in the element from mesh
19: off ← ii×Nsdof # find the start index
20: U e[off + i×Nddof : off + (i+ 1)×Nddof ]← Ui

e[ii×Nddof : (ii+ 1)×Nddof ]
21: U̇ e[off + i×Nddof : off + (i+ 1)×Nddof ]← U̇ e

i [ii×Nddof : (ii+ 1)×Nddof ]
22: end for
23: end for
24: return U e, U̇ e

25: end function
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CHAPTER 8

UNCERTAINTY PROPAGATION AND SENSITIVITY ANALYSIS OF

STATIC AND TIME DEPENDENT SYSTEMS

Introduction. The goal of this chapter is to demonstrate the computation of probabilistic

moments and their derivatives using the semi-intrusive SGM, and to compare the moments

computed to that of sampling-based collocation method. We begin with stochastic analysis

of a static system, and proceed to the analysis of time dependent first and second-order

systems, and finally to flexible multibody dynamics systems.

8.1 Static Spring

We consider the static deflection of a spring subject to a force f as the physical problem of

interest. The metric of interest is the potential energy of the system, and the design variable

is the stiffness constant k, that is ξ := k.

8.1.1 Deterministic System

The system is mathematically modeled as an algebraic equation:

Physical Analysis

solve
u(ξ)

R(ξ, u(ξ)) := k · u(ξ)− f = 0 (residual)

evaluate F (ξ, u(ξ)) :=
1

2
ku(ξ)2 (metric of interest)

Sensitivity Analysis

evaluate
dF (ξ, u(ξ))

dξ
(derivative of function)
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The solution of state variables u(ξ) is obtained solving a linear system as

u(ξ) =
f

k
. (8.1)

The metric of interest (potential energy) is

F (ξ, u(ξ)) =
1

2
× k ×

(
f

k

)2

=
1

2

f 2

k
(8.2)

The derivative of function of interest (energy) with respect to stiffness constant k is

dF (ξ, u(ξ))

dξ
= −1

2

f 2

k2
(8.3)

The metric (8.2) and its design variable derivative (8.3) can be used to solve optimization

problems using gradient-based algorithms, to identify the critical ξ? that minimizes or maxi-

mizes the potential energy. For the purposes of demonstration, let the right hand side f = π

and stiffness constant k = π
2
which evaluates to

F = π and
dF

dξ
= −2. (8.4)

8.1.2 Stochastic System with Uncertain System Parameter

Now let us explore the changes in the metric and its derivative in the presence of uncertainties.

Let us assume that the stiffness parameter is uncertain and dependent on random variable

such that k := k(y), where y is a random variable from stochastic domain Y . The random

variable adds a stochastic dimension to the deterministic linear algebraic equation, which

results in a stochastic linear algebraic equation. Mathematically, the setup of the stochastic
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problem we intend to solve is given as follows.

Physical Analysis

solve
u(y)

R(y, u(y)) := k(y) · u(y)− f = 0 (stochastic residual)

evaluate E[F (y, u(y))] := E
[

1

2
k(y)u(y)2

]
(mean)

V[F (y, u(y))] := V
[

1

2
k(y)u(y)2

]
(variance)

S[F (y, u(y))] := S
[

1

2
k(y)u(y)2

]
(standard deviation)

Sensitivity Analysis

dE[F (y(ξ), u(y(ξ)))]

dξ
(derivative of mean)

dV[F (y(ξ), u(y(ξ)))]

dξ
(derivative of variance)

dS[F (y(ξ), u(y(ξ)))]

dξ
(derivative of std. dev.)

The computation of these quantities allows us to solve an optimization under uncertainty

problem, to identify a critical ξ? that provides robustness and reliability. In this stochastic

case the design variable ξ is chosen to be the mean stiffness µk. Let us discuss the com-

putation of the probabilistic moments of the metric and its derivative using sampling and

projection.

(1) Sampling Method: The first moment and its derivative are computed using sampling

as:

E [F (y, u(y))] ≈
Q∑

q=1

αyq

(
1

2

f 2

kq

)
and E

[
dF (y, u(y))

dξ

]
≈

Q∑

q=1

αyq

(
1

2

f 2

kq
2

)
. (8.5)

where kq is the q−th quadrature node whose corresponding weight is αyq . The variance

V [F (y, u(y))] and standard deviation S [F (y, u(y))] are computed following the steps outlined
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in Section 7.1.

(2) Projection Method: When we apply the projection method, we expect an expanded

linear system, featuring bigger matrices and vectors. Using projection method, the i−th

right hand side is formed as

fi ≈
Q∑

q=1

αyq × ψ̂i(yq)× f (8.6)

and the (i, j)− th Jacobian matrix entries are formed as

Ji, j ≈
Q∑

q=1

αyq × ψ̂i(yq)× J(yq, u(yq))× ψ̂j(yq)

=

Q∑

q=1

αyq × ψ̂i(yq)× kq × ψ̂j(yq)
(8.7)

This results in the linear system




J1, 1 J1, 2 . . . J1, N

J2, 1 J2, 2 . . . J2, N

...
... . . . ...

JN, 1 JN, 2 . . . JN,N








u1

u2
...

uN





=





f1

f2
...

fN





(8.8)

In this case the Jacobian J is a tridiagonal matrix since the polynomial degree of the stiffness

parameter is one, giving rise to one band on either side of the diagonal. The decomposition

coefficients ui are determined by solving the linear system (8.8). The probabilistic moments

of F and its derivatives are obtained using the steps outlined in Section 7.2.

Complex-step verification of stochastic adjoint derivatives: First, we ensure the

consistency of the derivative of moments of F with respect to ξ = µk using the complex

step method. This test is conducted with normal, exponential and uniform probability

distributions of the random variable y. Table 8.1 lists the adjoint derivatives computed
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using projection with that of the complex step method. An exact match of values can

be noticed, which verifies the validity of the adjoint derivatives computed using the semi-

intrusive projection.

Table 8.1: The complex-step verification of stochastic adjoint derivatives with the number of
terms in orthonormal basis N = 7.

Distribution Type
dE[F ]

dξ

dV[F ]

dξ

dS[F ]

dξ

Exponential adjoint -1.68733320815981 -0.11533024885544 -0.25255516821879
E(π

2
, 0.1 · π

2
) complex -1.68733320815981 -0.11533024885544 -0.25255516821879

Normal adjoint -2.06323129529018 -0.28546603338653 -0.43563400146749
N (π

2
, 0.1 · π

2
) complex -2.06323129529018 -0.28546603338653 -0.43563400146749

Uniform adjoint -2.02020202020202 -0.08564848260089 -0.23436946202514
U(0.9 · π

2
, 1.1 · π

2
) complex -2.02020202020202 -0.08564848260089 -0.23436946202514

Comparison of sampling- and projection-based metrics: Now we compare the met-

rics and derivatives obtained using the semi-intrusive projection with that of the quadrature

sampling. The use of more number of quadrature samples (for collocation) and more num-

ber of basis terms (for projection) will, in general, produce a better estimate of probabilistic

moments and derivatives. However, these are not known apriori at the start of stochastic

analysis process. In this section, a notional comparison is made with the number of samples

Q = 15 and the number of terms in orthonormal basis N = 7, and the values are listed in

Table 8.2. We highlight the mismatching digits between the two methods in boldface font.

Recall that for the sampling method we solve the deterministic linear system of size 1×1, Q

times, whereas in the case of the projection a linear system of size 7× 7 is solved. Similarly

for the adjoint derivatives, a smaller adjoint system is solved Q times with sampling, however

a larger adjoint system is solved once with projection.
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Table 8.2: Probabilistic moments of the energy function and its design variable derivative
with the number of samples Q = 15 and the number of terms in orthonormal basis N = 7.

Function Value Derivative Value

deterministic F π
dF

dξ
-2

sampling E[F ] 2.87654697243427 dE[F ]/dξ -1.68733321204238
projection E[F ] 2.87654697182409 dE[F ]/dξ -1.68733320815981

sampling V[F ] 0.05213316321809 V[F ]/dξ -0.11533035551488
projection V[F ] 0.05213314756883 dV[F ]/dξ -0.11533024885544

sampling S[F ] 0.22832687800188 dS[F ]/dξ -0.25255536388040
projection S[F ] 0.22832684373246 dS[F ]/dξ -0.25255516821879

8.2 Linear Time Dependent Systems

In this section, we demonstrate the uncertainty propagation using sampling and projection

on the following linear time dependent systems:

• one degree of freedom decay model (first-order ODE)

• one degree of freedom spring mass damper system (second-order ODE)

• three degrees of freedom spring mass series (second-order ODE)

• two degrees of freedom pitching and plunging airfoil system (second-order ODE)

8.2.1 First-Order Decay Model

We consider a simple first-order ordinary differential equation (ODE). The statistical mo-

ments (mean and variance) of the solution to the ODE are found using: (a) analytical for-

mulae, (b) quadrature sampling and (c) projection techniques. We study this problem with

three distributions types (normal, uniform and exponential) for the decay parameter.
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8.2.1.1 Deterministic and Stochastic Problem Setup

Consider the following first-order differential equation with prescribed initial condition u0

and constant decay parameter λ

du(t)

dt
+ λ u(t) = 0 ∈ T

u(0) = u0 ∈ ∂T
(8.9)

The analytical solution to the differential equation is u(t) = u0 e−λt. Let us assume that the

decay parameter is uncertain λ := λ(y), where y is a random variable from stochastic domain

Y . This adds a stochastic dimension to the differential equation resulting in the stochastic

differential equation

du(t, y)

dt
+ λ(y) u(t, y) = 0 ∈ T ⊗ Y

u(0, y) = u0 ∈ ∂T ⊗ Y
(8.10)

Notice the product nature of temporal and stochastic domains forming the stochastic-

temporal domain. Rather than individual solutions u(t, y) = u0 e−λ(y)t for each realization

of the random variable, we are interested in statistical moments of the solution, namely the

mean E[u(t, y)] (first moment) and variance V[u(t, y)] (second moment).

8.2.1.2 Analytical Moments for Gaussian Distribution

Let y be normally distributed with mean µ and standard deviation σ as y ∼ N (µ, σ). The

mean (first moment) is

E[u(t, y)] =

∫ ∞

−∞
u(t, y)

e−
1
2( y−µσ )

2

σ
√

2π︸ ︷︷ ︸
ρyn(y)

dy =

∫ ∞

−∞
u0e
−yt e

− 1
2( y−µσ )

2

σ
√

2π
dy

= exp

(
1

2
σ2t2 − µt

)
(8.11)
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The variance (second moment) is

V[u(t, y)] = E[u2(t, y)]− E[u(t, y)]2

= exp
(
2σ2t2 − 2µt

)
−
(

exp

(
1

2
σ2t2 − µt

))2 (8.12)

8.2.1.3 Stochastic Quadrature Sampling for Normal Distribution

Stochastic sampling technique uses repeated solutions of the differential equation (8.10) to

perform integration in the stochastic domain. The decay parameter value λq = λ(yq) depends

on the random variable yq and its corresponding distribution type. The stochastic ODE

du(t, yq)

dt
+ λqu(t, yq) = 0 ∈ T ⊗ Y

u(0, yq) = u0 ∈ ∂T ⊗ Y
(8.13)

is solved for each λq = λ(yq) and the solutions u(t, yq) are stored. The moments of the

solution are computed as

E[u(t, y)] =

Q∑

q=1

αyqu(t, yq)

V[u(t, y)] =

Q∑

q=1

αyqu
2(t, yq)− E[u(t, y)]2

(8.14)

Figure 8.1 compares mean and variance computed using the stochastic sampling method

with the analytical mean and variance for increasing number of samples from the stochastic

domain. It can be seen that the first moment converges faster than the second moment to

the analytical value.

8.2.1.4 Stochastic Projection for Normal Distribution

Let us explore the solution of the stochastic problem (8.10) applying the principle of projec-

tion in stochastic space, with normally distributed decay parameter.
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Figure 8.1: Comparison of the sampling-based mean and variance of the solution with ana-
lytical moments for µλ = 0 and σλ = 1.

The representation and decomposition of decay parameter: The decay parameter

is a function of random variable y and assumes a spectral expansion:

λ(y) =
N∑

j=1

λjψ̂
y
j (y) ∈ Y (8.15)

where the decomposition coefficients are found using projection as follows

λj =
〈
λ(y)

∣∣∣ ψ̂yj (y)
〉Y
ρyn(y)

, ∀j = 1, . . . , N. (8.16)

and ψ̂yj (y) refers to the Hermite polynomials Ĥy
j−1(y). In vector notation, we get:

Λ =





λ1

λ2

λ3
...

λN





=





〈λ(y) | ψ̂y1(y)〉Yρyn
〈λ(y) | ψ̂y2(y)〉Yρyn
〈λ(y) | ψ̂y3(y)〉Yρyn

...

〈λ(y) | ψ̂yN(y)〉Yρyn





=





µλ

σλ

0

...

0





(8.17)
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(a) The representation and decomposition of initial conditions: The functional

form of the initial conditions in the stochastic ODE (8.10) is

u(0, y) = u0 ∈ ∂T ⊗ Y (8.18)

In this case, we have considered a constant u0 as the initial state, but it can be a general

function of random variable. Let the right hand side of the initial conditions be provided as

abstract functions of random variable y

u(0, y) = g(y) ∈ ∂T ⊗ Y (8.19)

Similar to the stochastic parameter λ(y), the initial condition assumes a spectral represen-

tation as

g(y) =
N∑

j=1

gjψ̂
y
j (y) ∈ Y (8.20)

where gj are the coefficients of decomposition of initial condition in corresponding stochastic

vector space Y obtained using inner products as

gj =
〈
g(y)

∣∣∣ ψ̂yj (y)
〉Y
ρyn(y)

(8.21)

In vector notation,

g =





g1

g2
...

gN





=





〈g(y) | ψ̂1y(y)〉Yρyn
〈g(y) | ψ̂y2(y)〉Yρyn

...

〈g(y) | ψ̂yN(y)〉Yρyn





=





〈u0 | ψ̂y1(y)〉Yρyn
〈u0 | ψ̂y2(y)〉Yρyn

...

〈u0 | ψ̂yN(y)〉Yρyn





=





u0

0

...

0





(8.22)
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(b) The representation and decomposition of the state variables: The stochastic-

temporal field u(t, y) is represented as the following finite spectral summation

u(t, y) =
N∑

i=1

ui(t)ψ̂
y
i (y) and u̇(t, y) =

N∑

i=1

u̇i(t)ψ̂
y
i (y) (8.23)

where ui(t) and u̇i(t) are the decomposition coefficients that are time dependent functions.

(c) The stochastic ODE: By applying (8.23) to (8.10) we obtain the stochastic ODE

as

R :=

(
N∑

i=1

u̇i(t)ψ̂
y
i (y)

)
+ λ(y)

(
N∑

i=1

ui(t)ψ̂
y
i (y)

)
= 0 (8.24)

The stochastic ODE takes the following matrix form written out explicitly




〈ψ̂y1(y) | ψ̂y1(y)〉Yρyn 〈ψ̂y1(y) | ψ̂y2(y)〉Yρyn . . . 〈ψ̂y1(y) | ψ̂yN (y)〉
Y
ρyn

〈ψ̂y2(y) | ψ̂y1(y)〉Yρyn 〈ψ̂y2(y) | ψ̂y2(y)〉Yρyn . . . 〈ψ̂y2(y) | ψ̂yN (y)〉
Y
ρyn

...
...

. . .
...

〈ψ̂yN (y) | ψ̂
y
1(y)〉Yρyn 〈ψ̂yN (y) | ψ̂

y
2(y)〉Yρyn . . . 〈ψ̂yN (y) | ψ̂

y
N (y)〉

Y
ρyn








u̇1(t)

u̇2(t)

...

u̇N (t)





+



〈ψ̂y1(y)|λ(y)|ψ̂y1(y)〉Yρyn 〈ψ̂y1(y)|λ(y)|ψ̂y2(y)〉Yρyn . . . 〈ψ̂y1(y)|λ(y)|ψ̂yN (y)〉
Y
ρyn

〈ψ̂y2(y)|λ(y)|ψ̂y1(y)〉Yρyn 〈ψ̂y2(y)|λ(y)|ψ̂y2(y)〉Yρyn . . . 〈ψ̂y2(y)|λ(y)|ψ̂yN (y)〉
Y
ρyn

...
...

. . .
...

〈ψ̂yN (y)|λ(y)|ψ̂
y
1(y)〉Yρyn 〈ψ̂yN (y)|λ(y)|ψ̂

y
2(y)〉Yρyn . . . 〈ψ̂yN (y)|λ(y)|ψ̂

y
N (y)〉

Y
ρyn








u1(t)

u2(t)

...

uN (t)





=




0

0

...

0





(8.25)
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The analytical evaluation of these inner products leads to the stochastic ODE derived in

explicit form:




1 0 . . . 0 0

0 1 . . . 0 0

...
... . . . ...

...

0 0 . . . 1 0

0 0 . . . 0 1








u̇1

u̇2
...

u̇N−1

u̇N





+




µ σ
√

1 . . . 0 0

σ
√

1 µ σ
√

2 0 0

... . . . . . . . . . ...

0 0 σ
√
N − 1 µ σ

√
N

0 0 . . . σ
√
N µ








u1

u2
...

uN−1

uN





=





0

0

...

0

0





(8.26)

Remark on Sparsity. When λ is a constant function of y, then the Jacobian is diagonal.

If λ is a linear function of y, then the the Jacobian is tridiagonal (this case). If λ is a

quadratic function of y, then the Jacobian is pentadiagonal.

Remark on Explicit Stochastic Equations. For the simple stochastic ODE (8.10), we

are able to derive the explicit form using the aforementioned steps. This is the approach

taken for uncertainty propagation via the stochastic Galerkin method. However, when the

governing equations take complicated expressions and contain nonlinear terms, the appli-

cation of these steps become algebraically cumbersome. Krenk and Gutirez [59] point out

that the projection-based SGM for problems involving nonlinearities have not yet reached a

mature stage. The semi-intrusive stochastic Galerkin method presented in Section 7.2 can

be used to address this difficulty.

(d) The evaluation of Statistical moments: The mean of the state variables is

E[u(t, y)] = u1(t) (8.27)

and the variance is

V[u(t, y)] =
N∑

i=2

u2i (t) (8.28)
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We use projection method described above for parameter values µλ = 0 and σλ = 1. Fig-

ure 8.2 shows the comparison of mean and variance computed using the projection method

with the analytical moments for increasing number of terms in the spectral expansion. Fig-
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Figure 8.2: Comparison of mean and variance of solution for selected number of terms in
polynomial expansion.

ure 8.3 shows the rate of convergence of mean and variance to analytical solutions.
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Figure 8.3: The convergence of the mean and variance to the analytical values.
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8.2.1.5 Verification of Probabilistic Modes (Normal, Uniform and Exponential)

Here, we solve the stochastic problem (8.10) with three assumed distributions:

1. Normal N (µ = 0, σ = 1),

2. Uniform U(a = −1, b = 1) and

3. Exponential E(µ = 0, β = 1).
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(a) N (µ = 0.0, σ = 1.0)

0.0 0.2 0.4 0.6 0.8 1.0
time

−1.0

−0.5

0.0

0.5

1.0

1.5

so
lu

ti
on

deterministic

exact mean

U1(SG mean)

U2

U3

U4

(b) U(a = −1.0, b = 1.0)

0.0 0.2 0.4 0.6 0.8 1.0
time

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

so
lu

ti
on

deterministic

exact mean

U1(SG mean)

U2

U3

U4

(c) E(µ = 0.0, β = 1.0)

Figure 8.4: The probabilistic modes computed using the stochastic Galerkin method along
with the analytical mean and deterministic solutions for different distribution types.
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The stochastic Galerkin solution is obtained using a stochastic space spanned byN = 4 terms

in the orthonormal basis set. Figure 8.4 plots the solution of the stochastic ODE and the

four probabilistic modes computed, along with deterministic and analytical mean solutions

from [72]. It can be seen that the mean of the solution is different than the deterministic

solution in the absence of uncertainties, which shows that the system behavior can be far

different than expected in the presence of uncertainties. The mean solution computed using

SGM is matching with the analytical solution available to this simple benchmark problem

reported in [72].

8.2.2 Natural Vibration of Spring Mass Damper System

We consider the following second-order differential equation with prescribed initial conditions

u0, u̇0 and constant system parameters m, c and k

m
d2u(t)

dt2
+ c

du(t)

dt
+ ku(t) = 0 ∈ T

u(0) = u0 ∈ ∂T

u̇(0) = u̇0 ∈ ∂T

(8.29)

Let us assume that the mass m := m(y1), damping constant c := c(y2) and stiffness constant

k := k(y3) where y1, y2 and y3 are independent random variables from three-dimensional

stochastic domain Y3. This dependence of the system coefficients m, c and k on probabilistic

random variables results in the stochastic differential equation

m(y1)
d2u(t, y)

dt2
+ c(y2)

du(t, y)

dt
+ k(y3)u(t, y) = 0 ∈ T ⊗ Y3

u(0, y) = u0 ∈ ∂T ⊗ Y3

u̇(0, y) = u̇0 ∈ ∂T ⊗ Y3

(8.30)
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where y = [y1, y2, y3] ∈ Y3 is a vector-valued random variable from stochastic space. Let the

random variables be modeled as follows

y1 ∼ E(µ = 4.00, β = 1.00)

y2 ∼ U(a = 0.25, b = 0.75)

y3 ∼ N (µ = 5.00, σ = 0.50)

(8.31)

and the initial conditions be u0 = −0.5 and u̇0 = 1.

8.2.2.1 Details of Stochastic Galerkin Projection

The formation of multivariate basis functions from univariate basis functions as well as the

multivariate quadrature rules are essential for uncertainty propagation.

Trivariate Quadrature Rule Let Q1, Q2 and Q3 be the number of quadrature points

chosen for the corresponding one-dimensional Gauss–Laguerre, Gauss–Legendre and Gauss–

Hermite quadrature, based on the resultant degree of the integrand and applying the ex-

actness theorem of polynomial integration using quadrature. We can construct a three

dimensional quadrature rule using tensor multiplication of one-dimensional quadrature rule

for numerical approximation of inner products. Consider two functions f(y) and g(y) where

y ∈ Y3

〈
f(y)

∣∣∣ g(y)
〉Y3

ρy
≈

Q1∑

i=1

Q2∑

j=1

Q3∑

k=1

f(yi,1, yj,2, yk,3)α
y
iα

y
jα

y
kg(yi,1, yj,2, yk,3)

=

Q∑

l=1

f(yl)α
y
l g(yl)

(8.32)

where the total number of quadrature points Q = Q1 × Q2 × Q3, the weights αyl = αyiα
y
jα

y
k

and trivariate ordered nodes yl = [yi,1, yj,2, yk,3]. Note that the new weights must add upto
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unity as it was the case with univariate quadrature

Q∑

l=1

αyl = 1. (8.33)

This condition can be used as a simple test for multivariate quadrature implementations.

Trivariate Orthonormal Basis Let us expand each probabilistic variable upto cubic

terms (d1, d2, d3 = 3), and choose Laguerre, Legendre and Hermite polynomials as corre-

sponding univariate basis functions. Recall that N1 = d1 + 1, N2 = d2 + 1, and N3 = d3 + 1;

which are the number of univariate basis set entries for each random variable. Thus, the

orthonormal space for projection is constructed using tensor product with N1 = 4, N2 = 4

and N3 = 4 functions in each variable, giving rise to 64 terms in the trivariate basis set. We

have

ψ̂yl (y) =




L̂y0(y1)P̂
y
0 (y2)Ĥ

y
0 (y3)

L̂y1(y1)P̂
y
0 (y2)Ĥ

y
0 (y3)

L̂y2(y1)P̂
y
0 (y2)Ĥ

y
0 (y3)

L̂y3(y1)P̂
y
0 (y2)Ĥ

y
0 (y3)

...

L̂y0(y1)P̂
y
3 (y2)Ĥ

y
0 (y3)

L̂y1(y1)P̂
y
3 (y2)Ĥ

y
0 (y3)

L̂y2(y1)P̂
y
3 (y2)Ĥ

y
0 (y3)

L̂y3(y1)P̂
y
3 (y2)Ĥ

y
0 (y3)

...

L̂y0(y1)P̂
y
3 (y2)Ĥ

y
3 (y3)

L̂y1(y1)P̂
y
3 (y2)Ĥ

y
3 (y3)

L̂y2(y1)P̂
y
3 (y2)Ĥ

y
3 (y3)

L̂y3(y1)P̂
y
3 (y2)Ĥ

y
3 (y3)




(8.34)
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In compact form, we may write this as

N∏

l=1

ψ̂yl (y) =

d1∏

i=0

d2∏

j=0

d3∏

k=0

L̂yi (y1)P̂
y
j (y2)Ĥ

y
k (y3) (8.35)

Trivariate Stochastic Projection: The states and its time derivatives are

u(t, y) =
N∑

i=1

ui(t)ψ̂
y
i (y), u̇(t, y) =

N∑

i=1

u̇i(t)ψ̂
y
i (y), and ü(t, y) =

N∑

i=1

üi(t)ψ̂
y
i (y) (8.36)

Using spectral expansions (8.36) in ODE (8.30) we get

m(y1)

(
N∑

i=1

üi(t)ψ̂
y
i (y)

)
+ c(y2)

(
N∑

i=1

u̇i(t)ψ̂
y
i (y)

)
+ k(y3)

(
N∑

i=1

ui(t)ψ̂
y
i (y)

)
= 0

N∑

i=1

ui(t)ψ̂
y
i (y) = u0

N∑

i=1

u̇i(t)ψ̂
y
i (y) = u̇0

(8.37)

Let us now project the above relations onto each basis element ψ̂j(y) using inner products

that are numerically evaluated using quadrature rules. The stochastic ODE results from

〈
m(y1)

N∑

i=1

üi(t)ψ̂
y
i (y) + c(y2)

N∑

i=1

u̇i(t)ψ̂
y
i (y) + k(y3)

N∑

i=1

ui(t)ψ̂
y
i (y)

∣∣∣ ψ̂yj (y)
〉Y
ρy

=
〈

0
∣∣∣ ψ̂yj (y)

〉Y
ρy

(8.38)

with corresponding initial conditions as

〈 N∑

i=1

ui(0)ψ̂yi (y)
∣∣∣ ψ̂yj (y)

〉Y
ρy

=
〈
u0

∣∣∣ ψ̂yj (y)
〉Y
ρy

〈 N∑

i=1

u̇i(0)ψ̂yi (y)
∣∣∣ ψ̂yj (y)

〉Y
ρy

=
〈
u̇0

∣∣∣ ψ̂yj (y)
〉Y
ρy

(8.39)
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8.2.2.2 Probabilistic Moments

The orthonormal space for projection is constructed using tensor product with N1 = 4,

N2 = 4 and N3 = 4 functions in each variable, giving rise to 64 terms in the basis. The
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Figure 8.5: Nonzero pattern of SMD system with 3 random variables y1, y2 and y3 with
N1 = N2 = N3 = 4 giving rise to 64 basis terms with tensor product.

sparsity pattern arising due to this setup is shown in Figure 8.5. The mean and variance

of the solution field is computed using sampling and projection methods are plotted in

Figure 8.6. The SGM computations were performed using deterministic implementation of

the SMD system and the system is solved for time interval of [0, 10]s with a step size of 0.1s

using BDF2 method. The stochastic collocation (sampling) solutions are computed using

a tensor product grid of 15 × 15 × 15. It can be seen that both the solutions are in good

agreement with each other.

8.2.2.3 Function and Gradient Verification:

For the complex-step verification of adjoint gradients, we model the damping coefficient c

to be normally distributed as N (µ = 0.2, σ = 0.1), and the mass m is treated as the design
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Figure 8.6: Expectation (top) and variance (bottom) of solution and its time derivatives
obtained stochastic collocation and Galerkin methods.

variable ξ. The stiffness value is assumed to be deterministic: k = 5.0. We are interested in

computing the probabilistic moments of the time integral of potential energy

F =

∫ T

0

1

2
ku(t)2 dt (8.40)
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and the Kreisselmeier—-Steinhauser (KS) [45, 46] estimate of the maximum potential energy

F = a+
1

ρks
ln

[∫ T

0

eρks(
1
2
ku(t)2−a) dt

]
. (8.41)

where a and ρks are aggregation parameters. The probabilistic moments of (8.40) and (8.41)

and their design variable derivatives computed using sampling and projection methods are

listed in Tables 8.3 and 8.4, respectively. It be seen that the stochastic adjoint derivatives

exhibit good agreement with the complex-step method.

Table 8.3: Probabilistic moments and derivatives of the time integral of potential energy with
10 basis terms and 10 quadrature samples.

Quantity Sampling Projection

E[F ] 8.62347899840529308 8.62347899840532683
V[F ] 2.18825865715865575 2.18825865715922419

Adjoint dE[F ]/dm 2.29637589213232607 2.29637589213362459
Complex-step dE[F ]/dm 2.29637589213285809 2.29637589213298554

Error 5.3× 10−13 6.4× 10−13

Adjoint dV[F ]/dm 0.416863786527159164 0.416863786519840573
Complex-step dV[F ]/dm 0.416863786529946490 0.416863786528287372

Error 2.8× 10−12 8.4× 10−12

Table 8.4: Probabilistic moments and derivatives of the maximum potential energy in time
domain with 10 basis terms and 10 quadrature samples.

Quantity Sampling Projection

E[F ] 2.50293127981364005 2.50708458655184918
V[F ] 3.81254813515422378× 10−3 3.80147552479659367× 10−3

Adjoint dE[F ]/dm −3.69267283814737500× 10−3 −3.69267283814618151× 10−3

Complex-step dE[F ]/dm −3.69267283815061589× 10−3 −3.69267283815030625× 10−3

Error 3.2× 10−15 2.5× 10−14

Adjoint dV[F ]/dm −8.59422933369482361× 10−3 −8.59422933368299627× 10−3

Complex-step dV[F ]/dm −8.59422933370226558× 10−3 −8.59422933370156128× 10−3

Error 7.4× 10−15 8.1× 10−14
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8.2.3 Natural Vibration of a Series of Masses and Springs

We consider a linear ordinary differential equation modeling a series of masses connected

through springs shown in Figure 8.7. The residual of the equations of motion are of the

m1 m2 m3
k1 k2 k3 k4

Figure 8.7: The mass spring system.

abstract form R(t, ü(t), u̇(t), u(t)) = 0, and can be written out as




m1 0 0

0 m2 0

0 0 m3








ü1

ü2

ü3





+




k1 + k2 −k2 0

−k2 k2 + k3 −k3
0 −k3 k3 + k4








u1

u2

u3





= 0 (8.42)

with initial conditions u = [0, 0, 0] and u̇ = [0, 0, 0.1], as well as spring stiffness constants

k1 = 1, k2 = 10, k3 = 100 and k4 = 1000. In order to solve the solve second-order dynamic

system “as-is” in natural form [119, 120], we implement the residual evaluation based on

Equation (8.42), and corresponding Jacobian matrix blocks

∂R

∂ü
=




m1 0 0

0 m2 0

0 0 m3




and
∂R

∂u
=




k1 + k2 −k2 0

−k2 k2 + k3 −k3
0 −k3 k3 + k4




within the TACS finite element framework, following the Element interface outlined in Sec-

tion 7.3. The temporal solution of the system is setup using the second-order backward

differences method for a finite time interval of [0, 2]s with a step size of 0.02s.

Probabilistic Parameters, Quadrature and Basis Setup: For the extension of the

above deterministic analysis to stochastic Galerkin computations, we assume the masses are
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dependent on probabilistically modeled random variables as m1 = m1(y1), m2 = m2(y2),

m3 = m3(y3) where

1. y1 ∼ U(a = 1.0, b = 2.0) follows uniform distribution,

2. y2 ∼ E(µ = 10.0, β = 1.0) follows exponential distribution,

3. y3 ∼ N (µ = 100.0, σ = 10.0) follows normal distribution.

Thus, we have a stochastic ODE in T ⊗ Y3 whose stochastic states are u(t, y), u̇(t, y) and

ü(t, y). The numerical quadrature in three probabilistic dimensions is setup using the ten-

sor product of Gauss–Legendre, Gauss–Laguerre and Gauss-Hermite quadrature points and

weights along each of the three probabilistic dimensions. Next, we select univariate Legen-

dre, Laguerre and Hermite orthonormal polynomials listed in Table 6.1 of chosen maximum

degrees [d2, d2, d3]. Using these we construct a set of distinct trivariate orthonormal poly-

nomials using tensor product rule and complete polynomial rule. We use this mass–spring

system to compare the efficiency of these two basis choices.

Semi-Intrusive Projection of Arrays and Matrices: With the setup of probabilistic

basis and quadrature, the stochastic states follow from (7.11), the stochastic residual fol-

lows from (7.12), the stochastic Jacobian follows from (7.14), and initial conditions follow

from (7.36). For this simple system, the Jacobian matrix is independent of the state vari-

ables and thus are easier to compute. The stochastic mass matrix entries are computed as
∑Q

q=1 αqψ̂i(yq)ψ̂j(yq)[
∂R

∂ü
(yq)]. Note that the problem size is 3N , where N is the number of

terms in the trivariate basis set.

Probabilistic Moments: We compare the probabilistic moments computed using the

semi-intrusive stochastic Galerkin method with that of stochastic sampling. The reference

solution is computed using the stochastic sampling method with a grid of 10 × 10 × 10

amounting to 1000 quadrature samples. The mean and variance of the solution field is
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computed using sampling and projection methods are plotted in Figure 8.8 along with a

band whose width is one standard deviation. Here we compare semi-intrusive SGM with

20 basis terms formed using a maximum degree set of [3, 3, 3] parameter wise with the

sampling-based solution. It can be seen that both the solutions are in good agreement with

each other. Next, we compare the norm of the absolute error, defined as the difference
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Figure 8.8: The time history of the expected response along with a band that is one standard
deviation wide on either side.

between sampling- and projection-based solutions in Figure 8.9. For this study we use both

tensor and complete polynomial based construction of basis function set. It can be seen that

the moments (expectation and variance) computed using polynomial based construction is

accurate than tensor product construction.
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of terms in the basis set for different basis sets.

8.2.4 Pitching and Plunging Airfoil System

We study a second-order differential equation in two variables: pitch and plunge variables of

an airfoil with prescribed initial conditions u0, u̇0 and constant system parameters [M ], [C]

and [K] in matrix form

[
m s

s If

]{
ü1(t)

ü2(t)

}
+

[
ch 0

0 ca

]{
u̇1(t)

u̇2(t)

}
+

[
kh 0

0 ka

]{
u1(t)

u2(t)

}
=

{
0

0

}
∈ T

u(0) = u0 ∈ ∂T

u̇(0) = u̇0 ∈ ∂T

(8.43)

The deterministic parameters of the system are listed in Table 8.5. Let us assume that
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Table 8.5: Parameters defining the pitching and plunging airfoil system.

Parameter Definition Value Unit

xf position of flexural axis 0.25 m
xcm position of center of mass 0.375 m
m mass of airfoil 55.3291 kg
If mass moment of inertia of the air-

foil around the elastic axis
3.4581 kg.m2

s static unbalance m(xcm − xf ) 6.9161375 kg.m
ch plunge damping 0 N/kg/s
ca pitch torsional damping 0 N.m/kg/s
kh plunge stiffness 11366.0 N/kg
ka pitch torsional stiffness 7002.6 N.m/kg

the mass m := m(y), where y is a random variable from stochastic domain Y . This adds

a stochastic dimension to the differential equation resulting in the stochastic differential

equation. In T ⊗ Y we have the vector-valued ordinary differential equation

[
m(y) s(y)

s(y) If

]{
ü1(t, y)

ü2(t, y)

}
+

[
ch 0

0 ca

]{
u̇1(t, y)

u̇2(t, y)

}
+

[
kh 0

0 ka

]{
u1(t, y)

u2(t, y)

}
=

{
0

0

}
(8.44)

In ∂T ⊗ Y we have initial conditions defined as

u(0, y) = u0

u̇(0, y) = u̇0.

(8.45)

When using the projection method, an extended linear system is formed. The sparsity of

corresponding the stochastic Jacobian for pitching-plunging airfoil system can be visualized

from Figure 8.10. We find the moments of the solution using SGM and SCM and compare

them in Figure 8.11. It can be observed that both the methods are in excellent agreement

for both the degrees of freedom (pitch and plunge) for both statistical moments (mean and

variance).
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Figure 8.10: Nonzero pattern of PPA system with one random variable decomposed on a
stochastic basis with 16 terms.
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Figure 8.11: Expectation (left) and variance (right) of solution of pitching-plunging airfoil
system obtained using stochastic Galerkin with 5 terms in the basis set and collocation meth-
ods with 15 samples.

8.3 Nonlinear Time Dependent Systems

8.3.1 Van der Pol Oscillator

The natural form governing differential equation for Van der Pol oscillator is

R(t, ü(t), u̇(t), u(t)) := ü(t)− µ(1− u(t)2) · u̇(t) + u(t) = 0 (8.46)
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which is a scalar nonlinear second-order differential equation where u(t), u̇(t) and ü(t) are

unknown scalar functions of independent parameter time t. Let the initial conditions be

u(0) = 1 and u̇(0) = 1. The partial Jacobians required for linearization of (8.46) are

∂R

∂ü
= 1,

∂R

∂u̇
= −µ

(
1− u(t)2

)
and

∂R

∂u
= 1 + 2µu(t)u̇(t). (8.47)

We consider the case where the oscillator parameter µ is a function of normally distributed

random variable y ∼ N (1.0, 0.25). The stochastic nonlinear ODE is

R(t, y, ü(t, y), u̇(t, y), u(t, y)) := ü(t, y)− µ(1− u(t, y)2) · u̇(t, y) + u(t, y) = 0 (8.48)

The solution of the stochastic ODE using semi-intrusive projection is centered around im-

plicitly forming the stochastic residuals, Jacobians and initial conditions as described in Sec-

tion 7.2. The probabilistic moments determined using semi-intrusive projection are shown

in Figures 8.12 and 8.13.
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ü(t)

0.0 2.5 5.0 7.5 10.0
time [s]

−10

−5

0

5

10

va
ri

an
ce

u(t)

u̇(t)
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Figure 8.12: Expectation (left) and variance (right) of solution of Van der Pol oscillator
obtained using projection with 7 terms.
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Figure 8.13: The expected response quantities with overlaid bands of one (left), two (middle)
and three (right) standard deviations using projection with 7 terms.

8.4 Finite Element Based Flexible Multibody Systems

We present the application of semi-intrusive SGM on finite element problems in the context

of flexible multibody dynamics.

8.4.1 Four-Bar Mechanism

We present the application of the proposed semi-intrusive projection technique to the four-

bar mechanism benchmark case [1].

8.4.1.1 Analysis Setup

0.24 m

0.12 mBar 1

Bar 2

Bar 3

1

2

Misaligned joint

Bar 1 and 2
Bar 3

16 mm
8 mm

Ω3 = 0.6 rad/s

Bar cross sectionsB

C

DA

Figure 8.14: The four-bar mechanism problem.

Figure 8.14 illustrates the setup of the four-bar mechanism. The problem contains three
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flexible bars that are modeled using Timoshenko beam elements, three revolute joints and

an actuator driving the mechanism. An imaginary, infinitely rigid fourth bar exists in the

mechanism between the points A and D. The revolute joints are at points A, B, and D, and

have an axis of rotation that is perpendicular to the plane of the mechanism. The revolute

joint at point C is misaligned by an angle of 5◦, and rotated about the direction of the bar

CD. This misalignment angle is modeled as subject to uncertainty and distributed normally

with N (µ = 5◦, σ = 2.5◦). The Bars AB and BC are of the same cross-section, while bar

CD has a smaller cross-section. The rotation of bar AB about point A of the mechanism is

driven at an angular rate of Ω3 = 0.6 rad/s. The material properties are Young’s modulus of

207 GPa, density of 7800 kg/m3, Poisson’s ratio 0.3, and shear correction factor of 5.0/6.0.

The angular rate of the revolute driver is 0.6 rad/s, due to which it takes 12 s for one

full revolution of the mechanism. The time marching is performed using second-order BDF

method [120]. The finite element library TACS is used for deterministic, stochastic sampling

and stochastic projection based solution of the four-bar mechanism problem.
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Figure 8.15: The mean of normalized axial force in bar AB as a function of time predicted
using SGM and SSM.

8.4.1.2 Verification of Probabilistic Moments

Our goal here is to demonstrate the accuracy of the semi-intrusive stochastic Galerkin method

by comparing with the stochastic sampling method. Figure 8.15 shows the response of the

expectation of the normal force in the bar AB computed using semi-intrusive SGM with 3,
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Figure 8.16: The variance of the normalized axial force in bar AB as a function of time
predicted using SGM and SSM.

5, and 7 terms in the orthonormal basis compared with SSM using 15 sample points. In

one full cycle between 0 to 12 s, the normal force exhibits two larger peaks that occur as

the mechanism is forced to snap through the angle where it would lock if the bars were

rigid due to the misaligned joint. The overall behavior of the mean axial force is shown in

Figure 8.15 as well as a zoomed in view of the behavior between t = 7.6 and t = 8.1 which

centers on the second large spike in the axial force. The SGM captures the peak behavior

in the normal force, even with only three terms. In the case of the deterministic simulation

without uncertainties (represented in gray), we obtain a normal force that is less than the

mean maximum force considering uncertainties. Figure 8.16 shows the variance of the axial

force in the bar AB computed using SGM with 3, 5, and 7 terms in the orthonormal basis

compared with SSM using 15 sample points. Again, the distribution of the variance exhibits

two large peaks. The second zoomed in view of the variance illustrates that SGM again

captures the overall behavior with only 3 terms. In general a better agreement is obtained

between SSM and SGM as more basis functions are used.

8.4.1.3 Optimization Under Uncertainty

Next, we extend the analysis case presented to optimization demonstration. We also verify

the accuracy of the adjoint-gradients of expectation and variance using the complex-step

method prior to optimization.
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(a) Optimization Setup: The optimization under uncertainty problem is stated as:

minimize E[mass]

design variable width of bars

uncertainty revolute axis θ ∼ N (µ = 5◦, σ = 2.5◦)

subject to E[failure] + β · S[failure] ≤ 1

E[displacement] + β · S[displacement] ≤ 5mm

bounds 5mm ≤ width ≤ 25mm

The mass objective refers to the overall mass of the mechanism, the displacement constraint

refers to the displacement component that is out of the plane, and the failure is evaluated

based on allowed normal (axial) force in the bars. We use spatio-temporal aggregation of

constraint functions based on the Kreisselmeier–Steinhauser formulation [45, 46] for displace-

ment and failure.

(b) Gradient Verification: The adjoint gradients of the expectation and variance are

verified using the complex-step method, and the values are compared in Table 8.6. It can

be seen that the values are in good agreement and show the consistency of adjoint imple-

mentation with that of the complex perturbation. Since, we implicitly formed the adjoint

equations, this shows that the approach is equivalent to the approach where one derives

explicit adjoint equations.

(c) Optimization Results: We perform five optimization runs composed of one deter-

ministic and four probabilistic OUU runs with β = 0, 1, 2 and 3, and compare the designs in

Table 8.7. As a general remark, the designs are heavier with more and more incorporation

of probabilistic criteria in the formulation. The widths of the bars AB and BC have a larger

impact than the width of the third bar CD, as the bar BC encounters the highest magnitude

of force and displacement throughout the simulation range.
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Table 8.6: The complex-step verification of adjoint derivatives of expectation and variance
of objective and constraint metrics.

Quantity Mass Failure Displacement

adjoint dE[F ]/dξ 1078.272 22.5748 -0.1067834
complex dE[F ]/dξ 1078.272 22.5748 -0.1067834

error 4.5 · 10−11 8.7 · 10−6 5.5 · 10−8

adjoint dV[F ]/dξ N/A 22.45792 −1.57732 · 10−4

complex dV[F ]/dξ N/A 22.45792 −1.57732 · 10−4

error N/A 6.7 · 10−6 1.1 · 10−10

Table 8.7: Designs resulting from the deterministic and probabilistic optimization of the
four-bar mechanism.

Quantity Deterministic β = 0 β = 1 β = 2 β = 3

width AB & BC 5.0 5.0 13.0 18.3 23.5
width CD 5.0 5.0 5.0 6.0 7.0

mass [kg] 1.1 1.1 6.02 11.7 19.3
failure [% max] 47% 55 90 100 100

displacement [% max] 78.22 78.72 100 100 100

8.4.2 Flexible Remote Manipulator System (Canadarm)

Next, we apply the semi-intrusive stochastic Galerkin method for the probabilistic design

of a flexible robotic manipulator system, that is representative of the robotic arms used in

space, such as the Canadarm-I, the Canadarm-II and the Dextre. These flexible manipulator

systems [122–128] are used to move payloads in space, assemble space systems, assist with

the docking of space shuttles from earth, and perform maintenance activities in space (see

Figure 8.17).

8.4.2.1 Analysis Setup

The representative system used here is modeled after the Canadarm-I, and is functionally

similar to a human arm with six joint degrees of freedom. Figure 8.18 shows the schematic of

the manipulator system modeled using the TACS flexible multibody dynamics framework.
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Figure 8.17: The working of shuttle manipulator systems a.

ahttps://www.nasa.gov/mission_pages/shuttle/behindscenes/rms_gallery.html

There are two joints at the shoulder end, one joint at the elbow between flexible booms

l1 l2 l3 l4 l5 l6

shoulder wrist

B C D E F
flexible booms

A

Figure 8.18: A six degree of freedom remote manipulator system.

and three joints at the wrist end of the robotic manipulator system. The joints at A and

E allow yawing motion, the joints at B, C and D allow pitching motion, and the joint at

F allows rolling motion. The booms in Canadarm-I are made of graphite epoxy, but for

our purposes here, we assume the material properties are Young’s modulus of 207 GPa,

density of 7800 kg/m3, Poisson’s ratio 0.3, and shear correction factor of 5.0/6.0. We use

ten Timoshenko beam elements for each boom with rectangular cross-sections for the finite

element analysis. The number of degrees of freedom in the problem is 432. The angular

rate of the joints are assumed to be ωA = 0.1 rad/s, ωB = 0.1 rad/s, ωC = 0.1 rad/s,

ωD = 0.1 rad/s, ωE = 0.1 rad/s, and ωF = 0.1 rad/s about their respective revolute axes.

The lengths are l1 = 0.9 m, l2 = 6.4 m, l3 = 7.0 m, l4 = 0.5 m, l5 = 0.8 m, l6 = 0.6 m. The

masses of rigid bodies are m1 = 95 kg, m4 = 8 kg, m5 = 44 kg, m6 = 41 kg [122–124] and
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the payload mass is 100, 000 kg. The dynamics of the robotic manipulator is simulated for a

duration of 5s with BDF2 time marching scheme. The time lapse of the simulated motion is

shown in Figure 8.19, with aforementioned angular rates and initial configuration of a fully

extended arm.

Figure 8.19: Timelapse of the motion of Canadarm model.

Remark on configurations and rates: The intended use of open-chain mechanisms like

the Canadarm is to reach the three dimensional space within the full extent of the mechanism,

often, within a specified amount of time.
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1. This implies that there are an infinite number of attainable configurations to be ana-

lyzed (even by excluding elastic deformations), which is computationally intractable.

However, a finite subset of preferred kinematic configurations can be simulated and

analyzed with the availability of computing power. One possible application of UQ

methods here is that, the initial configuration of the bodies can be modeled probabilis-

tically and defined as random functions following specified probability distributions.

2. Secondly, there are an infinite number of rates at which the configurations can be

attained. The rates at which the links are driven is often subject to upper bounds

for safety reasons: for example, the tip of the Canadarm-I is designed to operate at

a maximum rate of 0.06 m/s 1. In order to mathematically model such uncertainties

during operation, we can use the probabilistic random variables y with appropriate

distributions, instead of analyzing different possible rates.

In summary, the approach of using probabilistically modeled initial conditions along with

probabilistically modeled joint angular rates, can provide a firm mathematical basis for anal-

ysis and optimization. However, proper care must be exercised in “assuming” distributions

for such parameters, if needed, the inverse UQ methods should be applied.

8.4.2.2 Optimization Under Uncertain Payloads

Next, we demonstrate the utility of OUU as a tool to account for uncertainties in space-

systems design process with a simplified probabilistic model of the manipulator system. The

Canadarm is used to move bodies whose mass ranges from a few hundred kilograms (e.g .

astronauts on spacewalk wearing specialized suits) to several hundred tonnes (e.g . assembling

and repairing the space station). The robotic manipulator system needs to be designed for

handling a wide range of masses, and we demonstrate the suitability of the OUU methods

in this context. We model the mass of the payload to depend on a “probabilistic” random

variable – to emulate the scenario where the arm is used to move payloads of different masses
1https://www.ieee.ca/millennium/canadarm/canadarm_technical.html
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around space, that is masspayload(y) where y ∼ N (µ = 100, 000 kg, σ = 50, 000 kg). We

setup the optimization problem to minimize the mass of the system subject to stress-based

failure constraint as follows:

minimize E[mass] = E[ρ(A1l1 + A2l2)] = ρ(A1l1 + A2l2)

design variable width of bars

uncertainty payload mass ∼ N (µ = 100, 000 kg, σ = 50, 000 kg,N = 3)

subject to E[failure] + β · S[failure] ≤ 1

bounds 25cm ≤ width ≤ 50cm

(8.49)

The design variables are the cross-sectional width of the booms. The objective function

refers to the mass of the flexible booms subject to design, where ρ is the density of the

material, Ai is the area of cross-section, and li is the length of the i−th boom. In this

case, the objective function has no dependence on the random variable y; but for verification

purposes we evaluate the expectation and variance operators during computations. We use

spatio-temporal aggregation of constraint functions based on the Kreisselmeier–Steinhauser

formulation [45, 46] for failure constraint evaluation. We use a probabilistic basis set with

N = 3 Hermite polynomials. This implies that the stochastic matrices and vectors are thrice

as big as the deterministic counterparts, and are formed implicitly using the semi-intrusive

stochastic Galerkin method.

(a) Gradient Verification: First, the verification of derivatives is performed using the

complex-step method prior to optimization, and the values are listed in Table 8.8. We see a

good agreement in derivative values for optimization; however, we note that the accuracy of

the adjoint derivatives is affected by a few significant digits when spatio-temporal aggregation

is employed. We believe that this is due to the numerical issues arising from the choice of

aggregation parameter, which needs to be large number >> 1 for better approximation of

the maximum.
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Table 8.8: The complex-step verification of adjoint derivatives for the Canadarm system.

Quantity Mass Failure

adjoint dE[F ]/dξ 1.24800000000001979 · 105 -3.76597889920338691
complex dE[F ]/dξ 1.24800000000001819 · 105 -3.76596706242138746

relative error 1.3 · 10−15 3.1 · 10−6

adjoint dV[F ]/dξ N/A −4.46442271585651973 · 10−1

complex dV[F ]/dξ N/A −4.46444953483493667 · 10−1

relative error N/A 6.0 · 10−6

(b) Optimization Results: The optimization problem (8.49) was solved for reliability

parameter values ranging from zero to seven. For the purposes of comparison, a determin-

istic optimization problem with reference payload mass of 100, 000 kg was also solved. The

results are tabulated in Table 8.9. It can be seen that the widths increase as we require more

constraint reliability through the parameter β. It appears that the constraints are 100%

active for some OUU designs (i.e. β = 3 − 7), but recall that the mathematical constraint

formulation included β standard deviations of failure into consideration. To substantiate this

further, the expected constraint manifold can be seen to be more and more away from the

actual enforced constraint from the tabulated “expectation” values. Therefore, the reliability

parameter is similar in purpose to the factor of safety commonly employed in structural

design, as they both seek a design point that is a “specified” distance away from the con-

straint bounds. For example, the OUU design point pertaining to β = 6 is six standard

deviations away from the expected failure manifold. The difference between the reliability

parameter and the factor of safety is that the former is driven by mathematical concepts

from probability theory, whereas the latter is driven by expert opinion and industry or reg-

ulatory standards. In order to graphically interpret the results, we plot the contours of the

design space in Figure 8.20, on a 25× 25 Cartesian grid of the design variable bounds. The

trajectory of the design points, for increasing values of the reliability parameter β, is plotted

along with the mass and failure contours. The deterministic optimization case took under

a minute to converge, whereas the OUU cases took between 5 − 25 minutes to converge:
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Table 8.9: Designs resulting from the deterministic and probabilistic optimization of the
flexible manipulator system.

Quantity Deterministic β = 0 β = 1 β = 2 β = 3 β = 4 β = 5 β = 6 β = 7

width 1 [m] 0.250 0.250 0.250 0.271 0.303 0.343 0.385 0.428 0.471
width 2 [m] 0.250 0.250 0.250 0.250 0.250 0.278 0.311 0.347 0.381

constraint % 76.8 72.9 92.6 100 100 100 100 100 100
E[failure] – 0.729 0.729 0.650 0.552 0.482 0.431 0.387 0.353
iterations 7 7 7 9 8 34 62 43 41

Figure 8.20: The visualization of optimization design space with contours of the mass and
failure.

the number of optimizer iterations, function and gradient evaluations varied between these

cases.

8.4.2.3 Scalability Studies

The stochastic problem size grows linearly with increasing number of terms in the basis

set. In this section, we perform a study that identifies the rate at which the computa-

tional effort grows with increasing problem size N . We use the Canadarm case, to perform

forward analysis in time domain, and adjoint sensitivity analysis. We perform stochastic

Galerkin projection with increasing number of terms in the expansion of the random vari-

able y ∼ N (µ = 100, 000 kg, σ = 50, 000 kg,N), where N = 1, . . . , 10. Recall, that the
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number of deterministic degrees of freedom in the problem is 432: therefore, the total num-

ber of stochastic degrees of freedom is 432 × N . The results are plotted in Figure 8.21.

The slope of line is approximately 2.88, which implies that the computational effort grows

as O(N2.88). The actual wall times were divided by the number of time steps taken in the

simulation for normalization. In order to improve the scalability with respect to the prob-
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Figure 8.21: Plot of normalized wall time versus the cardinality of the probabilistic basis set.

lem size, the exploitation of symmetry and sparsity of the Jacobian, optimization of the

number of quadrature nodes based on the polynomial degree of the integrand, application of

sparse quadrature methods and matrix-free implementations are being considered for further

studies.

Summary. In this chapter, we applied the semi-intrusive uncertainty propagation tech-

nique on a wide range of problems from simple ODEs to complex space robotic systems.

Although, we presented the explicit details of the Galerkin projection for some test cases, in

order to illustrate it from the perspective of linear algebra and inner products, all the com-

puter implementations rely on abstractions and implicit formation of stochastic quantities

from deterministic quantities as described in Section 7.2. We used the sampling method to
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verify the probabilistic moments, and the complex-step method to verify the adjoint deriva-

tives. We used the four-bar mechanism and the remote manipulator model, to demonstrate

the use of OUU methods to produce designs that contain probabilistic information that can

be used for certification and quality assurance purposes. We demonstrated the propagation

of uncertainties through time dependent physics and adjoint formulations in the context of

stochastic Galerkin method.
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Part IV

Conclusions
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CHAPTER 9

CONTRIBUTIONS AND FUTURE WORK

Equations Are Art inside a Mathematician’s Brain.

Unknown Admirers

In this Chapter, we summarize the contributions of the thesis and outline future research

directions.

9.1 Summary of Contributions

We developed an optimization under uncertainty framework featuring

• the analysis of time dependent physics using implicit time marching methods,

• time dependent discrete adjoint based gradient evaluation, and

• the propagation of uncertainties using Galerkin projection and sampling.

We envisioned and structured the stochastic analysis capabilities as an extension of deter-

ministic design capabilities, and therefore separated the treatment of probabilistic domain.

The structuring of packages that form the developed UQ-OUU framework is shown in Fig-

ure 9.1. The time marching capabilities and adjoint method was implemented in the TACS

finite element framework 1. The evaluation of orthonormal basis and quadrature needed for

stochastic projection and sampling are implemented as a separate package PSPACE 2. The

Stochastic TACS framework STACS3 is an object-oriented extension of the TACS finite ele-

ment framework providing implementations of Element and Function interfaces needed for

stochastic finite element computations. The source code of PSPACE and STACS are written
1https://github.com/gjkennedy/tacs
2https://github.com/komahanb/pspace
3https://github.com/komahanb/stacs
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TACS

Probabilistic Space
(PSPACE)

Stochastic TACS
(STACS)

stochastic finite elements, functions

probabilistic quadrature and basis

deterministic finite elements, functions

Figure 9.1: The open source software packages that are a part of the developed UQ-OUU
framework.

in Fortran/C++ and wrapped in Python. The detailed technical contributions within this

framework is outlined in the remainder of this section.

9.1.1 Implicit Time Marching Methods in Natural Form

The governing equations of flexible multibody dynamics are a set of second-order differen-

tial algebraic equations. We enhanced the existing implicit time marching methods such

as Newmark, Runge–Kutta, Backward difference formulas, and Adams–Bashforth–Moulton

method for flexible multibody dynamics, and in general for second-order differential equa-

tions. These techniques were developed based on the second-order form of equations with

an abstract representation of the residuals as R(t, ξ, u(t, ξ), u̇(t, ξ), ü(t, ξ)), paving way for a

unified implementation within the TACS framework, as well as applicability for other time

dependent physics.
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9.1.2 Time Dependent Discrete Adjoint Formulation

Using abstractions of the governing equations R(t, ξ, u(t, ξ), u̇(t, ξ), ü(t, ξ)) and the metrics of

interest F (t, ξ, u(t, ξ), u̇(t, ξ), ü(t, ξ)), we derived the time dependent discrete-adjoint equa-

tions. These mathematical developments were numerically verified using the complex-step

method. The abstract mathematical developments of the implicit time marching methods

and their corresponding adjoint formulations, facilitated the modular and extensible pro-

gramming implementation within the TACS framework.

9.1.3 Semi-intrusive Stochastic Galerkin Projection

Stochastic Galerkin projection techniques are used to propagate uncertainties through sim-

ulations governed by differential equations. The stochastic Galerkin methods are often chal-

lenging to implement within existing deterministic finite-element libraries as they require

extensive source code modifications. In this work, we presented a semi-intrusive stochastic

Galerkin methodology that enables us to reuse existing deterministic finite-element imple-

mentations to perform projection in the probabilistic domain. Furthermore, the proposed

semi-intrusive method enables the use of deterministic adjoint capabilities for setting up the

stochastic adjoint equations. The principal idea is to project the deterministic quantities

such as residuals, Jacobians, boundary conditions, and adjoint terms on to the probabilistic

space, prior to assembly of the stochastic finite element or adjoint system, while assuming

the deterministic implementations to be black-box. In order for the proposed method to

work, the deterministic implementations must be able to recompute deterministic quantities

for different values of probabilistically modeled parameters. The proposed semi-intrusive

stochastic Galerkin approach is demonstrated within the assembly and solution architecture

of TACS – a finite-element framework with adjoint-based gradient evaluation methods, with

problems from flexible multibody dynamics.
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9.1.4 Flexible Multibody Dynamics Applications

The mathematical techniques and algorithms developed in this work are demonstrated using

a wide range of problems from simple ODE models to complex flexible multibody systems.

The rotorcraft hub dynamics was analyzed by modeling the full control chain containing

translational and rotational actuators, swash plates and blades. The adjoint gradient based

optimization demonstration was carried out using this model. We demonstrated the semi-

intrusive UQ-OUU capabilities on the mechanism modeled after the Canadarm. It was shown

the in the presence of uncertainties in payloads, the system experiences stresses that have

a large variability. We showed that UQ can be a great tool in assessing the risk associated

with such operating conditions.

9.2 Future Work

The suggestions for future work are outlined as follows. Some of these suggestions are

exciting theoretical/mathematical endeavors while others are applications of the developed

capabilities for OUU of aeromechanical systems.

9.2.1 Mathematical Formalisms of Implicit Time Marching and Sensitivity Analysis

• In areas of mathematical physics such as chaotic dynamics, the governing equations

contain as high as sixth-order derivatives in time (see Chlouverakis and Sprott [20]).

In this context, the development of time marching methods based on abstract natural

forms is of interest. In this case, we would be considering a system of d-th order

nonlinear ordinary differential equations in time t written in abstract implicit form

R(q(d)(t), . . . , q(1)(t), q(0)(t), t) = 0, (9.1)

where q(j)(t) := djq(t)
dtj
∀j = 0, . . . , d are the field variables and their time derivatives.

The implicit solution techniques in natural form can be developed by “generalizing”
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the Newton–Raphson iterative procedure described in Chapter 4.

• The development of time dependent direct sensitivity analysis equations in the con-

text of Newmark, BDF, ABM and Runge–Kutta, and perhaps other methods is an

interesting endeavor to understand the full spectrum of semianalytical methods for

sensitivity analysis along with the adjoint counterparts. An open-source implementa-

tion of implicit time marching methods and corresponding semianalytical sensitivity

analysis formulations, can be a useful tool for the scientific community.

• The extension of the time dependent adjoint and direct sensitivity analysis equations

to higher-order equations (9.1), can provide great intuitions on the mathematical struc-

ture. In this thesis, graphical illustrations of the adjoint equations in Chapter 4 were

presented to elucidate the intricate structure of adjoint equations.

9.2.2 Semi-intrusive Uncertainty Propagation for Finite Volume Frameworks

The use of mathematical abstraction for derivations, often, allows great flexibility in using

them in areas formerly unintended. The abstract development of stochastic Galerkin projec-

tion equations facilitates the direct application of the semi-intrusive technique to problems

using the finite volume method (FVM) for the treatment of spatial derivatives. Recall that

cells are the fundamental units of FVM computations, and elements are the fundamental

units of FEM framework. As outlined in Section 7.3, the methods can be extended to cell-

wise computations performed with FVM. In this case, we ought to proceed with the following

interpretation of residual as cell-wise residuals.

〈
ψ̂yi (y)

∣∣∣ Rc (t, y, uc(t, y), u̇c(t, y) , üc(t, y))Yρy(y)

〉

≈
Q∑

q=1

αqψ̂
y
i (yq)R

c (t, yq, u
c(t, yq), u̇

c(t, yq), ü
c(t, yq))︸ ︷︷ ︸

cell-wise deterministic residuals for yq

(9.2)
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Again, one has the alternative of projecting system-wide assembled residuals, if it is simpler

to implement.

9.2.3 Algebraic Multigrid for Stochastic Galerkin Computations

The stochastic Galerkin Jacobian matrices are shown to have interesting sparsity patterns

arising from the nonlinearity of problem parameters dependent on random variables. The

investigation of algebraic multigrid (AMG) techniques for partial differential equations has

received good attention [129]. This naturally guides us to investigate AMG techniques to

accelerate the solution process to bigger linear systems in the context of stochastic PDEs.

The implementation of AMG can be simplified, due the simpler implicit construction of

stochastic Jacobians from deterministic Jacobians.

9.2.4 Topology Optimization Under Uncertainty

The application of OUU methods in the context of topology optimization is receiving at-

tention among researchers [130–140]. Maute [140] mentions the importance of considering

probabilistic variations in material properties, geometry, boundary conditions to produce

robust and reliable designs. Guest and Igusa [139] considers the uncertainties in loading

conditions for topology optimization. The expectation and variance of compliance are used

as the objective by Dunning and Kim [136]. The works in the literature use nonintrusive

sampling based methods or simpler assessments for quantifying the effect of uncertainties.

The lack of published works on stochastic Galerkin projection based topology optimization,

serves to affirm the difficulty in the development of such frameworks, that is, the intrusive-

ness is a big hurdle for the adaptation of SGM as preferred method for UQ applications. The

semi-intrusive technique for stochastic Galerkin projection aligns well with addressing this

difficulty and can serve as an easier to implement method on top of deterministic frameworks

for topology optimization.
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9.2.5 Multidisciplinary Optimization Under Uncertainty

The incorporation of UQ techniques within multidisciplinary analysis and optimization

(MDAO) has been noted as one of the key interests in the NASA’s Vision for 2030 [141].

The application of the semi-intrusive projection technique to existing deterministic tools, can

enable an easier integration of UQ into MDAO frameworks. We recall that the requirement

for the semi-intrusive technique is that the deterministic tools ought to have the flexibility

to update problem parameters that are modeled as random.
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