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formulation of governing equations, treatment of kinematic constraints, and the evaluation of func-

tionals of interest and their derivatives are addressed. A minimal set of routines needed to implement

the discrete adjoint method are proposed. The governing equations are integrated in time using a di-

agonally implicit Runge–Kutta method for second-order systems of equations. The formulation of the

corresponding time dependent discrete adjoint equations are presented and are numerically verified

using the complex-step method. A verification of the dynamics, an assessment of parallel scalability

of the analysis and derivative evaluation techniques, and a demonstration of the design capability are

presented.
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Nomenclature

a,b,c first-order diagonally implicit Runge–Kutta coefficients

A,B second-order diagonally implicit Runge–Kutta coefficients

E Young’s modulus of the material

f functional of interest

F integrand for functional of interest

ḡ optimization problem constraints

g kinematic constraints

A Jacobian of kinematic constraints

h time step size

L Lagrangian for equations of motion

L Lagrangian for discrete adjoint

m mass

N number of time steps

q, q̇, q̈ state variables and their time derivatives

R residual of constrained equations of motion for multibody system

s number of diagonally implicit Runge–Kutta stages

S, T residual of diagonally implicit Runge–Kutta step update equations

t time

T kinetic energy

u, u̇, ü state variables and their time derivatives at each stage

V potential energy

x design variables
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α,β ,γ scalar coefficients

δ complex-step perturbation size

εr, εa relative and absolute tolerance

λ stage adjoint variables

µ Lagrange multiplier for holonomic constraints

ν Poisson’s ratio of the material

ρ density of material

ρks aggregation parameter

σks KS aggregation of von Mises stress

σvm von Mises stress

σmax maximum von Mises stress

φ ,ψ step adjoint variables

Ω spatial domain

I. Introduction

Accurate prediction of rotorcraft performance requires coupling multiple disciplines together to form an inte-

grated multidisciplinary rotorcraft analysis. Depending on the performance metrics of interest, the disciplines needed

for rotorcraft analysis include aerodynamics, structures, and structural dynamics at a minimum, and may also in-

clude control systems, acoustics, and propulsion systems. Comprehensive rotorcraft simulation tools provide good

performance prediction capabilities by integrating low- and medium-fidelity models that capture the most important

disciplinary physics. These comprehensive codes, such as RCAS [1], CAMRAD [2] and the general purpose flexible

multibody dynamics analysis tool Dymore [3], have been used throughout industry and academia in a wide range

of applications. However, as more advanced rotorcraft configurations are considered, such as tilt-rotors or co-axial

rotor concepts, comprehensive analysis tools may not provide sufficient accuracy. Furthermore, due to the tightly cou-

pled physics in rotorcraft problems, poor structural dynamics prediction can lead to poor aerodynamic predictions or

vice-versa. Thus, high-fidelity disciplinary models are needed to accurately predict rotorcraft performance, especially

when novel concepts are considered. In addition to accurate performance estimates, rotorcraft design tools should also

provide a means to systematically improve designs. Such a capability is not available in existing comprehensive codes.

Gradient-based design tools offer the potential to identify the design modifications necessary to achieve demanding

rotorcraft performance goals such as higher forward flight speeds, higher operational altitudes, and longer endurance

limits. However, the potential of gradient-based optimization can only be achieved if the gradient of a performance

metric can be evaluated efficiently. An efficient adjoint-based gradient evaluation method makes optimization afford-
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able since it can compute the gradient with a computational cost that is roughly the same as the original analysis.

The focus of this work is on parallel high-fidelity simulation techniques and the implementation of a discrete

adjoint-based derivative evaluation method for time-accurate flexible multibody dynamic simulations. These are in-

corporated within a modular, extensible framework implemented using object-oriented software design principles

and intended to work with other disciplines. These capabilities are implemented within the Toolkit for Analysis of

Composite Structures (TACS), a parallel framework for finite element analysis [4], that is available as open source

softwarea. These developments represents a step towards a high-fidelity multidisciplinary simulation tool for rotor-

craft simulation and gradient-based design optimization. While the focus of this work is on addressing analysis and

adjoint-based gradient evaluation techniques for structural and multibody dynamics, the proposed framework can be

coupled to other disciplines, such as aerodynamics, using the FUNtoFEM aeroelastic interface-layer [5–7].

Structural models for rotorcraft range in complexity from simple beam models to complex 3D models that combine

either shell elements or full 3D elements. Beam models can often provide accurate predictions of deflection, twist,

and stresses in rotor blades for preliminary design purposes [8, 9]. However, beam models may not be adequate for

modeling rapid variation in blade cross-section, local variation of blade sweep, localized structural damage assessment,

or the analysis of load bearing components. Several authors have developed higher-fidelity structural and dynamics

models that combine shell or 3D elements [10–13] in order to improve modeling accuracy. While these techniques

have more sophisticated modeling capability, they also require many more degrees of freedom than even the most

advanced nonlinear beam formulations. Typically, the use of shell or 3D elements requires between 2 to 4 orders of

magnitude more degrees of freedom compared to beam models. As a result, higher-fidelity structural models naturally

call for the use of parallel solution techniques.

While the size of structural models for rotorcraft simulations grow, the need for gradient-based design capabilities

necessitates the implementation of adjoint-based gradient evaluation methods [4, 14–26]. A key property of the adjoint

method is that the computational cost of evaluating the gradient of a single functional of interest is nearly independent

of the number of design variables. This property is critical for high-fidelity multibody dynamics models that may

require detailed cross-sectional design parametrizations for the rotor blade geometry. However, the overall gradient

evaluation cost grows linearly with the number of functionals in the design formulation. As a result, in cases where

the number of functionals is large, the adjoint method can become expensive. This is especially a concern in structural

design with strength criteria where a large number of stress constraints may be required. In such cases, constraint

aggregation methods [27, 28] can be used to reduce the number of functionals, thereby reducing the gradient evaluation

cost. The adjoint method has been applied to structural [4, 14–17], aerodynamic [18–20], coupled aeroelastic [21, 22]

and flexible multibody dynamics cases [23–26]. Cao et al. [23] presented general adjoint methods for differential

algebraic equations in first-order systems, or systems that have been reduced to first-order form, with applications to

multibody dynamics. Nachbagauer et al. [26] presented a continuous adjoint method for multibody dynamics with
aTACS is available at https://github.com/gjkennedy/tacs
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a focus on applications for inverse dynamics and parameter identification for rigid body problems. Dopico et al.

[25] developed an approach to the sensitivity analysis of multibody systems based on Maggi’s formulation of the

governing equations, using the direct sensitivity approach and the adjoint method. Ding et al. [24] presented an adjoint

method for computing the second derivative of functionals of interest. The papers presented in the literature contain

either serial adjoint implementations for dynamics that consist of rigid bodies and flexible beam elements [23–26]

or feature parallel high-fidelity analysis capabilities that lack an adjoint method [10, 11]. Therefore, high-fidelity

analysis, adjoint-based gradient evaluation, and parallelism are not entirely available within the same computational

framework.

To address this deficiency, we present a high-fidelity finite-element based analysis and optimization framework

that is suitable for rotorcraft computations. This work differs from previous mathematical formulations of the adjoint

method for flexible multibody dynamics by utilizing a second-order descriptor form of the governing equations in com-

bination with a diagonally implicit Runge–Kutta time-marching method. The key aspects of the implementation of the

adjoint that enable an extensible and modular framework are described. The parallel scalability of the implementation

is also demonstrated for large-scale flexible multibody models.

The remainder of the paper is structured as follows. Section II describes the flexible multibody dynamics equa-

tions, their solution strategy and the functional aggregation method used within this work. Section III details the

development of time-marching techniques specialized to the form of governing equations and the formulation of the

corresponding adjoint equations. Section IV describes the implementation aspects of the discrete adjoint method. Sec-

tion V presents verification studies for the dynamics and discrete adjoint formulation and demonstrates the framework

on rotor hub dynamic analysis and optimization, along with parallel performance evaluation. Section VII summarizes

the conclusions from this work.

II. Background and Methodology

This section presents an overview of the governing equations of motion, the treatment of kinematic constraints,

the solution of differential algebraic equations, and the evaluation of functionals of interest.

A. Governing Equations of Motion

The equations governing the motion of flexible multibody systems can be derived using a number of different meth-

ods [29, 30]. This work employs an approach based on the constrained Euler–Lagrange equations that leads to a

system of differential algebraic equations (DAEs). The system of DAEs consists of both a set of differential equations

and a set of algebraic constraints that restricts the kinematics using Lagrange multipliers. One advantage of using

the Euler–Lagrange equations is that they can be numerically verified for consistency with the kinetic and potential

energy expressions and the constraint equations using finite-difference or complex-step methods. The Lagrangian for
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the equations of motion is defined as

L (ẇ,w), T (ẇ,w)−V (w) (1)

where w is a vector that contains the displacements and Euler parameters for rotation matrix parametrization, and

T (ẇ,w) and V (w) are the kinetic and potential energy of the system, respectively. The kinetic energy and poten-

tial energies are computed as integrals over each finite element within the rotorcraft assembly based on the element

type [29, 31, 32]. In this work, the kinematics of the flexible bodies are restricted through a set of holonomic con-

straints of the form g(w) = 0, where the extension to nonholonomic constraints is straightforward. The Jacobian of

the kinematic constraints is A = ∂g/∂w. With these definitions, the governing equations of motion in second-order

descriptor form are

R(q̈, q̇,q,x, t),

 d
dt

(
∂L

∂ ẇ

)
− ∂L

∂w
−AT

µ

g(w)

= 0. (2)

Here the vector q = (w, µ) includes both the degrees of freedom w and the Lagrange multipliers µ . Note that the

vector of design variables, x, is included to reflect the dependence of the system of equations on design variables. In

the following sections, it will be necessary to compute the Jacobian of the governing equations with respect to the state

variables and their derivatives. These Jacobian matrices always appear as a linear combinations of the form

J = γ
∂R
∂ q̈

+β
∂R
∂ q̇

+α
∂R
∂q

,

where α , β , and γ are scalar coefficients.

Often authors convert the governing system of equations into first-order form so that they can be solved using

existing numerical libraries for solving first-order systems [33–35]. In this work, however, the second-order descrip-

tor form (2) is employed directly since it retains the underlying structure of Euler–Lagrange equations and leads to

a system of adjoint equations that is simpler to implement and easier to interpret. Haug et al. [36] similarly solves

the equations of motion in their natural form as second-order for rigid multibody dynamic formulations. The de-

scriptor form of the governing equations can be solved using implicit time integration schemes that are required to

solve the numerically stiff governing equations associated with flexible multibody dynamics. The descriptor form (2)

provides the basis for different element types implemented in the framework based on the finite element method.

The elements within the framework, at present, consist of rigid bodies, flexible quadratic beam elements employing a

Timoshenko beam formulation, and flexible bi-quadratic shell elements employing a Reissner–Mindlin formulation.

To avoid shear locking, the beam and shell elements employ a mixed interpolation of tensorial components (MITC)

formulation [31, 32]. In addition, kinematic constraints are implemented within the same element hierarchy, including

the lower kinematic pairs [29, 37].
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B. Differential Algebraic Equations

DAEs present additional computational challenges compared with ODEs. In particular, DAEs are numerically stiff

and require implicit time integration techniques to attain computationally practical integration strategies. While im-

plicit integration methods necessitate the solution of nonlinear system of equations at each time step, this additional

computational cost is offset by the improved stability properties and the resulting larger time steps enabled by implicit

methods. This work uses a diagonally implicit Runge–Kutta method for time integration. Runge–Kutta methods be-

long to the class of multistage methods for solving differential equations, which employ intermediate time steps known

as stages. Explicit Runge–Kutta methods are not well-suited for the stiff systems that arise in flexible multibody dy-

namic simulations. However, Butcher [38] extended Runge–Kutta methods to include a class of Implicit Runge–Kutta

(IRK) methods that are well suited for stiff problems. As a further refinement, Alexander [39] and subsequently Cash

[40] developed Diagonally Implicit Runge–Kutta (DIRK) methods that achieve computational savings compared to

IRK methods. These computational savings arise from the lower triangular structure of the matrix of DIRK coeffi-

cients. Various DIRK methods have been developed by Alexander [39], including one-stage second-order, two-stage

third-order, and three-stage fourth-order schemes. A study of the mathematical properties of DIRK methods is pre-

sented by Kennedy and Carpenter [41]. A detailed description of the DIRK method developed to solve the governing

second-order systems is provided in Section III.

C. Functionals of Interest

In the context of the optimization of flexible multibody systems, it is necessary to define the objective and constraint

functionals of interest. In this work, the adjoint equations are derived based on a discrete approximation of the integral

functional

f (q̈, q̇,q,x) =
∫ t f

0
F(q̈, q̇,q,x, t) dt, (3)

where the integrand F depends on the state variables and their time derivatives as well as the design variables. This

functional form enables a straightforward derivation of the discrete adjoint equations; however, not all functionals

fit this simple form. For instance, aggregation functionals, which are designed to provide a smooth estimate of the

maximum or minimum quantity of interest over space and time, do not fit this integral functional form. In this work,

we use the continuous Kreisselmeier–Steinhauser (KS) [27, 28] which is designed to estimate the maximum stress

within the structure and can be evaluated as

f (q̈, q̇,q,x) = cks +
1

ρks
ln
[∫ t f

0

∫
Ω

eρks (σvm−cks) dΩdt
]
, (4)

where ρks is a parameter that controls the accuracy of the estimate, σvm is the von Mises stress, cks is a constant that can

be used to avoid numerical issues [28], and Ω represents the spatial domain of interest. While the KS functional (4)

does not take the same form as the functional (3), it is a function of an integral functional and the techniques described
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below can be extended to this case as well.

III. Time Integration and Discrete Adjoint

This section presents the numerical time integration procedure for the governing equations using DIRK methods,

and the development of the corresponding discrete adjoint equations used to evaluate the derivative of functionals of

interest. The mathematical form of the governing equations (2) and the functional of interest (3) enable a concise

derivation of adjoint equations for a broad class of problems.

A. Time Integration

In an implicit Runge–Kutta time integration scheme, the governing equations are integrated forward in time by solving

a coupled system of implicit stage equations, followed by an explicit update that computes the state variables at the

next time step [38]. A DIRK scheme [39–41] is distinguished from general IRK schemes based on the fact that each

stage equation is coupled only to the previous stages, enabling a sequential solution procedure for each subsequent

stage variable. This decoupling is due to the lower triangular structure of the DIRK coefficients for generic s-stage

DIRK scheme shown in Table 1, referred to as the Butcher tableau [38]. In this work, we use one-, two-, and three-

stage DIRK schemes that are second-, third-, and fourth-order accurate in time, respectively [39]. The coefficients

for the two- and three-stage schemes are shown in the Butcher tableaus shown in Table 2. Other two- and three-stage

DIRK schemes with lower accuracy can provide stronger numerical stability properties, but we have found that for the

range of problems presented within this paper, these schemes are adequately stable.

Table 1: Butcher’s tableau structure for diagonally implicit Runge–Kutta methods.

c1 a11 0 0 0
c2 a21 a22 0 0
...

...
...

. . . 0
cs as1 as2 · · · ass

b1 b2 · · · bs

Table 2: Two and three-stage DIRK methods that are 3rd and 4th order accurate from Alexander [39]. For the three-
stage DIRK method α = 2(cos(π/18))/

√
3.

1
2 +

1
2
√

3
1
2 +

1
2
√

3
0

1
2 − 1

2
√

3
− 1√

3
1
2 +

1
2
√

3
1
2

1
2

(a) Two-stage DIRK tableau

(1+α)/2 (1+α)/2 0 0
1/2 −α/2 (1+α)/2 0

(1−α)/2 1+α −(1+2α) (1+α)/2

1/(6α2) 1−1/(3α2) 1/(6α2)

(b) Three-stage DIRK tableau
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1. DIRK stage variables

In this work, a constant time interval, h, is used for each time step. The state variables and their first time derivatives

are approximated at time tk = hk, as qk ≈ q(tk), and q̇k ≈ q̇(tk). The initial state variable values at time t = 0, given

by q0 and q̇0, are obtained from the configuration and kinematics of the multibody system. The values of qk, and

q̇k for k = 1 . . .N are obtained incrementally at each new time step as a function of the time derivatives of the state

variable values at s intermediate stages. The state variable values and their time derivatives at intermediate stage

i, at time tki = tk + cih, are denoted uki ≈ q(tki), u̇ki ≈ q̇(tki), and üki ≈ q̈(tki), respectively. In order to solve the

second-order governing equations, the second time derivatives of the state variables at each stage, üki, are treated as

the unknown variables. All remaining state variables and their time derivatives are expressed in terms of üki, based on

the coefficients in the Butcher tableau 1. At stage i, at time step k, the first time derivatives, u̇ki, are obtained using the

DIRK stage relationships

u̇ki = q̇k−1 +h
i

∑
j=1

ai jük j, (5)

while the variables uki, are obtained using

uki = qk−1 +h
i

∑
j=1

ai ju̇k j,

= qk−1 +h
i

∑
j=1

ai j

(
q̇k−1 +h

j

∑
l=1

a jl ükl

)
,

= qk−1 +hciq̇k−1 +h2
i

∑
j=1

Ai jük j.

(6)

Here we have applied the property of the DIRK coefficients, ∑
s
j=1 ai j = ci, and have defined second-order DIRK

coefficients such that

Ai j =
s

∑
l=1

ailal j.

Note that the second-order DIRK coefficients Ai j share the same lower-triangular structure as the first-order DIRK

coefficients and that the diagonal entries are Aii = a2
ii.

Once all stage variables are computed, the variables, qk, and their first time derivatives, q̇k, can be obtained. The

values of the first time derivatives, q̇k, can be obtained as follows

q̇k = q̇k−1 +h
s

∑
i=1

biüki, (7)
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while the variables, q̇k can be found as

qk = qk−1 +h
s

∑
i=1

biu̇ki,

= qk−1 +h
s

∑
i=1

bi

(
q̇k−1 +

i

∑
j=1

ai jük j

)
,

= qk−1 +hq̇k−1 +h2
s

∑
i=1

Biüki.

(8)

Here we again use a property of the DIRK coefficients, ∑
s
i=1 bi = 1, and again define second-order DIRK coefficients

as

Bi =
s

∑
j=1

b ja ji.

Note that all Runge–Kutta schemes that achieve higher than second-order accuracy satisfy the condition ∑
s
i=1 Bi = 1/2.

2. DIRK stage equations

The values of second derivatives of the state variables at each stage, üki, are determined by solving the governing

equations of motion (2). At stage i of time step k, the governing equations (2) take the form

Rki , R(üki, u̇ki,uki,x, tki) = 0, (9)

where the full dependence of the state variables can be written as u̇ki = u̇ki(q̇k−1, ük1, . . . , üki), and the full depencence

of the time derivative of the state variables can be written as uki = uki(qk−1, q̇k−1, ük1, . . . , üki) via the approxima-

tions (5) and (6), respectively. As a result of the depencence of u̇ki and uki on ük j, there is ambiguity about the

notation for the partial derivative terms. Here, we use ∂Rki/∂ üki to denote the partial derivative of the stage equation

residual (9), including any implicit dependence on üki. Therefore, the matrix ∂Rki/∂ üki is a Jacobian matrix formed

from a linear combination of the derivative of the governing equation (2) with respect to the state variables and their

derivatives, q, q̇, and q̈. To distinguish the components of this linear combination, we use the notation ∂Rki/∂ q̈, with

the subscript ki, to denote the derivative of the governing equations with respect to q̈, i.e. ∂R/∂ q̈, evaluated at the

state variables üki, u̇ki, and uki. We also use analogous definitions for derivatives with respect to q̇, or q. As a result,

the Jacobian of the governing equations can be expressed as follows

∂Rki

∂ üki
=

∂Rki

∂ q̈
+haii

∂Rki

∂ q̇
+h2Aii

∂Rki

∂q
.

An analogous notation is also employed for the integrand of the functional of interest (3).

The nonlinear system of equations at each stage (9) is solved using a Newton–Raphson method. At each Newton–
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Raphson iteration, indexed by n, linearizing equation (9) with respect to üki results in the following linear system

[
∂Rn

ki
∂ üki

]
∆ün

ki =

[
∂Rn

ki
∂ q̈

+haii
∂Rn

ki
∂ q̇

+h2Aii
∂Rn

ki
∂q

]
∆ün

ki =−Rn
ki. (10)

As an initial guess for the Newton–Raphson method, we set ü0
ki = 0, and compute initial values for u̇0

ki, and u0
ki,

using the stage equations (5) and (6). The residual and Jacobian matrix are recomputed and the Jacobian matrix is

completely refactored at each iteration. The linear system (10) is solved in parallel using a direct matrix factorization

method described in Kennedy and Martins [4]. Once the solution, ∆un
ki is obtained, the stage variables and their time

derivatives are updated as follows:

ün+1
ki = ün

ki +∆ün
ki,

u̇n+1
ki = u̇n

ki +haii∆ün
ki,

un+1
ki = un

ki +h2Aii∆ün
ki.

(11)

The iterative updates are continued until the residual norm of the governing equations falls below either a relative

tolerance, εr, such that ‖Rn
ki‖2 ≤ εr‖R0

ki‖2 or an absolute tolerance, εa, such that ‖Rn
ki‖2 ≤ εa. In this work, we have

used values of εr = 10−9 and εa = 10−12, respectively. After the forward problem has been solved, the functionals of

interest can be evaluated using an integration scheme consistent with DIRK

f (q̈, q̇,q,x)≈
N

∑
k=1

h
s

∑
i=1

biF(üki, u̇ki,uki,x, tki),

where bi are the DIRK integration coefficients.

B. Time-Dependent Discrete Adjoint Method

The process of obtaining the derivative of a functional of interest with respect to the design variables requires two

main steps: (1) the computation of the adjoint variables by solving the adjoint equations, and (2) the evaluation of the

total derivative based on the adjoint variables. The form of the adjoint equations derived here is similar to the DIRK

integration scheme: s stage-adjoint equations are solved followed by an explicit update to obtain the new adjoint

variables. Like all time-dependent adjoint methods, the DIRK adjoint equations march backwards in time.

The adjoint equations and the total derivative are derived in this section based on a discrete approximation of

a continuous Lagrangian. This approximate Lagrangian consists of a combination of the functional of interest, the

inner product of the adjoint and the residual of the DIRK residuals at each stage, as well as the inner product of the

state update equations with associated adjoint vectors. To form the discrete Lagrangian, the state update equations (7)
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and (8) are first reformulated in residual form

Sk , q̇k−1 +h
s

∑
i=1

biüki− q̇k = 0,

Tk , qk−1 +hq̇k−1 +h2
s

∑
i=1

Biüki−qk = 0.
(12)

Next, the adjoint variables, λki, ψk and φk, are introduced, which are associated with the stage residuals, Rki, and the

state update equations, Sk, and Tk, respectively, for each time step, k. With these definitions, the Lagrangian for the

adjoint equations is

L=
N

∑
k=1

h
s

∑
i=1

bi(Fki +λ
T
ki Rki)+

N

∑
k=1

ψ
T
k Sk +

N

∑
k=1

φ
T
k Tk. (13)

Note that the first term in the Lagrangian is a discrete approximation of the sum of the integral functional and the

product of the adjoint variables with the governing equations.

The adjoint equations are obtained by finding the stationary point of the Lagrangian (13) with respect to (1)

the second time derivatives of the state variables at each stage, üki, and (2) the state variables and their first time

derivatives at each step, qk, and q̇k, respectively. The equation for the adjoint variables, φk, associated with the first

stage equation (5), is obtained by imposing the condition ∂L/∂qk−1 = 0, yielding the following equation

∂L

∂qk−1
=

∂Tk

∂qk−1

T

φk +
∂Tk−1

∂qk−1

T

φk−1 +h
s

∑
i=1

bi

(
∂Fki

∂qk−1

T

+
∂Rki

∂qk−1

T

λki

)
= 0,

which reduces to the following explicit update after the evaluation of partial derivatives and the application of chain

rule of differentiation

φk−1 = φk +h
s

∑
i=1

bi

(
∂Fki

∂q

T

+
∂Rki

∂q

T

λki

)
. (14)

In an analogous manner, the equation for the adjoint variables, ψk, associated with the second stage equation (12)

is obtained by setting ∂L/∂ q̇k−1 = 0. This yields the following equation

∂L

∂ q̇k−1
=

∂Sk−1

∂ q̇k−1

T

ψk−1 +
∂Sk

∂ q̇k−1

T

ψk +
∂Tk

∂ q̇k−1

T

φk+1 +h
s

∑
i=1

bi

(
∂Fki

∂ q̇k−1

T

+
∂Rki

∂ q̇k−1

T

λki

)
= 0.

This equation can be simplified to obtain an update for the adjoint variable ψk:

ψk−1 = ψk +hφk +h
s

∑
i=1

bi

(
∂Fki

∂ q̇

T

+
∂Rki

∂ q̇

T

λki

)
+h2

s

∑
i=1

bici

(
∂Fki

∂q

T

+
∂Rki

∂q

T

λki

)
. (15)

At the last time step k = N, ψN = φN = 0. Note that the adjoint equations (14) and (15) are explicit relations similar

in form to the forward update equations (7) and (8).

Finally, the equation for the adjoint variables, λki, associated with the residual at each stage can be found by setting
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∂L/∂ üki = 0. This gives the following relationship

∂L

∂ üki
= h

s

∑
j=i

b j

(
∂Fk j

∂ üki

T

+
∂Rk j

∂ üki

T

λk j

)
+

∂Sk

∂ üki

T

ψk +
∂Tk

∂ üki

T

φk = 0.

Expanding the partial derivatives gives the following relationship

h
s

∑
j=i

b j

[(
∂Fk j

∂ q̈

T

+
∂Rk j

∂ q̈

T

λk j

)
+ha ji

(
∂Fk j

∂ q̇

T

+
∂Rk j

∂ q̇

T

λk j

)
+h2A ji

(
∂Fk j

∂q

T

+
∂Rk j

∂q

T

λk j

)]
+hbiψk +h2Biφk = 0.

Finally, dividing by hbi and rearranging for the unknown adjoint variable λki results in a linear system of the form:

[
∂Rki

∂ q̈
+haii

∂Rki

∂ q̇
+h2Aii

∂Rki

∂q

]T

λki =−bki, (16)

where the right hand side is

bki =

(
∂Fki

∂ q̈

T

+haii
∂Fki

∂ q̇

T

+h2Aii
∂Fki

∂q

T
)

+h
s

∑
j=i+1

b ja ji

bi

(
∂Fk j

∂ q̇

T

+
∂Rk j

∂ q̇

T

λk j

)
+h2

s

∑
j=i+1

b jA ji

bi

(
∂Fk j

∂q

T

+
∂Rk j

∂q

T

λk j

)

+ψk +h
Bi

bi
φk.

(17)

There are three groups of terms that contribute to the right-hand-side (17) of the stage adjoint equation (16). The first

group of terms represent the contributions from the derivative of the functional with respect to the state variables and

their time derivatives. The second group of terms provide contributions from the future stage adjoint variables at the

same time step. The last group of terms carry forward contributions from one time step to the next.

Once the adjoint variables λki have been determined, the total derivative can be computed as follows:

d f
dx

,
dL
dx

=
N

∑
k=1

h
s

∑
i=1

bi

(
∂Fki

∂x
+λ

T
ki

∂Rki

∂x

)
. (18)

Note that only the adjoint variables for the stage equations, λki, contribute to the total derivative computation.

IV. Implementation of the Adjoint Method

General flexible multibody dynamics simulation tools contain a large library of flexible and rigid elements, joints,

dampers, and a wide variety of kinematic constraints that can be used to model multibody systems. The implemen-

tation of the discrete adjoint imposes additional requirements on each component of the simulation. These additional

requirements must be handled carefully in order to maintain an efficient and accurate adjoint implementation. This

section presents the organization and implementation of the proposed adjoint sensitivities, that is designed to be mod-
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ular and extensible to facilitate an expanding library of flexible and rigid elements in TACS [4]. The adjoint equations

presented in section III contain:

1. The derivatives of the functional of interest and the governing equations with respect to the state variables,

2. The derivatives of the functional of interest and the governing equations with respect to the design variables,

and

3. The products of the adjoint variables with the derivatives the governing equations respect to the state variables.

These three primary terms are implemented using a library that contains four interfaces: Element, Function, Assembler

and Integrator. The organization and relationships between these four interfaces are shown in Figure 1. This or-

ganization allows for the separation of functionality that enables the underlying element and function library to be

extended without having to change the adjoint implementation. The functionality of these interfaces are explained in

the remainder of this section.

Adjoint Implementation

«interface»
Assembler

functions : Function
elements : Element

1. Product of Adjoint and Residual State Variable Sensitivity
2. Function State Variable Sensitivity
3. Product of Adjoint and Residual Design Variable Sensitivity
4. Function Design Variable Sensitivity

«interface»
Integrator

assembler : Assembler

1. Evaluate Adjoint
2. Evaluate Total Derivative

«interface»
Function

1. Add Function State Variable Sensitivity
2. Add Function Design Variable Sensitivity

«interface»
Element

1. Add Residual State Variable Sensitivity
2. Add Residual Design Variable Sensitivity

has
1

has
1..* has

1..*

Figure 1: Class diagram illustrating the architecture of adjoint-based gradient implementation.

A. Element Interface

The element library contains beam, shell, and rigid-body elements as well as kinematic constraints including the lower

kinematic pairs. These elements implement a common Element interface by providing specific implementations for

the abstract prototypes based on the governing equations of motion. This interface contains two routines required for

the adjoint implementation:

1. The computation of element-wise Jacobian matrices that are used by the Assembler to evaluate the global

transpose Jacobian in the linear adjoint system.
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2. The evaluation of the derivative of element-wise product of the residuals and the adjoint variables with respect

to the design variables. This routine is used to evaluate the total derivative.

As new elements are added to the multibody dynamics library, they are required to implement these two routines so

that they can be seamlessly merged in the existing framework.

B. Function Interface

The Function interface contains similar prototypes as the Element interface. The interface provides the derivatives

of functionals of interests for design optimization which include two primary function-level routines:

1. The evaluation of the element-wise derivative of the functional integrand with respect to the state variables and

their time derivatives.

2. The element-wise computation of the derivative of the functional integrand with respect to the design variables,

required for the total derivative.

The functionals are evaluated over all or a subset of elements in the domain. For example, when evaluating the the KS

functional to estimate the maximum stress (4), the rigid elements in the simulation model can be omitted.

C. Assembler Interface

The Assembler interface is designed to operate on a collection of Element and Function instances. The routines

provided in this interface assemble the partial derivative terms necessary for sensitivity analysis and place them in

global matrices and vectors. These operations depend only on the prototypes defined in Element and Function inter-

faces, rather than on the specific implementations of element and function types. This dependency of the Assembler

on Element and Function interfaces is shown in Figure 1.

1. Solving the Adjoint Equations

The first set of Assembler routines are required for the solution of the adjoint equations (14), (15), and (16). These

functions compute the transpose Jacobian-vector product of the governing equations with respect to the state variables

χ ← χ +

[
γ

∂R
∂ q̈

+β
∂R
∂ q̇

+α
∂R
∂q

]T

χ, (19)

and the derivative of the functional integrand with respect to state variables

χ ← χ +

[
γ

∂F
∂ q̈

+β
∂F
∂ q̇

+α
∂F
∂q

]
. (20)

Here χ is a place-holder for a state vector determined from the context of the adjoint equations. The inputs to these

routines are scalar constants for each partial derivative (α , β , and γ) and the state variables, q, and their time deriva-
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tives, q̇, and q̈. The state variables and their time derivatives are stored to disk during the solution phase and reloaded

when marching backwards in time during the adjoint solution process. This reduces the amount of memory required

when the number of time steps is large. The routines (19) and (20) are used frequently in the discrete adjoint imple-

mentation of DIRK. The number of invocations of each routine for an s-stage DIRK adjoint implementation is listed

in Table 3. Both the number of calls at each stage i and the total number of calls per time step are tabulated.

Table 3: Number of transpose Jacobian-vector products and functional integrand derivative computations required to
form the right-hand-sides in the corresponding adjoint equations.

[∂R/∂q]T χ ∂F/∂q

Equation (14) for φk s s
Equation (15) for ψk 2s 2s
Equation (16) for λki 2(s-i)+1 2(s-i)+1

Total per time step 4s + s(s+1)/2 4s + s(s+1)/2

2. Evaluating the Total Derivative

The second set of assembly-level routines are needed to evaluate the total derivative of the functional of interest based

on equation (18). These routines compute the product of the adjoint variables with the derivative of the governing

equations with respect to design variables

χ ← χ +α
∂R
∂x

T

χ, (21)

and the derivative of the functional integrand with respect to design variables

χ ← χ +α
∂F
∂x

T

. (22)

Here the inputs consist of a scalar α , the design variables x, and the state variables, q, and their time derivatives, q̇,

and q̈. The output for both of these routines is a vector with the same dimension as the design variable vector. The

routines (21) and (22) are used once at each stage to accumulate the contributions to the total derivative (18).

D. Integrator Interface

The class implementing the Integrator interface completes the evaluation the adjoint variables and the computation

of the total derivative and provides it to the optimizer. The Integrator interface contains an instance of Assembler,

which enables it to evaluate the partial derivative terms from the governing equations and the functionals of interest,

and scale them with the appropriate coefficients, as dictated by the adjoint equations. Note that the Integrator does

not interact directly with Element and Function interfaces, but instead uses the Assembler interface, as shown

in Figure 1. This class contains routines that implement DIRK specific operations and is used repeatedly in a time

loop starting from the final time step and ending at the initial time step. The Assembler set of routines used by
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the Integrator are designed to work for any adjoint method corresponding to other time marching schemes such

as Backwards Difference Formula, Adams-Bashforth-Moulton, or Newmark’s method. The implementation of other

time-integration methods requires only a new implementation of the Integrator interface. The authors have used

utilized these proposed routines extensively for other discrete adjoint implementations [42].

V. Verification and Scalability Studies

This section presents a series of studies that verify the implementation of the governing equations and evaluates

the scalability of the solution and adjoint-based derivative evaluation techniques.

A. Dynamics Verification

0.24 m

0.12 mBar 1

Bar 2

Bar 3

1

2

Misaligned joint

Bar 1 and 2
Bar 3

16 mm
8 mm

Ω3 = 0.6 rad/s

Bar cross sectionsB

C

DA

Figure 2: The four-bar mechanism problem used for dynamics verification of TACS.

A partial verification of the governing equations implemented within the framework is performed against the four-

bar mechanism problem reported by Bauchau et al. [43]. Figure 2 illustrates the setup of the problem. Three bars AB,

BC and CD of the mechanism are joined together using revolute connections. An imaginary fourth bar exists in the

mechanism between the points A and D. The revolute joints at the points A, B, and D, have an axis of rotation that

is perpendicular to the plane of the mechanism. The revolute joint at point C is misaligned by an angle of 5◦, rotated

about the direction of the bar CD. Bars AB and BC are of the same cross-section, while bar CD has a smaller, more

flexible cross section. The bars in the mechanism are modeled using quadratic beam elements that are derived from

Timoshenko beam theory. The beam element is implemented using a geometrically exact formulation that captures

full rigid rotations and translations, and provides discretely objective strains. Shear locking is avoided through the use

of a mixed interpolation of tensorial components (MITC) treatment of the transverse shear strains. The rotation of bar

AB about point A of the mechanism is driven at an angular rate of Ω3 = 0.6 rad/s.

When the bars are rigid, the four-bar mechanism locks and motion is inhibited. When the bars are modeled as

flexible, motion becomes possible since the bars can bend to overcome the locking behavior. The motion of the four
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bar mechanism is illustrated in Figure 3 as a time lapse. If joint C were not misaligned, the bars would rotate in phase.

However, due to the misalignment, the third bar never completes a full rotation, while the first bar drives the motion.

Figure 3: The time evolution of flexible four-bar mechanism simulated using TACS.
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Figure 4: Comparison of TACS and Dymore [43] predictions of force and bending moment in bar AB at mid-span.

Figure 4 shows a comparison of the axial force and bending moment in bar AB at the mid-span compared with the

same predictions using Dymore [43]. The force and moment predictions can be seen to be in excellent agreement for

this benchmark problem.

B. Parallel Scalability Assessment

This section presents a study of the parallel scalability of the forward time integration, and the adjoint solution and

total derivative evaluation methods described in Section III. Two models of a plate pendulum are used in this study:

a medium model with 192,000 degrees of freedom, and a larger model with 2 million degrees of freedom. The

pendulum consists of a 25 × 5 ×5 cm beam, modeled using shell elements of 1 cm thickness. The material properties

are aluminum with E = 70 GPa, ν = 0.3, and ρ = 2500 kg/m3. The functional evaluated for this simulation is the KS

aggregation of von Mises failure ratio in space-time domain and the design variables are chosen to be the the shell

thicknesses. The time evolution of the configuration of flexible pendulum is carried out using the two-stage third-
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order DIRK method. During the time integration, the nonlinear system is solved using the Newton method described

in Section A with relative and absolute tolerances of εr = 10−9 and εa = 10−12, respectively. The linear system arising

from each Newton iteration is solved using a direct factorization of the Jacobian. After the forward simulation is

complete, the time history is used to evaluate the KS functional and the adjoint method is used to evaluate its gradient.

The computational time taken for each main component of these operations is recorded and forms the basis of this

study.

The study consists of three parts: first, a high-level comparison of the overall performance of the forward analysis

and adjoint-method. Second, a detailed low-level comparison of the computational time spent in the individual oper-

ations in the forward analysis and adjoint, respectively. And finally, an evaluation of the parallel scalability for cases

involving additional functionals for fixed problem size. These studies were performed on a cluster with 2.50GHz Intel

Xeon CPU E5-2680-v3 compute nodes. Each node has 24 processor cores with a total of 128 GB of RAM per node.

The number of processor cores used to solve the medium sized problem are 1, 2, 4, 8, 12, 16, 20, and 24. The number

of processor cores used to solve the larger problem are 12, 24, 48, and 72. The element-based domain decomposition

is assigned based on the graph partitioning algorithms in METIS-5.0 [44], where the elements are assigned to both

balance the number of elements per process while minimizing the size of the interface between domains. The num-

ber of iterations taken to solve the nonlinear problem does not vary with the number of processors used to solve the

problem.

1. High-level Operations
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Figure 5: Parallel scalability evaluation of high-level operations such as the forward and adjoint modes.

The high-level operations consist of solving the forward problem for the state variables, computing the adjoint

variables and evaluating the total derivative. The total time, consisting of the sum of the forward and adjoint times,

19 of 32

American Institute of Aeronautics and Astronautics



reflects the time required for a typical optimization iteration. The parallel scalability of the flexible pendulum plate

problem is shown in Figure 5 for the medium and large problem sizes. Overall, good scalability is achieved. For the

medium problem, the scalability between 4 to 8 processors suffers due to memory bandwidth limitations, since all

cores are allocated to the same node.

2. Forward Mode Operations

Next, the computational time for the forward solution procedure is broken down into specific Assembler- and Integra-

tor-level operations, to assess their overall contribution to the computational cost. The operations considered for this

study are the ones directly involved in solving the nonlinear system (9) at each stage of a time step:

1. the assembly operations for evaluating the Jacobian matrix and right-hand-side (10),

2. the factorization of Jacobian matrix,

3. the application of factorization to solve for incremental state variable updates.
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Figure 6: Parallel scalability evaluation of specific forward mode operations on medium and large problems.

Figure 6 shows the parallel scalability in terms of the total time taken for operations involved in the forward

solution for two problem sizes considered. The matrix and residual assembly operations scale ideally for both cases.

The matrix factorization and the application of matrix factorization scale well. The scalability of the application of

the factorization stagnates noticeably for more processors. This bottleneck did not penalize the total performance as

the order of magnitude of this operation is the least among those considered. On the other hand, matrix factorization

is the most computationally expensive operation and its scalability is directly reflected in the overall time.
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3. Adjoint Mode Operations

The scalability of adjoint mode operations are considered next for a single functional of interest. The adjoint-based

gradient computation involves the solution of a linear system at each stage for all time steps to determine the adjoint

variables for each functional of interest. The adjoint mode operations considered are:

1. the factorization of the transposed Jacobian matrices (16) in the adjoint linear system,

2. the assembly operations for setting up the transposed Jacobian matrices and accumulating contributions to the

right-hand-side of the adjoint linear system (16),

3. the application of factorizations to solve for the adjoint variables for each functional of interest,

4. the Jacobian-vector products involved in equation (18) for the evaluation of the total derivative.
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Figure 7: Parallel scalability evaluation of specific adjoint mode operations on medium and large problems.

The parallel scalability of these operations are shown in Figure 7. Trends similar to the forward mode are apparent

for factorization and assembly operations. The additional Jacobian-vector product operations scale ideally. This

computation consists of computing the element contributions to the Jacobian matrix and multiplying by the input vector

without assembling a global matrix in memory. Note that the Jacobian-vector products are more computationally

demanding than applying factorizations on the adjoint right hand sides.
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4. Scaling with Number of Functionals
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Figure 8: Parallel scalability evaluation for increasing number of functionals of interest for problem with 192,000
degrees of freedom. The dashed lines correspond to the two-functional case whereas the solid lines correspond to the
one-functional case.

The effect of increasing the number of functionals on the computational cost of the adjoint mode operations is con-

sidered next. This study is performed on the medium model with 192,000 degrees of freedom, with two functionals

of interest. Figure 8 shows the additional costs of the adjoint mode operations in dashed-lines. The lines are shifted

upwards without any perceivable change in the scalability trends shown before for the single functional case. Note that

the application of matrix factorization and Jacobian-vector products see proportional increases in computational time.

The factorization time did not increase as the same matrix factorization of the transposed Jacobian is reused for the

additional functional. Overall, the total adjoint solution time increases by less than 5% for the additional functional.

In summary, the computational procedures fundamental to the presented flexible multibody dynamics design

framework scale well. The largest single contribution to the computational cost for both the forward and adjoint

solutions is the matrix factorization.

VI. Rotorcraft Demonstration and Optimization

The intent of this section is to demonstrate the suitability of the proposed flexible multibody dynamics frame-

work for analysis and design of rotorcraft models that combine rigid and flexible components as well as kinematic

constraints. For this purpose, a representative rotor hub configuration is considered for study. Typical rotorcraft hub

assemblies fall under teetering, fully-articulated, hingeless and bearingless categories. These types differ in the mech-

anism used to achieve desired flight modes, such as hover or forward flight, and maneuvers, such as roll, pitch and

yaw. To achieve these desired flight modes, the control mechanism must impart collective and cyclic control inputs
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to the blades through the swashplate driven by the push rods, as illustrated in Figure 9. The hub and control chain

dynamics are a central part of the rotorcraft flight control system and must be accurately modeled to achieve good

performance prediction.

Figure 9: The baseline structural model of rotorcraft hub assembly with its parts labeled.

The control chain used for changing the pitch of rotor blades via appropriate inputs to the swashplate is investigated

as the motion of interest. The representative four-bladed rotor hub assembly model used for this application is shown

in Figure 9. The model consists of rigid bodies, kinematic constraints, flexible bodies and actuators. The four rotor

blades are modeled as flexible using shell elements whereas the remaining parts are modeled as rigid bodies. The

kinematic constraints and actuators used in the rotor assembly are listed in Table 4.

Table 4: List of constraint types and motion actuators associated with different bodies in hub assembly model.

Constraint/Actuator Part 1 Part 2

Rotational actuator shaft –

Translational actuator push rod –

Spherical constraint lower swashplate sphere
Spherical constraint upper swashplate pitch link
Spherical constraint pitch link pitch horn
Spherical constraint lower swashplate pitch rod
Spherical constraint lower swashplate upper push link

Revolute constraint lower swashplate upper swashplate
Revolute constraint shaft pitch horn
Revolute constraint baseplate lower push link
Revolute constraint lower push link upper push link

Cylindrical constraint sphere shaft

Fixed constraint baseplate –

The push rods are connected to translational actuators that feed time dependent periodic motions, given by u(t) =
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u0 sin(Ωtt), where Ωt is the assumed translational control signal frequency. This driven motion will be used as the basis

for the study of different rotorcraft simulation scenarios in the examination of the rotor hub dynamics. The central

shaft is connected to a rotational driver with a angular rate of Ωr = 109.12 rad/s. This structural model contains a total

of 28,640 degrees of freedom. The geometric modeling and meshing parametrization of rotor hub parts is performed

using the open-source program GMSH [45]. The inertial properties are obtained directly from the geometry of each

part.

(a) collective (b) longitudinal cyclic

(c) lateral cyclic

Figure 10: Contour plots showing the vertical displacement of bodies during the motion in millimeters.

The rotor hub apparatus is studied for (a) collective (b) longitudinal cyclic and (c) lateral cyclic pitch control

imparted through the three push rods at 90◦,180◦ and 270◦ from a horizontal reference axis. These conditions are

summarized in Table 5. The corresponding time evolution of the configuration of the rotor assembly is simulated

using two-stage, third-order diagonally implicit Runge–Kutta method detailed in Section III, employing a time step

size corresponding to 1◦ per step at the angular rate 109.12 rad/s.

Table 5: Sinusoidally modulated control amplitudes supplied to the push rods to produce different flight scenarios.

Control Motion Push rod 1 Push rod 2 Push rod 3

Collective blade pitch control vertical 0.050sin(Ωtt) 0.050sin(Ωtt) 0.050sin(Ωtt)
Longitudinal cyclic blade pitch control forward/pitch 0.025sin(Ωtt) 0.025sin(Ωtt) 0.050sin(Ωtt)
Lateral cyclic blade pitch control sideways/roll 0.025sin(Ωtt) 0.050sin(Ωtt) 0.025sin(Ωtt)
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Figure 10 presents the hub assembly at different time instances for each flight scenario listed in Table 5. The

contours illustrate the tilting of the swashplate mechanism that produces a pitching motion for each of the blades. In

the collective case, the blades attain equal blade pitch, which would produce a net upward aerodynamic force during

flight. In the longitudinal and lateral cyclic cases, the pitch of the blades varies as a function of the azimuthal angle and

would produce longitudinal and lateral aerodynamic moments during flight. Therefore, this model combined with the

control actuation inputs, can represent different flight scenarios and readily lends itself to a multiscenario optimization

case which will be demonstrated later in this section.

A. Adjoint Gradient Verification

The verification of adjoint formulation presented in Section III is performed using the complex-step derivative ap-

proximation technique. The complex-step estimate is obtained by perturbing the input to a function by a complex

perturbation as follows
d f
dxi

=
Im( f (xi + iδ ))

δ
+O(δ 2), (23)

where the design variable component xi is perturbed by iδ . The complex-step method (23) is second order accurate,

such that the truncation error decreases quadratically with a reduction in perturbation size [46, 47]. However, unlike

finite-difference method, the complex-step method does not suffer from subtractive cancellation, which enables the

use of very small perturbation step sizes to produce highly accurate derivative estimates. The functionals used for this
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Figure 11: Complex-step verification of the DIRK adjoint formulation of different orders of accuracy with 12 func-
tionals with a perturbation size δ = 10−16.

verification are the structural mass (index 1), the average structural compliance (index 2), the KS aggregates of the von

Mises failure criterion (indices 3 and 4), and the induced exponential aggregates [28] of the von Mises failure criterion

(indices 5 to 12). Table 6 shows the magnitude of discrete adjoint sensitivities along with corresponding complex-step
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sensitivities. The digits in boldface represent the entries differing from the complex-step method.

Table 6: Comparison of complex-step and discrete adjoint derivatives for fourth-order DIRK with a perturbation size
δ = 10−16.

Functional Complex-step Adjoint

Structural Mass 250.0000000000000 249.9999999999999

Compliance -0.008903780405108 -0.008903780457068

KS (discrete) -2.510549172940552 -2.510549173663148

KS (continuous) -2.505178929745161 -2.505178930486006

Induced (exponential) -2.511154336312865 -2.511154337069819

Induced (discrete exponential) -2.516692488940226 -2.516692489679126

Induced (discrete exponential squared) -0.002788026920568 -0.002788026930265

Induced (exponential squared) -0.002762476355788 -0.002762476365353

Induced (power) -4.676554025570486 -4.676554028759453

Induced (discrete power) -4.715417147892726 -4.715417151435161

Induced (power squared) -0.006574319319522 -0.006574319341451

Induced (discrete power squared) -0.006679489586803 -0.006679489609466

Figure 11 shows the absolute difference between the adjoint derivatives and the complex-step derivatives on the

vertical axis for twelve test functionals indexed on the horizontal axis, for different orders of the DIRK time integration

method. From Table 6 and Figure 11 it can be seen that the adjoint-based derivative exhibits an accuracy of 8 to 14

significant digits for different functionals. Thus, the adjoint-based gradient evaluation capability achieves sufficient

accuracy for gradient-based optimization.

B. Rotorcraft Optimization Demonstration

The proposed parallel computational framework is applied to rotorcraft optimization in the following section. All three

analysis scenarios described previously are included in optimization.

1. Optimization Problem

The objective of this optimization case is to minimize the mass of the of the rotor blades subject to stress constraints

such that the von Mises failure ratio aggregated in space and time domains does not exceed 25% of maximum allowable

value. A mass objective is chosen since more realistic rotor design objectives require multidisciplinary design criteria

that cannot be evaluated without a coupled aeroelastic simulation. The design variables consist of the thicknesses of

48 spanwise panels modeling the rotor blades. Note that the thickness is constant in the chordwise direction. The

cross-sectional geometry is held constant throughout the span for this demonstration case. Smoothness requirements
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are imposed such that thicknesses of successive spanwise panels do not change more than 1 mm. The optimization

problem is stated mathematically as follows:

minimize
x

mass = m(x),

subject to ḡk(x) = xk− xk+1 ≤ 1mm, ∀k = 1, . . . 47, (smoothness requirement)

ḡk(x) = xk+1− xk ≤ 1mm, ∀k = 1, . . . 47, (smoothness requirement)

ḡk(x) = 1−4.0
σ k

ks
σ k

max
≥ 0, ∀k = 1, . . . 3, (stress constraint)

bounds 10mm≤ x≤ 20mm.

(24)

Each blade is assigned the same set of design variables so that all blades are identical during design. The time-

dependent analysis and gradient evaluation for each of the three cases are performed in parallel using five processors.

Both the mass objective and the smoothness constraints are independent of the structural state variables and their

gradients are obtained analytically using straightforward differentiation. The time dependent adjoint formulation de-

veloped in this work is used to evaluate the three stress constraint gradients. The optimization problem with 48 design

variables, 3 stress constraints from each flight scenario, and 94 smoothness constraints, is solved using the SLSQP

optimizer within the python package pyOpt [48].

2. Optimization Results
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Figure 12: History of optimization showing the changes in normalized constraint infeasibility and objective values.

Figure 12 shows the optimization convergence history. The optimization took 73 iterations starting from an initial

design of 2 cm thickness throughout, to converge to infeasibility and optimality tolerance of 10−4. Note that the mass

and stress constraint infeasibilities are normalized with respect to their values at the initial design. The mass of the
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blades (shown in red) decreases immediately from the starting point and stays nearly constant throughout the rest of

optimization. The stress constraint imposed on the lateral blade pitch flight scenario (shown in green) becomes feasible

after about 50 iterations. Finally the stress constraints on longitudinal cyclic (shown in orange) and collective pitch

(shown in blue) are satisfied near the termination of optimization algorithm. The optimization produced a design that

has all three stress constraints active. The optimizer required 222 function evaluations and 88 gradient evaluations. On

average, the forward analysis and gradient evaluation took 33 and 8 minutes, respectively, on five processors.

Figure 13: Comparison of thickness of initial (top) and optimized (bottom) designs in millimeters.

The final blade design thickness distribution produced by the optimizer is shown in Figure 13. Since the blades

have identical design variables, only the optimized thickness from one blade is shown. The optimizer reduced the

mass by decreasing the blade thicknesses towards the tip. The panel thickness gradually decreases along the span until

it reaches the lower bound at the tip, thereby reducing the stress at the root. The gradual variation of panel thickness

is a result of enforcing the smoothness constraints in the problem formulation.

Figure 14 compares the instantaneous stress normalized by design stress in the blades after one full rotation. The

optimized stresses are lower for all three flight scenarios. The optimizer thickens the shell elements near the root of the

blade that experience higher stress to comply with the stress requirements. In addition, there are notable differences in

stress distribution patterns between each flight scenario, which is anticipated from the differences in dynamics. In this

rotorcraft optimization application, high-fidelity structural dynamics, efficient sensitivity analysis using the adjoint

method, along with the parallel processing capabilities have effectively reduced the optimization time.

VII. Conclusions

This paper presented a parallel flexible multibody dynamics design optimization framework, motivated by the need

for a gradient-based design tool for next-generation rotorcraft design. This analysis and design tool will be an integral

part of a broader multidisciplinary optimization framework for rotorcraft systems. The flexible multibody dynamics

were implemented within the Toolkit for Analysis of Composite Structures (TACS) where the governing equations

were derived based on constrained Euler–Lagrange equations. The governing equations were integrated directly in
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(a) collective

(b) longitudinal cyclic

(c) lateral cyclic

Figure 14: Comparison of normalized stress failure ratios of initial and optimized blades for different flight scenarios
at 360◦ azimuth.

their second-order form using a diagonally implicit Runge–Kutta method which enabled a consistent evaluation of the

integral functionals of interest. The discrete adjoint equations were derived using the second-order descriptor form

and a technique was described to facilitate a modular and extensible adjoint implementation. The structural dynamic

analysis and adjoint-based derivative evaluation was shown to exhibit good parallel scalability for larger problems.
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The structural dynamic analysis used was verified against an established four-bar benchmark problem and the time

dependent discrete adjoint derivatives were verified against the complex-step derivatives. Finally, the optimization

capabilities were demonstrated on a structural dynamics model of a rotor assembly, illustrating the applicability of the

proposed framework for rotorcraft design applications.
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