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High-fidelity rotorcraft simulations involve tight coupling between aerodynamics, structures and
structural dynamics. As a step towards developing fully-integrated high-fidelity rotorcraft simulation
and gradient-based design optimization tool, this paper presents analysis and discrete-adjoint sensi-
tivity formulations for flexible multibody systems. The governing equations are treated in a descriptor
form, as second-order implicit functions of state and design variables. The solution procedures for
the governing equations are discussed in the context of different time marching schemes, including
backward difference formulas, diagonally implicit Runge–Kutta, Newmark and Adams–Bashforth–
Moulton methods. The corresponding time-dependent discrete adjoint derivatives are formulated
and numerically verified with the complex-step method. The assessments of parallel scalability of the
implementation are shown along with flexible multibody dynamics applications of the framework.

Nomenclature

f objective function scalar q̈ second time derivative of states m-vector
h step size scalar R governing equations m-vector
L Lagrangian scalar S,T state approximation equations m-vector
m number of state variables scalar t time scalar
n number of design variables scalar x design variables n-vector
N number of time intervals scalar α,β ,γ time marching coefficients scalar
p order of accuracy scalar λ ,ψ,φ adjoint variables m-vector
q state variables m-vector Subscripts
q̇ first time derivative of states m-vector k time step index scalar

I. Introduction and Background
High-fidelity rotorcraft simulations involve tight coupling between multiple disciplines including aerodynamics,

structures, and structural dynamics. Gradient-based design optimization techniques offer the potential to help identify
design modifications necessary to achieve the ever more demanding rotorcraft performance goals, such as higher
forward flight speeds, higher operational altitudes and longer endurance limits. This work takes a step towards fully-
integrated high-fidelity rotorcraft simulation and gradient-based design optimization framework. The focus is on the
structural and structural dynamics disciplines and development of a simulation tool with discretely consistent adjoint-
based derivative evaluation techniques, for time accurate flexible multibody dynamic simulations. The objective of
this work is to formulate numerical solution procedures for the analysis of flexible multibody systems, as well as the
corresponding time-dependent discrete-adjoint sensitivities. In the remainder of this section, we provide a brief review
of solution and derivative evaluation approaches for flexible multibody systems. Section II contains the development of
the time marching schemes for second-order systems and the derivation of the associated adjoint equations. Section III
presents the numerical verification of the adjoint derivatives and applications to flexible multibody dynamics. Finally,
Section IV concludes the paper summarizing key findings.

A. Governing Equations and Functionals of Interest
Flexible multibody systems are governed by second-order differential equations in time. There are several approaches
to derive the equations of motion, where each approach differs in the choice of coordinates and the treatment of
kinematic constraints, resulting in a different form for the governing system of equations [6]. For example, using
the Newton–Euler approach, the system is broken down into individual components, and the forces and moments on
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each body are used to obtain the equations of motion. When unconstrained generalized coordinates are employed
to parametrize the system, the resulting equations of motion are a set of ordinary differential equations (ODEs).
However, when constrained generalized coordinates are used, the equations of motion are a set of differential algebraic
equations (DAEs). Another approach is to use analytical dynamics techniques to derive the governing equations. In
these methods, which include the methods of Lagrange, Hamilton, Maggi and others (see Refs. [6, 31] for details),
the system is treated as a whole and scalar quantities, such as the kinetic and potential energy, are used to derive
the equations of motion. A central issue when formulating the equations of motion is the treatment of kinematic
constraints, that enforce compatibility requirements on the system. While these constraints can be easily eliminated
for simple systems, for complex systems it is simpler to retain the kinematic constraints. Once the equations of
motion are derived, they are often converted into a canonical first-order form, known as the state-space representation,
and several well-known numerical solution procedures exist for such first-order systems [8, 18, 19]. The first-order
conversion process can also lead to problems when the mass matrix is singular. Furthermore, the physics can become
obscured due to the substitutions carried out during the conversion. In this paper, we use the descriptor form of the
governing equations of motion which can be written as follows

R(q̈, q̇,q,x, t) = 0, (1)

where q are the state variables, q̇ and q̈ are the first and second time derivatives of the state variables, respectively,
and x is the vector of design variables. Note that the vector q contains position coordinates, rotational parametrization
variables and the Lagrange multipliers associated with the kinematic constraints. The descriptor form allows for
the treatment of different formulations of the governing equations under a common mathematical framework. We
refrain from converting the governing equations into an equivalent first-order form, and instead use the descriptor
form directly. In the context of the design of flexible multibody systems, it is necessary to define objective and
constraint functionals of interest. We work with a generic functional of interest, defined as follows

f (x) =
∫ T

0
F(q̈, q̇,q,x, t) dt, (2)

where F is the integrand which depends on the state variables and their time derivatives as well as the design vari-
ables. Note that the integral (2) can be used to evaluate aggregation functionals such as p-norm and Kreisselmeier–
Steinhauser (KS) [26, 28], which smoothly approximate the maximum value of a quantity of interest (e.g. stress,
strain). The functional form (2) is used in the development of the adjoint method used to evaluate the derivative of the
functional of interest with respect to the design variables.

B. Time Marching Schemes
Since general closed-form solutions of the governing equations (1) are not available, it is necessary to numerically
integrate the the governing equations forward in time for a given set of initial conditions q0 and q̇0. The mathematical
properties of DAEs present additional challenges compared to that of ODEs. As a result, not all numerical methods,
that are well-suited for ODEs, can be applied to DAEs. One approach to solve DAEs is to split the governing equations
into stiff and non-stiff parts, and to solve the stiff algebraic part using implicit integration schemes, and the non-
stiff part using explicit methods. Several numerical methods have been developed for first-order stiff and non-stiff
systems [8, 19]. In this paper, we focus on implicit time marching techniques, that are well-suited to the integration of
numerically stiff systems of DAEs, governing the motion of flexible multibody dynamics. While implicit integration
methods require the solution of a nonlinear system of equations at each time step, this additional computational cost
is offset by the improved stability properties and the resulting larger time steps enabled by implicit methods.

C. Derivative Evaluation Methods
A number of methods exist to compute the derivatives of outputs from numerical simulations governed by differential
equations.

1. Numerical Methods

The finite-difference method is the simplest numerical method to compute derivatives, however, its accuracy is strongly
influenced by the choice of the step size and its computational cost increases rapidly with the number of design
variables. The complex-step method [29, 37], on the other hand, provides highly accurate derivative estimates, since it
does not suffer from subtractive cancellations. However, the complex-step method is computationally more expensive
compared to the finite-difference method due to the use of complex number arithmetic. Automatic differentiation
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(AD) [36], which is based on the direct application of the chain rule of differentiation to the simulation source code,
provides machine accurate derivatives, but the computational cost and ease of implementation are not optimal in most
cases.

2. The Adjoint Method

The adjoint method is a technique for obtaining the derivative of a functional output of interest with respect to many
input variables in a computationally efficient manner. It has been successfully applied to structural [1, 2, 7, 22, 27],
aerodynamic [4, 9, 25] and coupled aeroelastic simulations [21, 30]. The adjoint method requires the solution of
a linear system governing the adjoint variables, for each functional output of interest. The computational cost of
computing the derivative of the functional of interest using the adjoint method is nearly independent of the number of
design variables. The adjoint equations can be derived either using a continuous adjoint formulation [4], or from the
discrete governing equations [9]. Various authors have developed adjoint methods for flexible multibody dynamics
applications since the late 1990s [12, 15, 16, 33, 35]. These methods are specific to different explicit formulations
of governing equations and state-space representations. In this work, the adjoint is derived directly for the discrete
governing equations in second-order descriptor form using different time marching schemes.

II. Time Marching and Discrete-Adjoint For Second-Order Systems
This section presents the methods for numerical solution of the governing equations and the development of the

associated adjoint equations from the descriptor form. The time marching methods presented within this section are

1. Backward Difference Formulas (BDF) [14, 23],

2. Newmark method [17, 34],

3. Adams–Bashforth–Moulton method (ABM) [5, 32],

4. Diagonally Implicit Runge–Kutta (DIRK) [3, 13].

These time marching schemes use the state variable values from different time steps to evaluate the subsequent values
of state variables, starting from a given set of initial conditions q0 and q̇0. The subscript, k, on the state variables
refer to the corresponding time value, tk. In this work, a constant step size, h, is employed for time marching. The
coefficients of time marching, that are used for forming the weighted linear combinations of the state variables at each
time step, are denoted as α , β and γ . The choice of coefficients influence the order of accuracy and stability properties
of the time marching schemes.

A. Backward Difference Formulas (BDF)
The BDF method was first proposed by Curtiss [14] and Henrici [23]. The BDF method is an implicit multistep
method based on finite differences: the higher-order difference operators are obtained by repetitive application of the
first-order difference operator. As a result, the first-derivative approximation requires state variable values at p+ 1
points, while the second derivative approximation requires state variables at 2p+ 1 points, where p is the order of
accuracy. The BDF method is suitable for the solution of stiff ODEs and DAEs and several solution packages, such as
ODEPACK/LSODE [24], and DASSL [8], employ this method.

1. Solution of the State Variables

STATE APPROXIMATIONS: The primary unknowns of the BDF time marching scheme are the state variables, qk, at
each time step, k. The first and second time derivatives of the state variables, q̇k, and q̈k, are obtained using

q̇k =
1
h

p

∑
i=0

αiqk−i +O(hp),

q̈k =
1
h2

2p

∑
i=0

βiqk−i +O(hp).

(3)

The coefficients αi and βi depend on the order of approximation, p. The first and second time derivatives of the state
variables are linear combinations of the state variables scaled with BDF coefficients, as illustrated in Figure 1.
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h
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Figure 1: A weighted linear combination of the state variables with scaled BDF coefficients yielding the first (left) and
second time derivatives of state variables (right), denoted as state approximation equations, Sk and Tk, respectively.

SOLUTION OF THE NONLINEAR SYSTEM: Once the time derivatives of states have been approximated using Equa-
tion (3), the implicit system of nonlinear equations at each time step becomes

Rk(q̈k, q̇k,qk,x, tk) = 0. (4)

This nonlinear system of equations is solved iteratively using Newton’s method. The iterative updates to the unknown
variables are obtained by solving a linearization of the governing equations with respect to the primary unknowns, qk,
as follows [

β0

h2
∂R
∂ q̈

+
α0

h
∂R
∂ q̇

+
∂R
∂q

]
∆qk =−Rk(q̈k, q̇k,qk,x, tk). (5)

The secondary and tertiary updates to the first and second time derivatives of the state variables are readily obtained
by scaling the state variable update, ∆qk, using the BDF coefficients, at each iteration n of the nonlinear solution. The
resulting update formulas to the state variables are

qn+1
k = qn

k +∆qn
k ,

q̇n+1
k = q̇n

k +
α0

h
∆qn

k ,

q̈n+1
k = q̈n

k +
β0

h2 ∆qn
k .

(6)

The use of the secondary and tertiary updates in Equation (6) is preferred since the original backwards difference
formulas (3) typically requires more vector operations. The iterative updates to the state variables and their first and
second time derivatives are continued until the governing equations are solved to a specified tolerance. The accuracy
of adjoint derivatives rely on the accuracy of the solution of the governing equations. Therefore it is important that the
discrete nonlinear system (4) is solved to a tight tolerance.

2. Solution of the Adjoint Variables

FORMATION OF THE LAGRANGIAN: The adjoint equations are derived using a Lagrangian formulation. The time
integral of the functional of interest is discretized as follows,

f (x) =
∫ T

0
F(q̈, q̇,q,x, t) dt ≈

N

∑
k=0

hFk(q̈k, q̇k,qk,x, tk). (7)

The inner product of the governing equations with the adjoint variables, λ , is approximated as follows

∫ T

0
λ

T R(q̈, q̇,q,x, t) dt ≈
N

∑
k=0

hλ
T
k Rk(q̈k, q̇k,qk,x, tk). (8)
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The state approximation residuals of the BDF method are introduced as follows

Sk =
1
h

p

∑
i=0

αiqk−i− q̇k,

Tk =
1
h2

2p

∑
i=0

βiqk−i− q̈k.

(9)

The adjoint variables ψk and φk are associated with state approximation residuals Sk and Tk, respectively. With these
definitions, the Lagrangian is defined as the following linear combination:

L =
N

∑
k=0

hFk +
N

∑
k=0

hλ
T
k Rk +

N

∑
k=0

ψ
T
k Sk +

N

∑
k=0

φ
T
k Tk. (10)

The adjoint variables λk, ψk and φk, are the unknown weights in the linear combination (10). Once they are deter-
mined the total derivative is readily available as a linear combination involving the same weights. The formation of
Lagrangian is illustrated in Figure 2 along with corresponding inputs to the equations Rk, Sk, Tk and Fk. The similarity
in inputs to the governing equations Rk, and the functional, Fk are due to their identical mathematical forms.

TkSk

Rk

qk

Lψk φk

h

h

q̈k qk

qk+1

1

λk

β0

h2

β1

h2

β2

h2

β2p

h2

qk+1

q̇k

qk+2

qk

qk+p

α0

h

α2

h
α1

h

qk

q̈k qk

qk+1

β0

h2

β1

h2

β2

h2

β2p

h2

q̈k qk

qk+1

β0

h2

β1

h2

β2

h2

β2p

h2
αp

h

qk+1

q̇k

qk+2

qk

qk+p

αp

h

α0

h

α2

h
α1

h

qk+1

q̇k

qk+2

qk

qk+p

αp

h

α0

h

α2

h
α1

h

Fk

qk+2

qk+2

qk+2

qk+2p

qk+2p

qk+2p

Figure 2: An illustration of the weighted linear combination of equations with corresponding adjoint variables forming
the Lagrangian for the BDF method.

THE ADJOINT EQUATIONS: The system of equations to solve for the adjoint variables is obtained from the stationary
points of the Lagrangian with respect to the state variables and their first and second time derivatives at each time step.
The number of terms in the adjoint system of equations as a function of the order of the system is listed in Table 1.
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Table 1: The number of terms in the adjoint system of equations for p-th order BDF method.

T S R F Total

φk 1 1
ψk 1 1
λk 2p+1 p+1 3p+3 3p+3 9p+8

1. Equation for φk:

The equations to solve for φk are obtained using ∂L /∂ q̈k = 0. It follows that ∂Tk
∂ q̈k

T
φk = 0 which simplifies further to

φk = 0.

2. Equation for ψk:

The equations to solve for ψk are obtained using ∂L /∂ q̇k = 0. It follows that ∂Sk
∂ q̇k

T
ψk = 0, which simplifies to ψk = 0.

3. Equation for λk:

The set of equations to solve for λk are obtained using ∂L /∂qk = 0. It follows that

0 = h
[

β0

h2
∂Rk

∂ q̈
+

α0

h
∂Rk

∂ q̇
+

∂Rk

∂q

]T

λk +h
p

∑
i=1

αi

h
∂Rk+i

∂ q̇k+i

T

λk+i +h
2p

∑
i=1

βi

h2
∂Rk+i

∂ q̈k+i

T

λk+i

+h
{

β0

h2
∂Fk

∂ q̈
+

α0

h
∂Fk

∂ q̇
+

∂Fk

∂q

}T

+h
p

∑
i=1

αi

h
∂Fk+i

∂ q̇k+i

T

+h
2p

∑
i=1

βi

h2
∂Fk+i

∂ q̈k+i

T

+
p

∑
i=0

αi

h
ψk+i +

2p

∑
i=0

βi

h2 φk+i

(11)

The 9p+8 terms in Equation (11) arise from the occurrences of the states, qk, as arguments to equations at different
time steps, as illustrated in Figure 2. The contributions due to ψk and φk are zero, which eliminates 3p+ 2 terms.
Finally, rearranging the terms and dividing by h yields the following linear system to solve for λk:

[
β0

h2
∂Rk

∂ q̈
+

α0

h
∂Rk

∂ q̇
+

∂Rk

∂q

]T

λk =−
{

β0

h2
∂Fk

∂ q̈
+

α0

h
∂Fk

∂ q̇
+

∂Fk

∂q

}T

−
p

∑
i=1

αi

h
∂Rk+i

∂ q̇k+i

T

λk+i−
2p

∑
i=1

βi

h2
∂Rk+i

∂ q̈k+i

T

λk+i

−
p

∑
i=1

αi

h
∂Fk+i

∂ q̇k+i

T

−
2p

∑
i=1

βi

h2
∂Fk+i

∂ q̈k+i

T

,

(12)

with 6p+6 terms.

EVALUATION OF TOTAL DERIVATIVE: Once the adjoint variables have been determined, the total derivative of the
functional of interest with respect to the design variables, x, is the following linear combination:

d f
dx

=
N

∑
k=0

h
∂Fk

∂x
+

N

∑
k=0

hλ
T
k

∂Rk

∂x
+

N

∑
k=0

ψ
T
k

∂Sk

∂x
+

N

∑
k=0

φ
T
k

∂Tk

∂x
. (13)

Since, the state approximation equations Sk and Tk are independent of the design variables, x, it follows that

d f
dx

=
N

∑
k=0

h
∂Fk

∂x
+

N

∑
k=0

hλ
T
k

∂Rk

∂x
. (14)
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B. Newmark Method
The Newmark family of integrators are single-step methods that use state variable values and their time derivatives
from the previous step. The pioneering work of this method were by Fox-Goodwin [17] and Newmark [34], and
was originally developed for the numerical solution of problems in structural dynamics including linear elastic stud-
ies, dynamic loading and vibrations due to earthquake. It has subsequently found applications in flexible multibody
dynamics over the years. The coefficients of this methods are β and γ , that assume the values listed in Table 2, for
different variants in the family.

1. Solution of the State Variables

STATE APPROXIMATIONS: The primary unknowns of the Newmark method are the second time derivatives of the
state variables, q̈k, at each time step, k. The p-th order state approximations are,

q̇k = q̇k−1 +(1− γ)hq̈k−1 + γhq̈k +O(hp)

qk = qk−1 +hq̇k−1 +
1−2β

2
h2q̈k−1 +βh2q̈k +O(hp)

(15)

The state approximations (15) are simply weighted linear combinations of vectors as illustrated in Figure 3. The order
of accuracy, p, of the Newmark scheme depends on the choice of the coefficients, β and γ , as shown in Table 2.

q̇k−1

q̈k

q̈k−1

q̇k
γh

1

(1 −
γ
)h

Sk qk−1

qk

q̇k−1

q̈k

q̈k−1
1

βh2

h

Tk

1−2β

2

h
2

Figure 3: An illustration of weighted linear combination of states yielding the velocity (left) and position (right) states
for Newmark method. These constitute the state approximation equations Sk and Tk.

Table 2: The coefficients of Newmark family of methods and their corresponding orders of accuracy.

Method β γ Order

Implicit Fox-Goodwin [17] 1/12 1/2 3
Implicit linear acceleration 1/6 1/2 2

Implicit average constant acceleration 1/4 1/2 2
Implicit central difference 0 1/2 2

Explicit 0 0 1

SOLUTION OF THE NONLINEAR SYSTEM: The nonlinear governing equations at each step, Rk(q̈k, q̇k,qk,x, tk) = 0,
are linearized with respect to q̈k as follows

[
∂Rk

∂ q̈
+ γh

∂Rk

∂ q̇
+βh2 ∂Rk

∂q

]
∆q̈k =−Rk(q̈k, q̇k,qk,x, tk). (16)

The state variables and its first time derivatives (velocities) are approximated using Equation (15), for an estimated
value of the acceleration state variables (second time derivatives), at a known time, tk. The linear system (16) is then
solved for the primary update ∆q̈n

k (incremental accelerations), at each iteration, n, of the nonlinear solution. The
secondary and tertiary updates required for the state variables and their first time derivatives are readily obtained by
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scaling the acceleration update using the Newmark coefficients. The resulting update formulas are

q̈n+1
k = q̈n

k +∆q̈n
k ,

q̇n+1
k = q̇n

k + γh∆q̈n
k ,

qn+1
k = qn

k +βh2
∆q̈n

k .

(17)

The iterative updates to the state variables and their derivatives are continued until the governing equations are solved
to the required tolerance.

2. Solution of the Adjoint Variables

FORMATION OF THE LAGRANGIAN: The governing equations and functional of interest follow the same treatment
discussed for the BDF method. The state approximations of the Newmark time marching scheme given in Equa-
tion (15) are reformulated as following residuals

Sk = q̇k−1 +(1− γ)hq̈k−1 + γhq̈k− q̇k,

Tk = qk−1 +hq̇k−1 +
1−2β

2
h2q̈k−1 +βh2q̈k−qk.

(18)

The adjoint variables, λk, ψk and φk are introduced as respective unknown weights, to the governing equations, Rk, the
state approximation equations, Sk, and Tk, arising from the Newmark scheme, for each time step, k. The Lagrangian
is formed as the following linear combination:

L =
N

∑
k=0

hFk +
N

∑
k=0

hλ
T
k Rk +

N

∑
k=0

ψ
T
k Sk +

N

∑
k=0

φ
T
k Tk. (19)

The central idea is to represent the functional, Fk, as a linear combination of the other equations. An illustration of the
formation of Lagrangian from different equations is shown in Figure 4.

THE ADJOINT EQUATIONS: The system of equations to solve for the adjoint variables is obtained from the stationary
points of the Lagrangian with respect the state variables and their time derivatives at each time step. The number of
partial derivative terms that exist in the adjoint system of equations, can be graphically determined from Figure 4,
based on the occurrences of the corresponding primal variables as inputs to residuals, and is listed in Table 3.

Table 3: The number of terms in the adjoint system of equations for Newmark family of integrators.

T S R F Total

φk 2 1 1 4
ψk 1 2 2 2 7
λk 2 2 5 5 14

1. Equation for φk:

Setting ∂L /∂qk = 0 yields

∂Tk

∂qk

T

φk +
∂Tk+1

∂qk

T

φk+1 +h
∂Rk+1

∂qk

T

λk+1 +h
∂Fk+1

∂qk

T

= 0. (20)

Further simplifications result in

φk = φk+1 +h
[

∂Rk+1

∂qk+1

]T

λk+1 +h
{

∂Fk+1

∂qk+1

}T

. (21)

It can be noticed that the four terms of Equation (21) correspond to the occurrences of the primal variable qk as inputs
to equations during forward solution history.
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λk

ψk φk

1h

h

qk+1

qk

q̇k+1

q̈k

q̈k+1
1

βh2

h

q̇k+1

q̈k

q̈k+1

q̇k
γh

1

(1 −
γ
)h

q̈k

qk+1

qk

q̇k+1

q̈k

q̈k+1
1

βh2

h

q̇k+1

q̈k

q̈k+1

q̇k
γh

1

(1 −
γ
)h

q̈k

qk+1

qk

q̇k+1

q̈k

q̈k+1
1

βh2

h

q̇k+1

q̈k

q̈k+1

q̇k
γh

1

(1 −
γ
)h

Sk

Fk

1−2β

2

h
2

1−2β

2

h
2

1−2β

2

h
2

L

Rk

Tk

Figure 4: The weighted linear combinations of equations with corresponding adjoint variables forming the Lagrangian
for Newmark method.

2. Equation for ψk:

Using ∂L /∂ q̇k = 0:

∂Sk

∂ q̇k

T

ψk +
∂Sk+1

∂ q̇k

T

ψk+1 +
∂Tk+1

∂ q̇k

T

φk+1 +h
∂Rk+1

∂ q̇k

T

λk+1 +h
∂Fk+1

∂ q̇k

T

= 0. (22)

This simplifies to

ψk = ψk+1 +hφk+1 +h
[

∂Rk+1

∂ q̇k+1
+h

∂Rk+1

∂qk+1

]T

λk+1 +h
{

∂Fk+1

∂ q̇k+1
+h

∂Fk+1

∂qk+1

}T

. (23)

The seven terms in Equation (23) represent and accumulate contributions from residuals/equations that were affected
by q̇k during the forward mode.

3. Equation for λk:

Setting ∂L /∂ q̈k = 0 yields the equation to solve for the adjoint variable, λk,

h
1

∑
i=0

∂Rk+i

∂ q̈k

T

λk+i +h
1

∑
i=0

∂Fk+i

∂ q̈k

T

+
1

∑
i=0

∂Sk+i

∂ q̈k

T

ψk+i +
1

∑
i=0

∂Tk+i

∂ q̈k

T

φk+i = 0. (24)
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Rearranging the terms results in the following linear system for λk

[
∂Rk

∂ q̈k
+ γh

∂Rk

∂ q̇k
+βh2 ∂Rk

∂qk

]T

λk =−
{

∂Fk

∂ q̈k
+ γh

∂Fk

∂ q̇k
+βh2 ∂Fk

∂qk

}T

− 1
h

{
γhψk +βh2

φk
}T

−
[
(1− γ)h

∂Rk+1

∂ q̇k+1
+

1−2β

2
h2 ∂Rk+1

∂qk+1

]T

λk+1

−
{
(1− γ)h

∂Fk+1

∂ q̇k+1
+

1−2β

2
h2 ∂Fk+1

∂qk+1

}T

− 1
h

{
(1− γ)hψk+1 +

1−2β

2
h2

φk+1

}T

.

(25)

The fourteen terms can be geometrically interpreted in Figure 4, as occurrences of the primal state variable q̈k as inputs
argument to equations in the time history. The determination of adjoint variables allows evaluating the total derivative
of the functional of interest with respect to the design variables, using Equation (14).

C. Adams–Bashforth–Moulton
The Adams–Bashforth–Moulton [5, 32] family of linear multistep methods use the past solution values to construct
the solution at current step. The ABM methods are based on numerical integration of the polynomial that interpolates
solution values. The number of values used to construct the solution determines the order of accuracy and stability
of the method. The ABM method is a part of packages such as EPISODE [11] and LSODE [24], and has been applied
to solve stiff problems. The ABM method is the popular alternative to Runge–Kutta method when the evaluation of
governing equations are very expensive.

1. Solution of the State Variables

The primary unknowns of the ABM family of methods [34] are the acceleration state variables, q̈k, at each time step,
k. The first time derivative of state variables, q̇k, are obtained by numerical integration of the second time derivative
of states as follows

q̇k = q̇k−1 +
p−1

∑
i=0

hαiq̈k−i +O(hp). (26)

The state variables, qk, are obtained by numerical integration of the first time derivative of states as follows

qk = qk−1 +
p−1

∑
i=0

hαiq̇k−i +O(hp). (27)

The schematic representation of the ABM state approximations is shown in Figure 5.

SOLUTION OF THE NONLINEAR SYSTEM: The system of governing equations, Rk(q̈k, q̇k,qk,x, tk) = 0, is linearized
with respect to the primary unknown variable, q̈k, of the ABM time marching scheme at each time step, k, as follows

[
∂Rk

∂ q̈
+hα0

∂Rk

∂ q̇
+h2

α
2
0

∂Rk

∂q

]
∆q̈k =−Rk(q̈k, q̇k,qk,x, tk). (28)

The state variables and the first time derivatives are approximated using Equations (27) and (26), for an estimated value
of q̈k. The linearization of the governing equations (28) is then solved for the primary update ∆q̈n

k , at each iteration, n,
of the nonlinear solution. The secondary updates to state variables are readily obtained by scaling the primary update
using the ABM coefficients. The resulting update formulas to the state variables and their time derivatives are

q̈n+1
k = q̈n

k +∆q̈n
k ,

q̇n+1
k = q̇n

k +hα0∆q̈n
k ,

qn+1
k = qn

k +h2
α

2
0 ∆q̈n

k .

(29)

The iterative updates to the state variables and their time derivatives are continued until the governing equations are
solved to required tolerance.
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TkSk

q̈k−1

qk q̇k

q̇k−1

q̇k−i

q̇k−1

1
hα

1

q̈k−i

hα
i

1

hα1

hα
i

hα0q̇kq̈k
hα0

qk−1

∑p−1
i=0

Figure 5: A weighted linear combination of state variables with scaled ABM coefficients yielding the first time deriva-
tive of states (left) and the state variables (right).

2. Solution of the Adjoint Variables

FORMATION OF THE LAGRANGIAN: The governing equations and functional of interest follow same treatment
discussed previously for other methods. The state approximations of the ABM time marching scheme given in equa-
tions (26) and (27) are expressed as the following residuals

Sk = q̇k−1 +h
p−1

∑
i=0

αiq̈k−i− q̇k,

Tk = qk−1 +hα0

(
q̇k−1 +

p−1

∑
i=0

hαiq̈k−i

)
+

p−1

∑
i=1

hαiq̇k−i−qk.

(30)

The term hα0q̇k is expanded out in terms of the primary unknown q̈k for eliminating the coupling of adjoint equations
within each time step. The adjoint variables, λk, ψk and φk are introduced as respective unknown weights, to the
governing equations, Rk, the state approximation equations, Sk, and Tk, arising from the ABM scheme, for each time
step, k. The Lagrangian is written as

L =
N

∑
k=0

hFk +
N

∑
k=0

hλ
T
k Rk +

N

∑
k=0

ψ
T
k Sk +

N

∑
k=0

φ
T
k Tk. (31)

The formation of the Lagrangian for the ABM method is illustrated in Figure 6. The number of terms that occur in
the adjoint system of equations for each adjoint variable can be determined graphically from Figure 6 and is listed in
Table 4.

THE ADJOINT EQUATIONS: The system of equations to solve for the adjoint variables is obtained from the stationary
points of the Lagrangian with respect to the position, velocity and acceleration state variables, at each time step, k.

Table 4: Table listing the number of terms in the adjoint system of equations for ABM method.

T S R F Total

φk 2 1 1 4
ψk p 2 p+1 p+1 3p+4
λk p p 2p+1 2p+1 6p+2

1. Equation for φk:

Setting ∂L /∂qk = 0 yields

∂Tk

∂qk

T

φk +
∂Tk+1

∂qk

T

φk+1 +h
∂Rk+1

∂qk

T

λk+1 +h
∂Fk+1

∂qk

T

= 0. (32)
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Lψk φk

h

hq̇k+1

1
α1
h

q̈k+i

q̈k+1

q̈k

αi
h

α0h q̇k 1

λk

q̇k+1

hαi

qk+1

1

hα0 hα0 q̈k

q̈k+1

hαi

q̇k+1

1

qk

Tk

α1
h

q̈k+1

α0h

q̈k+i

αi
h

q̇k+1

1

q̈k q̇k

q̇k+1

hαi

qk+1

1

hα0 q̈k

q̈k+1

hαi

q̇k+1

1

hα0

q̈k

Fk

α1
h

q̈k+1

α0h

q̈k+i

αi
h

q̇k+1

1

q̈k q̇k

q̇k+1

hαi

qk+1

1

hα0 q̈k

q̈k+1

hαi

q̇k+1

1

hα0

q̈k

Rk

qk

qk

hα1 hα1

hα1hα1

hα1 hα1

q̈k+i

q̈k+i

q̈k+i

q̇k+i

q̇k+i

q̇k+i

q̇k

q̇k

q̇k

Sk

Figure 6: A weighted linear combination of equations with corresponding adjoint variables forming the Lagrangian
for ABM method.

This simplifies to

φk = φk+1 +h
[

∂Rk+1

∂qk+1

]T

λk+1 +h
{

∂Fk+1

∂qk+1

}T

. (33)

2. Equation for ψk:

Setting ∂L /∂ q̇k = 0 yields

∂Sk

∂ q̇k

T

ψk +
∂Sk+1

∂ q̇k

T

ψk+1 +
p−1

∑
i=1

∂Tk+i

∂ q̇k

T

φk+i +h
p−1

∑
i=1

∂Rk+i

∂ q̇k

T

λk+i +h
p−1

∑
i=1

∂Fk+i

∂ q̇k

T

= 0. (34)

Further simplifications result in the adjoint variable, ψk, as a linear combination:

ψk = ψk+1 +hα0φk+1 +h
[

∂Rk+1

∂ q̇k+1
+hα0

∂Rk+1

∂qk+1

]T

λk+1 +h
{

∂Fk+1

∂ q̇k+1
+hα0

∂Fk+1

∂qk+1

}T

+h
p−1

∑
i=1

αiφk+i +h
p−1

∑
i=1

[
hαi

∂Rk+i

∂qk+i

]T

λk+i +h
p−1

∑
i=1

{
hαi

∂Fk+i

∂qk+i

}T

.

(35)

3. Equation for λk:

Setting ∂L /∂ q̈k = 0 yields the equation to solve for the adjoint variable, λk,

h
p−1

∑
i=0

∂Rk+i

∂ q̈k

T

λk+i +h
p−1

∑
i=0

∂Fk+i

∂ q̈k

T

+
p−1

∑
i=0

∂Sk+i

∂ q̈k

T

ψk+i +
p−1

∑
i=0

∂Tk+i

∂ q̈k

T

φk+i = 0. (36)
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Expanding the derivative terms, separating out current and previous determined terms, dividing by h and rearranging
for the unknown adjoint variable λk results in the following linear system:

[
∂Rk

∂ q̈k
+hα0

∂Rk

∂ q̇k
+h2

α
2
0

∂Rk

∂qk

]T

λk =−
{

∂Fk

∂ q̈k
+hα0

∂Fk

∂ q̇k
+h2

α
2
0

∂Fk

∂qk

}T

− 1
h

{
hα0ψk +h2

α
2
0 φk
}

−
p−1

∑
i=1

[
hαi

∂Rk+i

∂ q̇k+i
+hα0hαi

∂Rk+i

∂qk+i

]T

λk+i

−
p−1

∑
i=1

{
hαi

∂Fk+i

∂ q̇k+i
+hα0hαi

∂Fk+i

∂qk+i

}T

− 1
h

p−1

∑
i=1
{hαiψk+i +hα0hαiφk+i} .

(37)

The partial derivative terms in the linear system correspond to the occurrences of q̈k as inputs to equations R, S, T and
F in the time history, as illustrated in Figure 6.

D. Diagonally Implicit Runge–Kutta
The original Runge–Kutta formulas are explicit and not well-suited for the stiff systems that arise in flexible multibody
dynamic simulations. Butcher [10] extended Runge–Kutta methods to include a class of Implicit Runge–Kutta (IRK)
methods that can be used to solve stiff problems. As a further refinement, Alexander [3] and subsequently Cash [13]
developed Diagonally Implicit Runge–Kutta (DIRK) methods that achieve computational savings compared to IRK
methods. The computational savings arise from the lower triangular structure of the matrix of DIRK coefficients. The
development of DIRK scheme for second-order descriptor systems and the corresponding time-dependent discrete-
adjoint are discussed in the remainder of this section.

1. Solution of the State Variables

BUTCHER’S TABLEAU Runge–Kutta methods belong to the class of multistage methods for solving differential
equations. The coefficients that define the Runge–Kutta method can be conveniently arranged in a tabular format
known as Butcher’s tableau. The structure of the Butcher’s tableau for diagonally implicit Runge–Kutta is shown in
Table 5. The lower triangular nature of the tableau enables the successive solution of the nonlinear governing equations
at each stage. Note that the tableau is complete in the case of an IRK scheme, resulting in full coupling among all
stages. Due to the availability of one-stage-second-order, two-stage-third-order and three-stage-fourth-order DIRK
methods developed by Alexander [3], the DIRK method is preferred to IRK methods.

Table 5: Butcher’s tableau structure for diagonally implicit Runge–Kutta methods.

Stage β1 β2 · · · βs

1 α11 0 0 0 τ1
2 α21 α22 0 0 τ2

...
...

. . . 0
...

s αs1 αs2 · · · αss τs

STAGE APPROXIMATIONS: The governing equations are solved at intermediate time steps, tki, referred to as the
stages. The intermediate stage state variables and their first and second time derivatives are denoted as uki, u̇ki and üki,
respectively. The stage state approximation relations are

u̇ki = q̇k−1 +h
i

∑
j=1

αi jük j,

uki = qk−1 +h
i

∑
j=1

αi ju̇k j.

(38)
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The indices i and j to refer to row and column of the coefficients in the Butcher’s tableau shown in Table 5. The
schematic representation of the intermediate stage approximations is shown in Figure 7.

q̇k−1

1

qk−1

hα
ii

hα i2

hαi1ük1

ük2

hα
iihα

i2

hαi1

1

u̇k1

u̇k2

u̇ki

uki

üki

u̇ki

Figure 7: The intermediate stage state variables of DIRK are formed as a linear combination.

STATE APPROXIMATIONS: The state variables at time, tk, are expressed as follows

q̈k =
s

∑
i=1

βiüki,

q̇k = q̇k−1 +h
s

∑
i=1

βiüki,

qk = qk−1 +h
s

∑
i=1

βiu̇ki

(39)

and is illustrated in Figure 8.

1

qk−1

hβ
s

hβ2

hβ1qk

q̇k−1

1

hβ1

hβ
2

hβ
s

q̇kük1

ük2

üks

β1 q̈kük1

üks
u̇ks

u̇k1

βs
u̇k2

ük2
β2

Figure 8: The state variables and their time derivatives at k-th time step formed as a linear combination.

SOLUTION OF THE NONLINEAR SYSTEM: The nonlinear system of equations to be solved, at each stage, i, and
time step, k, is Rki(üki, u̇ki,uki,x, tki) = 0. This can be solved in a manner similar to Newmark and ABM methods
discussed previously in this section. The key difference here is that the nonlinear system is solved at s-intermediate
stages for each time step. The linearized form of the nonlinear system to be solved repeatedly at each stage is,

[
∂Rki

∂ ü
+hαii

∂Rki

∂ u̇
+h2

α
2
ii

∂Rki

∂u

]
∆üki =−Rki(üki, u̇ki,uki,x, tki). (40)

The update formulas for the stage state variables are

ün+1
ki = ün

ki +∆ün
ki,

u̇n+1
ki = u̇n

ki +hαii∆ün
ki,

un+1
ki = un

ki +h2
α

2
ii∆ün

ki.

(41)

The iterative updates to the stage state variables and derivatives continue until the governing equations are solved to
the required tolerance.
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2. Solution of the Adjoint Variables

FORMATION OF THE LAGRANGIAN: The governing equations and functionals of interest follow slightly different
treatment for DIRK since it is a multistage method. The state approximations of DIRK time marching scheme given
in Equation (39) are reformulated as the following residuals

Sk = q̇k−1 +h
s

∑
i=1

βiüki− q̇k,

Tk = qk−1 +h
s

∑
i=1

βiu̇ki−qk.

(42)

The adjoint variables λki, ψk and φk are associated with the governing equations at each stage, Rki, and the state
approximation equations, Sk, and Tk, arising from the DIRK scheme, for each time step, k. The Lagrangian is written
as

L =
N

∑
k=0

h
s

∑
i=1

βiFki +
N

∑
k=0

h
s

∑
i=1

βiλ
T
ki Rki +

N

∑
k=0

ψ
T
k Sk +

N

∑
k=0

φ
T
k Tk. (43)

Note that h arises from the discretization of the continuous integral into N time intervals and βi arises from the dis-
cretization of each time interval into s stages. The formation of the Lagrangian is schematically shown in Figure 9.
The number of terms that occur in the adjoint system of equations for each adjoint variable can be determined graphi-
cally from Figure 9 and is listed in Table 6. The number of terms listed in Table 6 can be seen to exist in the following
adjoint system of equations.

Table 6: Table listing the number of terms in the adjoint system of equations for DIRK method.

T S R F Total

φk 2 s s 2+2s
ψk s 2 2s 2s 2+5s
λk s-i+1 1 2(s-i)+1 2(s-i)+1 5(s-i)+1

1. Equation for φk:

Setting ∂L /∂qk = 0 yields

∂Tk

∂qk

T

φk +
∂Tk+1

∂qk

T

φk+1 +h
s

∑
i=1

βi
∂Rk+1,i

∂qk

T

λk+1,i +h
s

∑
i=1

βi
∂Fk+1,i

∂qk

T

= 0. (44)

This simplifies to

φk = φk+1 +h
s

∑
i=1

βi
∂Rk+1,i

∂uk+1,i

T

λk+1,i +h
s

∑
i=1

βi
∂Fk+1,i

∂uk+1,i

T

. (45)

2. Equation for ψk:

Setting ∂L /∂ q̇k = 0 yields

∂Sk

∂ q̇k

T

ψk +
∂Sk+1

∂ q̇k

T

ψk+1 +
s

∑
i=1

βi
∂Tk+1

∂ q̇k

T

φk+1 +h
s

∑
i=1

βi
∂Rk+1,i

∂ q̇k

T

λk+1,i +h
s

∑
i=1

βi
∂Fk+1,i

∂ q̇k

T

= 0. (46)

This becomes

ψk = ψk+1 +h
s

∑
i=1

βiφk+1 +h
s

∑
i=1

βi

[
∂Rk+1,i

∂ u̇k+1,i
+h

i

∑
j=1

αi j
∂Rk+1,i

∂uk+1,i

]T

λk+1,i

+h
s

∑
i=1

βi

{
∂Fk+1,i

∂ u̇k+1,i
+h

i

∑
j=1

αi j
∂Fk+1,i

∂uk+1,i

}T

.

(47)

Using the properties of DIRK coefficients: ∑
s
i=1 βi = 1 and ∑

i
j=1 αi j = τi,

ψk = ψk+1 +hφk+1 +h
s

∑
i=1

βi

[
∂Rk+1,i

∂ u̇k+1,i
+hτi

∂Rk+1,i

∂uk+1,i

]T

λk+1,i +h
s

∑
i=1

βi

{
∂Fk+1,i

∂ u̇k+1,i
+hτi

∂Fk+1,i

∂uk+1,i

}T

. (48)
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Figure 9: A weighted linear combination of equations with corresponding adjoint variables forming the Lagrangian
for DIRK method.

3. Equation for λki:

Taking ∂L /∂ üki = 0 yields

h
s

∑
j=i

β j
∂Rk j

∂ üki

T

λk j +h
s

∑
j=i

β j
∂Fk j

∂ üki

T

+
∂Sk

∂ üki

T

ψk +
∂Tk

∂ üki

T

φk = 0. (49)

Applying chain rule and expanding the terms results in

0 = hβi
∂Rki

∂ üki
+h

s

∑
j=i+1

β j

[
hα ji

∂Rk j

∂ u̇k j
+h2

j

∑
p=i

α jpαpi
∂Rk j

∂uk j

]T

λk j

+hβi
∂Fki

∂ üki
+h

s

∑
j=i+1

β j

{
hα ji

∂Fk j

∂ u̇k j
+h2

j

∑
p=i

α jpαpi
∂Fk j

∂uk j

}T

+hβiψk +

(
h

s

∑
j=i

β jhα ji

)
φk.

(50)
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Dividing by h and rearranging for the unknown adjoint variable λki results in the following linear system

βi

[
∂Rki

∂ üki
+hαii

∂Rki

∂ u̇ki
+h2

α
2
ii

∂Rki

∂uki

]T

λki =−βi

[
∂Fki

∂ üki
+h2

α
2
ii

∂Fki

∂ u̇ki
+h2

α
2
ii

∂Fki

∂uki

]T

−
s

∑
j=i+1

β j

[
hα ji

∂Rk j

∂ u̇k j
+h2

j

∑
p=i

α jpαpi
∂Rk j

∂uk j

]T

λk j

−
s

∑
j=i+1

β j

{
hα ji

∂Fk j

∂ u̇k j
+h2

j

∑
p=i

α jpαpi
∂Fk j

∂uk j

}T

−βiψk−
(

s

∑
j=i

β jhα ji

)
φk.

(51)

The total derivative is computed in an analogous manner to other methods as follows

dF
dx

=
N

∑
k=0

h
s

∑
i=1

βi
∂Fki

∂x
+

N

∑
k=0

h
s

∑
i=1

βiλ
T
ki

∂Rki

∂x
. (52)

III. Results
This section presents the verification of the adjoint gradients against the complex-step method, assessments of

the parallel scalability of the implementation of the solution procedures, and finally demonstrates applications of the
framework on flexible multibody dynamics problems.

A. Numerical Verification of Adjoint Gradients
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Figure 10: Complex-step verification of the BDF adjoint scheme for 12 different functionals with various perturbation
step sizes.
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Figure 11: Complex-step verification of the DIRK adjoint scheme for 12 different functionals with various perturbation
step sizes.
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The complex-step method is used to numerically verify the total derivative computed using the adjoint method.
The complex-step method does not suffer from subtractive cancellation errors which enables the use of very small step
sizes, producing highly accurate gradient estimates. A flexible plate with roughly 1000 degrees of freedom is used
as the simulation model for this study. The simulation is run for 1000 time steps using the time marching schemes
discussed in Section II, with different orders of accuracy where applicable. The functionals used for this verification
are the structural mass (index 1), compliance (index 2), the KS aggregates of the von Mises failure criterion (indices
3 and 4), and the induced exponential aggregates of the von Mises failure criterion (indices 5 to 12). The verification
study compares the derivative of these functionals with respect to plate thickness as design variable.
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Figure 12: Complex-step verification of the Newmark adjoint scheme for 12 different functionals with various pertur-
bation step sizes.
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Figure 13: Complex-step verification of the ABM adjoint scheme for 12 different functionals with various perturbation
step sizes.

The absolute error between the complex-step derivative and the total derivative computed using the adjoint formu-
lations for the BDF, DIRK, Newmark and ABM time marching schemes are plotted in Figures 10, 11, 12, and 13,
respectively. The errors are plotted for perturbation sizes 10−4, 10−8, 10−12 and 10−12. The error for the largest per-
turbation size of 10−4, shown in blue, are predominantly due to truncation, while the error in the all other perturbation
sizes are due to round-off errors accumulated over each time step. Overall, each component of the gradient exhibits a
relative accuracy better than 10−8.
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B. Parallel Scalability Assessments
The parallel scalability of both the time marching method and the adjoint implementation is critical for efficiently
solving large problems with several millions of degrees of freedom. In this section, we present a study of the scalability
of the proposed framework on a flexible plate model with a medium problem size of 192,000 degrees of freedom and
a large problem with 2 million degrees of freedom. The results are organized in two main groups: (1) Scalability with
the number of degrees of freedom and (2) Scalability with the number of functionals of interest. We compare both
the overall forward and adjoint solution computational performance as well as detailed forward and adjoint operations
described below.

1. Scaling with Problem Size

The scalability of the implementation for two different problem sizes are discussed below. The number of processor
cores used to solve the medium sized problem are 1, 2, 4, 8, 12, 16, 20 and 24. The number of processor cores used for
solving the larger problem are 12, 24, 48, 72 and 96. Note that the system utilizes 24 processor cores per computational
node. The wall time taken for key operations are tracked and plotted to evaluate the parallel performance and identify
potential bottlenecks.

HIGH LEVEL OPERATIONS: The parallel scaling of high level operations involved in the solution process with the
number of processors is shown in Figure 14. The expected ideal scaling is overlaid as a black line. The forward and
adjoint solutions show similar trends. The good scaling achieved for low number of processors deteriorates somewhat
for larger number of processors. For the medium problem on the left, a slight performance degradation from 8 to
12 processors can be seen for both the forward and adjoint solution time. This is a result of the extra cost of the
factorization over this range of processors, as shown in Figure 15.

SOLUTION OPERATIONS: Figure 15 shows the parallel scalability in terms of the total time taken for operations
involved in the solution process. The key operations considered are:

1. Factorization of the Jacobian matrix of the linearized nonlinear system at each iteration of the nonlinear solver

2. Assembly operations for setting up the matrices and residual of the governing equations for a given set of state
and design variables

3. Applying the factorization to solve for Newton updates

The matrix and residual assembly operations scale ideally. The matrix factorization and the application of matrix
factorization scale well initially, but the performance suffers for larger number of processors.

ADJOINT OPERATIONS: The parallel scalability of the operations involved in the adjoint solution process is shown
in Figure 16. The key operations considered are

1. Factorization of the transposed Jacobian matrices in the adjoint linear system of equations

2. Assembly operations for assembling the transposed matrices and contributions to the right hand side of the
adjoint system of equations

3. Applying the factorization to solve for the adjoint variables for each functional of interest

4. Matrix-vector products involved in the equation for the evaluation of total derivative

Trends similar to the forward solution are also apparent in the adjoint solution for both problem sizes. The Jacobian-
vector products scale ideally. The percentage of time taken for aforementioned operations are plotted in Figures 17
and 18. The matrix factorization takes the majority of computational time and emerge as the single most expensive
operation. The implication is that the scaling of the matrix factorizations are crucial to the overall parallel perfor-
mance of the framework. Another observation is that, the forward mode takes more time than the reverse mode under
scenarios considered here. In general it follows that,

timeforward ≈
number of nonlinear iterations

number of functionals of interest
× timereverse. (53)
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Figure 14: Parallel scalability assessments for high level operations.
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Figure 15: Parallel scalability assessments for forward mode operations.
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Figure 16: Parallel scalability assessments for the adjoint operations.
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Figure 17: Percentage of time taken for different operations for the model with 192,000 degrees of freedom.
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Figure 18: Percentage of time taken for different operations for the model with 2 million degrees of freedom.

2. Scaling with Number of Functionals

The effect of increasing the number of functionals on the computational cost of the adjoint operations for the model
with 192,000 degrees of freedom is plotted in Figure 19. The total adjoint solution time increases by less than 5%, for
an increase in the number of functionals. All the adjoint operations except the matrix factorization see an increase in
time due to additional computations. This is because the same matrix factorization is applied to different right hand
sides. Overall, the lines are shifted upwards without any visible changes to the trends shown before in Figure 16.
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Figure 19: Parallel scalability assessments for increasing number of functionals of interest.
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C. Flexible Multibody Dynamics
The illustration of flexible multibody dynamics capabilities of the framework with the simulation of rigid as well as
flexible models follow.

1. Rigid Models

The multibody dynamics of pendulum and rotor models constructed using rigid bodies connected through spherical
and revolute kinematic constraints are shown in Figure 20. Figure 21 shows the use of rigid-link between two cube-
shaped rigid bodies. For this simulation, the angular velocity components are applied along all three coordinate axes.
The contours represent the rotations in each body and it can be seen that the rotations are transmitted between the
bodies with the use of rigid-link.

(a) double pendulum (b) rotor

Figure 20: Time lapse plots of the configuration of rigid bodies connected through spherical and revolute constraints.

Figure 21: Contours of the rotations of two rigid bodies connected through a rigid-link.

2. Flexible Models

The flexible simulation models considered for study are (a) shell box, (b) punched plate and (c) rotor blade mod-
els. The unstructured finite-element meshes of the flexible models are generated through the open-source program
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gmsh [20]. Figure 22 shows the dynamics of a shell box and punched plate flexible models. Here, the translational
degrees of freedom of one of the finite-element nodes are constrained, and the models are allowed to oscillate under
the influence of gravity. The clamped rotor blade model shown in Figure 23 has 225,000 degrees of freedom and is
applied an initial angular velocity resulting in the shown configuration over time.

(a) shell box
(b) punched plate

Figure 22: Time lapse plots showing the configuration of flexible bodies.

Figure 23: Time lapse plot showing the configuration of a clamped rotor blade model.
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3. Heterogeneous Models

A schematic representation of connecting rigid and flexible bodies is shown in Figure 24. Each node, identified with
a unique index, i, has a physical location, xi, associated with it. The constraint and link elements are associated with
dummy nodes (2, 3, 4 and 5) that serve to preserve the generality of implementation aspects, rather than bearing a
geometrical significance. The same treatment can be extended for linking multiple rigid and flexible bodies. Figure 25
shows the chaotic motion of a flexible plate rigidly linked with a rigid body, that is connected to a fixed-point in space
through spherical constraint. The rigid body and the link are suppressed for visualization purposes.
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Node numbers are in red
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Figure 24: A schematic representation of connecting rigid and flexible elements using rigid-link.

Figure 25: The configuration of a flexible plate connected to a rigid body (not shown) through a rigid-link.

IV. Conclusion
In this paper, we presented a framework for analysis and adjoint-based derivative evaluation for second-order sys-

tems, such as flexible multibody dynamics. The framework will provide the ground work required for multidisciplinary
optimization of complex flexible multibody systems like rotorcraft. The availability of analysis and adjoint schemes
for various time-marching methods facilitates the selection of solution methods tailored to the problem under investi-
gation. The mathematical adjoint formulations are numerically verified with complex-step method and are shown to
be accurate. The parallel scalability of the implementation will be useful for high-fidelity models with large number
of degrees of freedom. The components central to the construction of full-fledged rotor models are demonstrated with
simple simulations.
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[21] B. Grossman, Z. Gürdal, R. T. Haftka, G. J. Strauch, and W. M. Eppard. Integrated aerodynamic/structural design of a
sailplane wing. Journal of Aircraft, 25(9):855–860, 2013/09/28 1988. doi:10.2514/3.45980.

[22] R. Haftka and H. Adelman. Recent developments in structural sensitivity analysis. Structural optimization, 1(3):137–151,
1989. ISSN 0934-4373. doi:10.1007/BF01637334.

[23] P. Henrici. Discrete variable methods in ordinary differential equations. Wiley, New York, 1962.

[24] A. C. Hindmarsh. {ODEPACK}, A Systematized Collection of {ODE} Solvers. IMACS Transactions on Scientific Compu-
tation, 1:55–64, 1983.

[25] A. Jameson. Aerodynamic design via control theory. Journal of Scientific Computing, 3(3):233–260, 1988. ISSN 08857474.
doi:10.1007/BF01061285.

[26] G. J. Kennedy and J. E. Hicken. Improved constraint-aggregation methods. Computer Methods in Applied Mechanics and
Engineering, 289:332 – 354, 2015. ISSN 0045-7825. doi:10.1016/j.cma.2015.02.017.

[27] G. J. Kennedy and J. R. R. A. Martins. A parallel finite-element framework for large-scale gradient-based design opti-
mization of high-performance structures. Finite Elements in Analysis and Design, 87(0):56 – 73, 2014. ISSN 0168-874X.
doi:10.1016/j.finel.2014.04.011.

[28] G. Kreisselmeier and R. Steinhauser. Systematic control design by optimizing a vector performance index. In International
Federation of Active Controls Symposium on Computer-Aided Design of Control Systems, Zurich, Switzerland, 1979.

[29] J. R. R. A. Martins, P. Sturdza, and J. J. Alonso. The complex-step derivative approximation. ACM Transactions on Mathe-
matical Software, 29(3):245–262, Sept. 2003. doi:10.1145/838250.838251.

[30] J. R. R. A. Martins, J. J. Alonso, and J. J. Reuther. A coupled–adjoint sensitivity analysis method for high–fidelity aero–
structural design. Optimization and Engineering, 6:33–62, 2005. doi:10.1023/B:OPTE.0000048536.47956.62.

[31] L. Meirovitch. Principles and techniques of vibrations. Prentice Hall, Upper Saddle River, NJ, 1st edition, 1997. ISBN
0023801417.

[32] F. R. Moulton. New Methods in Exterior Balistics. University of Chicago Press, 1926.

[33] K. Nachbagauer, S. Oberpeilsteiner, K. Sherif, and W. Steiner. The use of the adjoint method for solving typical optimization
problems in multibody dynamics. Journal of Computational and Nonlinear Dynamics, 10(6):1–10, 2015. ISSN 1555-1415.
doi:10.1115/1.4028417.

[34] N. M. Newmark. A method of computation for structural dynamics. Journal of the Eng. Mech. Div., 85(3), 1959.

[35] P. Eberhard. Adjoint variable method for sensitivity analysis of multibody systems interpreted as a continuous, hybrid form
of automatic differentiation. Proceedings of the Second International Workshop of Computational Differentiation, Santa Fe,
NM, 1996.

[36] L. L. Sherman, A. C. Taylor III, L. L. Green, and P. A. Newman. First- and second-order aerodynamic sensitivity derivatives
via automatic differentiation with incremental iterative methods. Journal of Computational Physics, 129:307 – 331, 1996.
doi:10.2514/6.1994-4262.

[37] W. Squire and G. Trapp. Using complex variables to estimate derivatives of real functions. SIAM Review, 40(1):110–112,
1998. doi:10.1137/S003614459631241X.

26 of 26

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d 

by
 G

eo
rg

ia
 I

ns
tit

ut
e 

of
 T

ec
hn

ol
og

y 
on

 M
ay

 1
8,

 2
02

4 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/6
.2

01
7-

16
71

 

http://dx.doi.org/10.2514/3.45980
http://dx.doi.org/10.1007/BF01637334
http://dx.doi.org/10.1007/BF01061285
http://dx.doi.org/10.1016/j.cma.2015.02.017
http://dx.doi.org/10.1016/j.finel.2014.04.011
http://dx.doi.org/10.1145/838250.838251
http://dx.doi.org/10.1023/B:OPTE.0000048536.47956.62
http://dx.doi.org/10.1115/1.4028417
http://dx.doi.org/10.2514/6.1994-4262
http://dx.doi.org/10.1137/S003614459631241X

	Introduction and Background
	Governing Equations and Functionals of Interest
	Time Marching Schemes
	Derivative Evaluation Methods
	Numerical Methods
	The Adjoint Method


	Time Marching and Discrete-Adjoint For Second-Order Systems
	Backward Difference Formulas (BDF)
	Solution of the State Variables
	Solution of the Adjoint Variables

	Newmark Method
	Solution of the State Variables
	Solution of the Adjoint Variables

	Adams–Bashforth–Moulton
	Solution of the State Variables
	Solution of the Adjoint Variables

	Diagonally Implicit Runge–Kutta
	Solution of the State Variables
	Solution of the Adjoint Variables


	Results
	Numerical Verification of Adjoint Gradients
	Parallel Scalability Assessments
	Scaling with Problem Size
	Scaling with Number of Functionals

	Flexible Multibody Dynamics
	Rigid Models
	Flexible Models
	Heterogeneous Models


	Conclusion
	References

