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High-performance aerospace structures are light-weight, flexible, frequently made from multiple,
connected components, and are subject to dynamic loads. To design structures subject to these con-
ditions, we propose a scalable adjoint method for coupled flexible multibody dynamic simulations.
Adjoint-based derivative evaluation methods have been used for design optimization in a wide-array
of multidisciplinary applications. However, relatively few authors have developed adjoint methods for
flexible multibody dynamic simulations. To address this issue, we develop a modular adjoint-based
derivative evaluation method for flexible multibody systems that is designed for high-performance
parallel computing environments. We envision that this framework will be useful for the assessment
and design of flexible multibody systems that arise in many aerospace applications.

I. Introduction
A variety of aerospace vehicles, including aircraft, rotorcraft, and spacecraft, can be accurately described as flex-

ible multibody systems. As performance goals drive lower structural weight, these aerospace systems will become
more flexible, in turn leading to stronger coupling between structural and dynamic response. In the MDO commu-
nity, adjoint-based derivative evaluation methods have been used to perform design optimization in a wide-array of
applications [15]. However, relatively few authors have developed adjoint methods for coupled multibody dynamic
simulations. In this work, we develop a modular adjoint method for the evaluation of gradients of functions of interest
with respect to structural and geometric variables within the context of flexible multibody simulations. Furthermore, to
be compatible with high-performance parallel computing environments, we implement methods that exhibit good par-
allel scalability. This framework is applicable to the design of flexible multibody systems that arise in many aerospace
applications.

A number of authors have studied flexible multibody systems in the context of flexible aircraft simulations. In
these simulations, coupling aerodynamic forces and moments play an integral role. Several authors have developed
aeroelastic analysis tools that integrate aerodynamic and structural analysis coupled to rigid-body degrees of freedom
using low or medium-fidelity methods [3, 8, 7, 18]. The simultaneous consideration of these three disciplines is es-
sential when the rigid-body modes and lowest structural modes interact, producing a fully coupled response. In order
to enhance these fully coupled aeroelastic models, several authors have employed geometrically nonlinear beam anal-
yses that account for following forces and wing-area effects that cannot be predicted by linear theories [18, 7]. These
nonlinear effects are especially pronounced for large-deflections encountered during gust or maneuver conditions.
Both geometrically exact formulation [18] and co-rotational [1, 8] beam element formulations have been successfully
applied to these problems. These methods are especially effective for aircraft with slender, high-aspect ratio wings,
such as high-altitude long-endurance (HALE) aircraft. Most of the work performed with these tools has focused on
developing novel control schemes for existing aircraft [19, 7]. Fewer studies have addressed incorporating aeroelastic
design constraints within a broad aircraft design problem [6]. In addition, studies which do consider the aircraft design
problem employ computationally expensive gradient-free methods [8].

In this work, we concentrate on integrating structural and multibody dynamics within a unified framework. This
framework is implemented using the Toolkit for the Analysis of Composite Structure (TACS) [13], a parallel finite-
element code with adjoint capabilities. The end goal of this work is to integrate structures, multibody dynamics, and
aerodynamics into a unified framework, however, this is beyond the scope of this paper. Instead, we focus on the
intermediate but worthwhile goal of a coupled flexible multibody dynamics adjoint implementation.

The remainder of this paper is outlined as follows: in Section II, we describe the time-dependent simulation and
adjoint evaluation method that will be the basis of this work. In Section III, we describe the equations of motion for a
single isolated flexible body, and then describe how holonomic constraints can be added to create a flexible multibody
system. In Section IV, we outline the details of the Newton–Krylov method used to solve the time-dependent governing
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equations. Finally, in Section V, we present results that verify the accuracy of the proposed adjoint implementation on
three multibody systems: a triple pendulum, a trebuchet, and a flexible double-plate pendulum.

II. Flexible multibody dynamic analysis and adjoint implementation
In this section, we present the time-integration scheme used to solve the governing equations and the associated

adjoint method that is used to evaluate the discrete-consistent derivative of functions of interest. These results are
independent of the underlying formulation of the governing equations, which will be described in detail in Section III.

A. Implicit time integration of the descriptor system
The equations of motion of the flexible multibody system are formulated in a descriptor system that takes the following
form:

R(x, q̈, q̇,q, t) = 0, (1)

where x are the design variables, t is time, and q, q̇, and q̈ are the rigid-body degrees of freedom, internal elastic
degrees of freedom, and constraint forces for all elements within the multibody system. We have elected to express the
equations of motion in this descriptor form due to the presence of holonomic constraint equations that make it difficult
to write the governing equations in the form q̇ = f(q, t). Furthermore, this form simplifies the derivation of the adjoint
method for gradient evaluation.

We integrate the governing equations (1) in time using a backwards-difference formula over the interval t = [0,T ],
using N + 1 time instances with a constant time step ∆t = T/N. The integration scheme uses the initial conditions
q0, and q̇0, which must be specified at t = 0. In this integration scheme, the time derivatives at time tk = k∆t, are
approximated using m-th order accurate backwards-difference formula:

q̇k =
1
∆t

m

∑
i=0

αiqk−i +O(∆tm),

q̈k =
1

∆t2

2m

∑
i=0

βiqk−i +O(∆tm).

(2)

Note that the first-derivative approximation requires state variable values at m+1 points, while the second derivative
approximation requires state variables at 2m+1 points.

Inserting the finite-difference formula (2) into the equations of motion (1), yields the following implicit nonlinear
equation for the k-th time step:

R(x, q̈k, q̇k,qk, tk) = 0. (3)

We solve this nonlinear equation using an inexact Newton method [2, 5, 4] for a sequence of state variable {qn
k}n=1,

until the residuals of each discipline are each reduced below a specified tolerance. The linear system of equations for
the n-th update ∆qn

k = qn+1
k −qn

k , is

∂R
∂qk

∆qn
k =

[
∂R
∂q

+
α0

∆t
∂R
∂ q̇

+
β0

∆t2
∂R
∂ q̈

]
∆qn

k =−R(x, q̈n
k , q̇

n
k ,q

n
k , tk), (4)

where we solve the resulting linear system inexactly using a Krylov-subspace method. We outline the details of
the implementation of the inexact Newton–Krylov solution method below. Once the solution to the inexact Newton
update, ∆qk, is obtained, we apply the following updates to the approximate time-derivatives:

qn+1
k = qn

k +∆qn
k ,

q̇n+1
k = q̇n

k +
α0

∆t
∆qn

k ,

q̈n+1
k = q̈n

k +
β0

∆t2 ∆qn
k .

The implicit BDF family of time-integration schemes are not self-starting. As a result, at time step j < m there are
not enough points to apply the full m-th order BDF formula (2). Instead, we use a start-up strategy where j-th order
BDF formula are applied for the first j = 1, . . . ,m points at where the full m-th order accurate BDF integration scheme
can be applied. Note that at the first 2m points, the second-order approximate formula must be modified based on both
the initial starting condition q̇0 and state variable values at the previous time steps.
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B. Adjoint derivation
The result of the time-dependent simulation is a time-history consisting of the approximate state variable values at all
time instances, {qk}k=N

k=1 . As part of an optimization problem, or when evaluating a performance metric of interest, it
may be required to evaluate a function of the time history. We write these functions in the generic form:

f (x,q0,q1, . . . ,qN).

Note that this is a function only of the state variables at each time-instance. Any time derivatives that are required for
the evaluation of f can be evaluated using finite-difference formula.

We have implemented an adjoint method for the efficient evaluation of the gradients of functions of interest.
The cost of the adjoint method scales weakly with the number of design variables and is therefore well-suited to
optimization problems with few functions of interest and many design variables. Our goal is to implement an approach
which can be applied to aeroelastic design optimization with computationally expensive high-fidelity analysis methods.

We derive the adjoint equations using a Lagrange multiplier method. In this approach, the Lagrangian, L , is
defined as follows:

L = f (x,q0, . . . ,qN)+
N

∑
k=0

λ
T
k Rk(q̈k, q̇k,qk), (5)

where f is the function of interest, λ k are the Lagrange multipliers at each time step k and Rk are the residuals evaluated
at the k-th time step.

To determine the values of the Lagrange multipliers, λ k, we evaluate the partial derivative of Lagrangian with
respect to the state variables at the k-th time step:

∇qkL =
∂ f
∂qk

+λ
T
k

∂Rk

∂q
+

m

∑
i=0

λ
T
k+i

αi

∆t
∂Rk+i

∂ q̇
+

2m

∑
i=0

λ
T
k+i

βi

∆t
∂Rk+i

∂ q̈
.

Rearranging terms and taking the transpose of the above expression results in the following equation for the Langrange
multipliers at the k-th time step:

[
∂Rk

∂q
+

α0

∆t
∂Rk

∂ q̇
+

β0

∆t
∂Rk

∂ q̈

]T

λ k =−
∂ f
∂qk

T

−
m

∑
i=1

αi

∆t
∂Rk+i

∂ q̇

T

λ k+i−
2m

∑
i=1

βi

∆t
∂Rk+i

∂ q̈

T

λ k+i (6)

In this expression, the right-hand-side for the Langrange multipliers at the current time step depends on future values
of the Lagrange multipliers. As a result, the Lagrange multipliers must be obtained by marching backwards in time
starting from the last time-instance at k = N. The Jacobian in the adjoint equation (6) is the same Jacobian required for
the Newton update (4). In this case, it is essential that an accurate solution is obtained since adjoint errors accumulate
and produce inaccurate gradients. In practice, we solve (6) using coupled Krylov method described in Section IV.

Once the values of the Lagrange multipliers have been obtained, the total derivative of the function of interest can
be evaluated as follows:

∇x f ≡ ∇xL =
∂ f
∂x

+
N

∑
k=0

λ
T
k

∂Rk

∂x
. (7)

Note that in practice it is necessary to store the entire time-history of the simulation for the forward solve and only 2m
right-hand sides for the backwards adjoint solve. Within the present framework, we compute the matrix-vector product
contributions required by all right-hand-sides immediately following the calculation of the Lagrange multipliers at
time step k. Following this update step, we also compute the contribution to the total derivative (7) from time-step k.
Therefore, within this framework, we only store the Lagrange multipliers for the current time step, but accumulate the
right-hand-sides for the next 2m+1 time steps.

III. The equations of motion
In this section, we derive the equations of motion for a flexible multibody system, first examining a single isolated

flexible body, then applying kinematic constraints, and forces and torques required for compatibility of the flexible
multibody system. These equations of motion can then be formulated within the framework presented in Section II.
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A. Dynamics of an isolated elastic body
The state vector q is subdivided into the rigid-body degrees of freedom, qR, and the elastic state variables, qS. We will
employ both beam- and shell-element-based structural models. Therefore, we make no assumptions about the nature
of the degrees of freedom present in qS.

In this work, we derive the equations of motion using Lagrange’s equations for quasi-coordinates [17]. In this
derivation, we require an expression for the kinetic energy of the elastic body and the potential energy within the
system. Figure 1 shows the initial and deformed configurations of the elastic body as well as the inertial reference
frame, ~FI , and the body-fixed reference frame, ~FB. Note that the origin of the body-fixed frame is not necessarily at
the center of mass and is not required to lie within the body itself.

~FI

~FB

~r

B1

B2

~f1

~f2

~r1

~r2

~r = ~FT
B rB ~r = ~FT

I rI

rB = ~FB · ~FT
I rI

CBI = ~FB · ~FT
I

Vectors expressed in different reference frames

Rotation matrix definition

~FI =



î1
î2
î3




~FB =



b̂1

b̂2

b̂3




Rigid body subject to external loads

Inertial coordinate frame

Body-fixed frame

External force

External force

~FI

~FB

~r

B1

B2

~f1

~f2

~r1

~r2

Body-fixed frame

Elastic body subject to external loads

~u1~u2

~g1

~g1

~g2
~g2

External torque

External torque

Time-derivatives of vectors

~̇r = ~̇FT
B rB + ~FB ṙB

~̇FB = ~ωBI × ~FB

~̇r = ~FT
B

(
ṙB + ω×

BI rB
)

~̇FT
B = ~FT

Bω
×
BI

Figure 1: Illustration of the elastic body deformed under load in the body-fixed reference frame.

We express all vectors shown in Figure 1 within the body-fixed reference frame, except for the position vector,
~r0 which is expressed in the inertial coordinate axis. The origin of the body-fixed frame has velocity v0 and angular
velocity ω . The initial, undeformed position of a point within the elastic body is given by re and the displacement of
a point in the body under load is given by ue. As a result, the velocity of an arbitrary point within the body can be
written as follows:

v = v0 + u̇e +ω
×(re +ue) (8)

where we have employed matrix notation for the cross product operation [9] such that:

a×b = a×b,

where a× is a 3×3 skew-symmetric matrix with components

a× =




0 −a3 a2
a3 0 −a1
−a2 a1 0


 .

Based on Equation (8), the kinetic energy can now be expressed as a function of the rigid-body velocity and the
point-wise elastic deformation as follows:

T =
1
2

∫

Ω

vT vdm,

=
1
2

∫

Ω

(
v0 + u̇e− (re +ue)×ω

)T (v0 + u̇e− (re +ue)×ω
)

dm,

=
1
2
[
vT

0 ωT q̇T
S
]



m1 −ĉ× p
ĉ× Ĵ ĥ
pT ĥT M






v0
ω

q̇S


 ,

=
1
2
(
mvT

0 v0 +ω
T Ĵω + q̇T

S Mq̇S
)
−vT

0 ĉ×ω +vT
0 pu̇+ω

T ĥq̇S.

(9)
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Where we have used the following expression for the finite-element shape functions ue = NqS. The matrices ĉ, Ĵ, p
and ĥ are defined as follows:

ĉ =
∫

Ω

(re +ue)dm p =
∫

Ω

Ndm

Ĵ =−
∫

Ω

(re +ue)×(re +ue)×dm ĥ =
∫

Ω

(re +ue)×Ndm

where the symbol ·̂ denotes quantities that depend on the state of elastic deformation.
In the following work, we simplify the equations of motion by making the assumption that quantities within the

kinetic energy expression of the form (re)×ue can be neglected. For relatively rigid structures, this is a reasonable
assumption, however, these terms cannot be neglected when highly-flexible structures are analyzed. With this assump-
tion, the kinetic energy (9) can now be expressed as follows:

T =
1
2
(
mvT

0 v0 +ω
T Jω + q̇T

S Mq̇S
)
−vT

0 c×ω +vT
0 pu̇+ω

T hq̇S, (10)

where the matrices, c, J and h are defined as follows:

c =
∫

Ω

redm, J =−
∫

Ω

re×re×dm, h =
∫

Ω

re×Ndm.

The potential energy of the elastic body is to the internal strain energy of the elastic deformation and can be written
as follows:

U = qT
S KqS, (11)

where K is the stiffness matrix. Note that we have assumed a linear structure, however, geometric nonlinearities due
to large deformations could also be taken into account within this framework without significant modification.

The equations of motion for an elastic body can be derived using Lagrange’s equations expressed using quasi-
coordinates [17] as follows:

d
dt

(
∂L
∂v0

T
)
+ω

× ∂L
∂v0

T

= fR,

d
dt

(
∂L
∂ω

T
)
+v×0

∂L
∂v0

T

+ω
× ∂L

∂ω

T

= gR,

d
dt

(
∂L
∂ q̇S

T
)
− ∂L

∂qS

T

= f,

(12)

where L is the Lagrangian, L = T −U , and fR, and gR are the total external forces and torques acting on the body
expressed in the body-fixed frame. Finally, f is the consistent force vector acting on the elastic degrees of freedom.
These terms will be described in greater detail below.

The equations of motion can now be derived using the expressions for the kinetic (10), and potential energies (11),
respectively, in combination with the equations of motion in terms of quasi-coordinates (12). This results in the
following two equations for the rigid-body motion:

mv̇0− c×ω̇ +pq̈S +ω
×(mv0− c×ω +pq̇S) = fR,

c×v̇0 +Jω̇ +hq̈S + c×ω
×v0 +ω

×Jω +v×0 pq̇S +ω
×hq̇S = gR,

(13)

while the elastic degrees of freedom are governed by the following equation of motion:

pT v̇0 +hT
ω̇ +Mq̈S +KqS = f. (14)

In addition to the governing equations derived above, it is necessary to integrate the following kinematic equations
to obtain the trajectory of the body:

ṙ0 = CT
biv0,

θ̇ = S−1
ω.

(15)

The governing equations for the single elastic system are the concatenation of the system dynamics (13) and the
kinematic relationships (15). These equations take the form

RR(x, q̈, q̇,q, t) = 0, (16)

which is in the descriptor-system form required by the analysis in Section II.
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B. Dynamics of a multibody system

~FI

~FB

~rB

~rB1

~rB2

Inertial coordinate frame

~rA1

~FA

~FC

~rC2

Coupled multibody system

Rigid kinematic constraints

~rC +~rC2 =~rB +~rB2

~rA~rC

~rA +~rA1 =~rB +~rB1

Note: Constraints imposed in ~FI

Independent dynamics with compatible forces and moments

Point 2

Point 1

Point 1

Point 2

~fBC

~gBC

−~gBC

−~fBC

~gBA

~fBA

−~fBA

−~gBA

Elastic kinematic constraints

Point 1

Point 2

Equations for joint forces/moments and

~gBC = 0

~gBA = 0

relative displacements depend on joint-type

Equations for a spherical joint. There are always 6 equations for each joint.

Joined through
compatibility equations

~FC

~rC2

~FB

~rB1

~rB2

~rA1

~FA

~rC +~rC2 + ~uC2 =~rB +~rB2 + ~uB2

~rA +~rA1 + ~uA1 =~rB +~rB1 + ~uB1

~gBC = 0

~gBA = 0

Topology:
B = {A,B,C}
P = {1, 2}
J = {(A, 1), (B, 1), (B, 2), (C , 2)}
T = {(A,B), (B,C)}

Figure 2: Illustration of the method used to couple the multibody dynamic simulation.

In this work, we obtain the governing equations for a flexible multibody system by splitting the multibody assembly
into isolated components, and restoring compatibility through kinematic constraints imposed through reaction force
and torque pairs. This method is illustrated in Figure 2 for a 3-body problem. In this approach, the degrees of freedom
consist of both the kinematic unknowns for each body, as well as the inter-body reaction force and torque pairs. The
equations for these additional force and torque degrees of freedom are obtained by imposing kinematic constraints on
the relative displacement and rotation between adjacent bodies. These conditions, however, do not produce enough
equations, and therefore we also impose restrictions on the reaction forces and torques. The kinematic and dynamic
constraints always produce 6 equations per kinematic constraint.

Using this approach, the full set of governing equations for the multibody system can be formed by concatenating
the equations of motion for each elastic body (13), and (14), together with the kinematic and dynamic equations for
each kinematic constraints. We describe the details of this approach in the following section.

1. Notation and references frames

Before presenting the equations of motion, we first introduce the notation that we use to describe the topology of the
multibody system, and the coordinate frames that are used to express the vector components.

Within the multibody system shown in Figure 2, each body is assigned an upper-case Latin letter, forming the
set of bodies B = {A, B,C . . .}. Points at which kinematic constraints are created between bodies are enumerated,
forming the set of points P = {1,2,3, . . .}. To distinguish between these two sets, we use lower-case Greek letters to
identify body indices, α ∈B, and lower-case Latin indices to identify points, i ∈P .

The manner in which the bodies within the system are joined together directly impacts the structure of the
governing equations. To define the topological structure of the multibody system, we introduce the set of body-
point pairs J , such that for each member of the set (α, i) ∈J , the body α contains the point i. For instance,
in Figure 2, this set would be J = {(A,1), (B,1), (B,2), (C,2)}. Adjacent bodies can now be defined using the
set J . The topology of the multibody system is reflected in the set of body-body pairs (α,β ) ∈ T , such that
T = { (α,β ) | α 6= β , (α, i) ∈J and (β , i) ∈J for some i }. The set T is the set of pairs of bodies that share a
connecting kinematic constraint.

The equations of motion must be expressed in component form in order to integrate them in time. We define an
inertial reference frame, given by~FI , as well as body-fixed reference frames for each body in the system,~Fα∀α ∈B.
The position of a body-fixed point within each body in the system is expressed in the inertial coordinate system as
follows:

~rα =~FT
I rα .
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In addition, the reaction forces and torques between bodies are expressed in the global frame as follows:
[
~fαβ ~gαβ

]
=~FT

I
[
fαβ gαβ

]
, ∀α,β ∈B,

where~fαβ and~gαβ are the force and torque acting on body α as a result of a reaction from body β , All remaining
vector quantities are expressed in their corresponding body-fixed reference frame as follows:

[
~vα ~ωα ~rα i

]
=~FT

α

[
vα ωα rα i

]
, ∀α ∈B,

where~vα and ~ωα are the velocity and angular velocity of the body α , and~rα i is the position vector from the fixed-
point within the body to a point i ∈P . We also write the mass for each body as mα , and express the inertial properties
cα and Jα in each local body-fixed reference frame. Furthermore, we use the vectors qα

R and qα
S to denote all rigid-

body and elastic degrees-of-freedom, respectively, associated with the body α . The rotation matrix associated with
the α-body is defined as follows:

Cα =~Fα ·~FT
I ,

where Cα , transforms components from the inertial reference frame to the body-fixed frame.
Note that by Newton’s third law, the reaction forces,~fαβ , and torques,~gαβ , satisfy the relationships,~fαβ =−~fβα ,

and~gαβ =−~gβα , respectively. Since both reaction torques and moments are expressed in the inertial reference frame,
~FI , the reaction force vector components the relationship:

fβα =−fαβ , (17)

and likewise, the internal torque components satisfy the relationship:

gβα =−gαβ . (18)

For ease of notation, we define fαα = 0 and gαα = 0.
To reduce the number of degrees of freedom in the governing equations, we select fαβ , gαβ for α < β as the

independent unknowns, and compute the forces, fαβ , and torques, gαβ , for α > β from (17) and (18).

2. Joint compatibility equations

In this section, we present four types of joint that will be implemented within the multibody dynamics code. The four
joint types that we consider are

1. a spherical joint that permits arbitrary rotation about a fixed point;

2. a revolute joint that permits rotation about a single axis at a fixed point.

3. a planar joint that permits arbitrary rotation and translation within a fixed plane; and

4. a prismatic joint that permits deformation along a single axis.

In each case, we formulate six equations for each joint. Some of these equations are trivial, such as zero torque,
gαβ = 0, and could be eliminated from the system of equations. However, treating the joint equations in a uniform
manner has two benefits:

1. the structure of the equations is not affected by complicated joint expressions and relationships, simplifying
internal bookkeeping in the code; and

2. the structure in the equations enables us to use optimized block-specific direct sparse matrix factorization code.

For each joint within the multibody system, we take a body-pair (α,β ) ∈T , and choose an point i ∈P such that
(α, i) ∈J and (β , i) ∈J , and we form a set of equations written as follows:

jαβ (qα
R ,q

β

R ,q
α
S ,q

β

S , fαβ ,gαβ ) = 0, (19)

that describe the kinematics and dynamic constraints that hold at the joint. While the details of the joint equations
depend on the specific joint-type, the general linearization the constraint equations (19) takes the following form:

Jα

αβ
∆qα

R +Jβ

αβ
∆qβ

R +Lαβ

[
∆fαβ

∆gαβ

]
+Mα

αβ
∆qα

S +Mβ

αβ
∆qβ

S . (20)
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We now present the governing equations for each of the four types of joints listed above. Without loss of generality,
we assume that the joint under consideration holds between bodies A and B. Within these equations, we use ek ∈ R3,
for k = 1, . . . ,3 to denote the Cartesian basis. Furthermore, to simplify the presentation, we do not include the effect
of elastic deformation.

Spherical joint The equations for a spherical joint impose the conditions that 1) the bodies are coincident at the joint
location, and 2) the joint cannot transmit a reaction torque. These conditions can be written as follows:

rA +CT
ArA1− rB−CT

BrB1 = 0,
gAB = 0.

Revolute joint For the revolute joint, we impose conditions that 1) the 3-axis for both coordinate frames must be
aligned, that 2) no reaction torque is transmitted about the 3-axis, and 3) the plane of rotation must be equal in
both axes. This can be expressed in the following manner:

rA +CT
ArA1− rB−CT

BrB1 = 0,

eT
3 gAB = 0,

eT
3 CACT

Be1 = 0,

eT
3 CACT

Be2 = 0.

Prismatic joint For the prismatic joint, the two bodies may slide along a common axis without rotation relative to
one another. The constraints are that 1) the rotation matrices CA and CB are equivalent, 2) the displacement in
directions transverse to the 3-axis is zero, and 3) the reaction force along the 3-axis is zero. These criteria can
be written as follows:

eT
k CACT

Bek = 1, k = 1, . . . ,3,

eT
k CA(rA +CT

ArA1− rB−CT
BrB1) = 0, k = 1,2,

eT
3 fAB = 0.

Planar joint The planar joint constrains the two bodies to slide along the plane perpendicular to the 3-axis, passing
through the origin of the fixed point of the body α = A. The constraints are that 1) the relative displacement
along the 3-axis of A is zero, 2) the A and B frames share the same 3-axis, 3) the in-plane reaction force in the
1- and 2-directions is zero, and 4) the reaction torque is zero about the 3-axis. The equations for the planar joint
can be written as follows:

eT
3 CA(rA +CT

ArA1− rB−CT
BrB1) = 0,

eT
3 CACT

Be1 = 0,

eT
3 CACT

Be2 = 0,

eT
1 fAB = 0,

eT
2 fAB = 0,

eT
3 gAB = 0.

Note that these equations are presented in a simplified form, where the joints are constrained to lie in the 3-axis. These
constraints can be easily generalized to arbitrary points and axes within the multibody system.

3. Equations of motion

With these definitions, the equations of motion can now be expressed in the following descriptor form:

R(x, q̈, q̇,q, t)=







Cα ṙα −vα

S(θα)θ̇ α −ωα

mα v̇α − c×α ω̇α +pα q̈α
S +ω×α (mα vα − c×α ωα +pα q̇α

S )−∑β∈B fαβ

c×α v̇α +Jα ω̇α +hα q̈α
S + c×α ωα

×vα +ω×α Jα ωα +v×α pα q̇α
S +ω×α hα q̇α

S −∑β∈B gαβ


 ∀α ∈B

jαβ (qα
R ,q

β

R ,q
α
S ,q

β

S , fαβ ,gαβ ) ∀(α,β ) ∈T

pT
α v̇α +hT

α ω̇α +Mα q̈α
S +Kα qα

S −∑β∈B Qαβ

[
fαβ

gαβ

]
∀α ∈B




= 0.

(21)
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IV. The Krylov-based solution methods
In this section, we outline the solution methods used within the analysis and adjoint-evaluation framework. In

particular, we describe the inexact Newton–Krylov solution method applied at each time-integration step, and the fully-
coupled Krylov solution method used to obtain the adjoint variables. In both cases, we use Krylov subspace methods
to solve the linear systems that are obtained as part of the solution procedure. Implementing an efficient and effective
preconditioning technique is essential when using Krylov methods. In this work, we use a Schur-complement-based
preconditioner for the combined structural and rigid-body degrees of freedom.

The overall efficiency of the simulation and the adjoint method are directly related to the efficiency of the Krylov
methods used to solve the coupled linear systems at each iteration. However, we wish to solve a variety of flexible
multibody problems that utilize different structural models, therefore modularity is a key consideration within this
framework. To adhere to these requirements, we have used an abstract vector class that defines all the vector operations
necessary to implement a Krylov subspace method. This vector class has both structural and rigid-body degrees of
freedom. Since the vectors for structures and dynamics are stored in a native format, no conversion is necessary for
any individual vector operation. This enables a fast and clear implementation within the existing code.

A. The Jacobian of the equations of motion
At each time-step within the analysis, we solve the equations for the k-th time step (3), where the descriptor system is
given by the governing equations (21). To achieve good performance, we use an inexact Newton–Krylov method [2, 5].
To obtain a good starting point at each new iteration, we first extrapolate the solution to the next time based on the
values of the state variables and their time derivatives from the previous step. This extrapolation takes the form:

q0
k = qk−1 +∆tq̇k−1 +

∆t2

2
q̈k−1. (22)

At each iteration of Newton’s method, we solve the linear system (4) inexactly, based on a relative reduction of the
residual [4]. The Jacobian in the Newton system takes the following form:

[
∂R
∂q

+a
∂R
∂ q̇

+b
∂R
∂ q̈

]
y = b.

If the contributions to this equation are separated between rigid and elastic components, this equation becomes:
[

DR +SR SRS
SSR SS

][
yR
yS

]
=

[
bR
bS

]
. (23)

Here the letters D and S, indicate terms from the dynamics or structural degrees of freedom, respectively.
To define all the terms in this matrix, we first define the terms for each body in the multibody system. The Jacobian

of the rigid-body dynamics, DR, is a linear combination of the derivatives of the rigid state variables qR and their first
time derivatives, as follows:

Dα
R =




aCα (Cα ṙα)
×Sα −1 0

0 (Ṡα +(Sα θ̇ α)
×Sα)+aSα 0 −1

0 0 mα(a1+ωα
×) −ac×α +((c×α ωα)

×−mα v×α −ω×α c×α )
0 0 ac×α + c×α ω×α aJα +(ω×α Jα − (Jα ωα)

×− c×α v×α )


 ,

where Cα and Sα are the rotation matrix, and the angular rate matrix, respectively. Each diagonal block is coupled to
adjacent blocks in the multibody system through the force-coupling matrices defined as follows:

Dαβ

R = 0 if(α,β ) /∈T Dαβ

R =




0 0
0 0
−Cα 0

0 −Cα


 if α < β Dαβ

R =




0 0
0 0

Cα 0
0 Cα


 otherwise

The structural matrices in Equation (23), are only calculated on the structural processors. The four matrices
required from each elastic body can be written as follows:

Sα
R =




0 0 0 0
0 0 0 0
0 0 0 −(pα q̇α)

×

0 0 −(pα q̇α)
× −(hα q̇α)

×


 , Sα

RS =




0
0

bpα +aω×α pα

bhα +a(v×α pα +ω×α hα)


 ,

Sα
SR =

[
0 0 apT

α ahT
α

]
, Sα

S = Kα +bMα .
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In our implementation, the matrices SRS and SSR are stored as a series of vectors where only the non-zero vectors are
computed and stored. Note that the matrix SS is a linear combination of the stiffness matrix and the mass matrix.

Finally, the full Jacobian can be assembled by including the linearization of the joint constraint equations (20).
The full Jacobian of the multibody system shown in Figure 2, has the following structure:

DR =




DA
R DAB

R
DB

R DBA
R DBC

R
DC

R DCB
R

JA
AB JB

AB LAB
JB

BC JC
BC LBC




SRS =




SA
RS

SB
RS

SC
RS

MA
AB MB

AB
MB

BC MC
BC




SSR =




SA
SR QAB

SB
SR QBA QBC

SC
SR QCB


 SS =




SA
S

SB
S

SC
S




Note that these matrices exhibit a regular sparsity pattern that can be used to achieve good parallel performance. In
particular, the elastic degrees of freedom are coupled through a block-diagonal matrix, SS, where each block can be
factored independently on different processor groups.

B. Preconditioning methods
The preconditioner for the inexact Newton–Krylov method is obtained from a lagged Schur-complement factorization
of the matrix (23). To compute the Schur-complement, it is necessary to first factor the block matrix associated with
the structural equations, SS. Once the matrix SS is factored, the Schur complement, G, of the structural and rigid-body
degrees of freedom can be computed as follows:

G = DR +SR−SRSS−1
S SRS. (24)

After the Schur-complement, G, has been obtained from (24), the action of the preconditioner, y = M−1
p b, can be

computed as follows:
tS = S−1

S bS,

yR = G−1(bR−SRStS),

yS = S−1
S (bS−SSRbR),

where tS is a temporary structural vector. The preconditioner for the transpose system can also be obtained using a
similar approach. For the transpose system, the action of the preconditioner, y = M−T

p x, can obtained as follows:

tS = S−T
S xS,

yR = G−T (xR−ST
SRtS),

yS = S−T
S (xS−ST

RSyR),

(25)

where the same Schur complement factorization can be used for both the forward and transpose preconditioning
operations.

C. Additional adjoint terms
In addition to solving the adjoint equation (6), it is also necessary to compute the inner product of the adjoint solu-
tion vector with the derivative of the residuals with respect to the design variables. In this section, we outline the
computation of these additional terms that are essential for the total derivative evaluation.

In practice, we subdivide the design variables into two groups: geometric design variables, which modify the
geometry of the problem, and material design variables, which only directly affect the constitutive relationships within
the structural finite-element discretization. We write this partition as:

x =

[
xG
xM

]
(26)

where xG, and xM are the geometric and material, respectively.
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The geometric design variables modify the structural nodal locations XS. As a result, the product of the adjoint
variables with the derivative of the residuals with respect to the geometric design variables has contributions both the
rigid-body degrees of freedom and the elastic degrees of freedom as follows:

λ
T ∂R

∂xG
= λ

T
R

∂RR

∂xG
+λ

T
S

∂RS

∂XS

∂XS

∂xG
(27)

The material design variables, modify both the structural design variables and the inertial constants m, c, and J. As a
result, the derivative with respect to the material design variables can be written as follows:

λ
T ∂R

∂xM
= λ

T
R

∂RR

∂xM
+λ

T
S

∂RS

∂xM
(28)

The total derivative (7) must be evaluated with the inner product of the derivative of the residuals with respect to
the geometric (27), material (27) and initial-condition (27) design variables to obtain an accurate gradient.

V. Results
In the following section, we describe the application of the multibody dynamics framework to a triple pendulum

system, a trebuchet, and a flexible double-plate pendulum. These cases illustrate the proposed framework on simple
multibody dynamical systems.

A. Triple pendulum
In this section, we describe the application of the proposed multibody dynamics framework to a triple pendulum sys-
tem. The triple pendulum system has three bodies which are denoted B = {A, B,C}, and three kinematic constraints
at the points P = {1, 2, 3}, as shown in Figure 3. The body axes are chosen such that one of the orthogonal axes are
aligned with the geometrical dimensions of the body to simplify the calculation of the inertial properties. The bodies
are assumed to have a uniform density. The properties of the bodies and the kinematic constraints are listed in Tables 1
and 2, respectively.

~FA
~FI

~FC

~FB

1

2

3

Fixed spherical joint

Spherical joint

Revolute joint

Figure 3: The schematic of the triple pendulum system.

Table 1: List of bodies in the pendulum system and their properties.

Body Type Mass Length Width Thickness

A Bar 1 1 0.1 0.1
B Bar 2 2 0.1 0.1
C Bar 3 3 0.1 0.1

Each body contributes twelve degrees of freedom to the multibody system resulting from the position vector, ve-
locity, angular velocity and Euler angles. Each kinematic constraint contributes six degrees of freedom corresponding
to the reaction forces and torques. As a result, there are 54 state variables associated with the rigid-body motion of the
triple pendulum.
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Table 2: List of kinematic constraints in the pendulum system and their properties.

Joint Type Components

1 Spherical FI and body A
2 Revolute (hinge) Bodies A and B
3 Revolute (hinge) Bodies B and C

Figure 4 shows the position and orientation of the bodies in the system over the first 3 seconds of motion. The effect
of the revolute joint can be seen where the adjacent bodies in the joint are constrained to rotate about a locally-aligned
axis.

Figure 4: Motion of the triple pendulum over the first 3 seconds.

Figure 5 shows the changes in the potential and kinetic energies of the system over a 10 second time interval.
Since non-conservative forces are not modeled, such as joint friction, the sum of the potential and kinetic energy
should remain constant. Figure 5a clearly illustrates the complementary trend of energy transfer between kinetic and
potential energies. However, the limited numerical accuracy of the time integration scheme introduces an energy
defect that can grow over time. To assess this error, Figure 5 shows the energy loss over the same time period. Note
that over the entire simulation, the energy loss is about 2×10−3 J.

Figure 6 shows a complex-step verification of the adjoint-based gradient evaluation method described above [20,
16]. The verification study compares the derivative of the Kreisselmeier–Steinhauser (KS) function of velocity [14,
12, 10] with respect to a series of design variables consisting of initial configuration variables and inertial properties.
The KS function approximates the maximum velocity achieved over the time interval of the simulation. The complex-
step method does not suffer from subtractive cancellation, which enables the use of very small step sizes, producing
highly accurate gradient estimates. Each component of the gradient exhibits a relative accuracy on the order of 10−12,
illustrating near machine precision accuracy of all gradients.

B. Trebuchet
In the following section, the dynamics of a trebuchet are studied using the multibody analysis framework presented
above.
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Figure 5: Plot of the potential, kinetic and total energies with time for the pendulum system.
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Figure 6: Gradient verification study with the complex-step method using step sizes of 10−4, 10−8, 10−12, and 10−16.

1. Geometry

The trebuchet is made up of five bodies given by B = {A, B,C, D, E}, and five kinematic constraints labeled P =
{1, 2, 3, 4, 5} as shown in Figure 7. The kinematic constraints at points 1, 2 and 3 are chosen to be revolute, while the
other joints at points 4 and 5 chosen to be spherical. Note that the whole trebuchet assembly rotates about the axle at
point 5, which lies to the left of the inertial reference frame~FI and the axis of body B. The body axes are again chosen
to enable convenient calculation of the inertial properties. Table 3 contains the list of bodies and their properties. The
trebuchet arm, body C, is not a uniform geometry and representative values are tabulated. The geometry of the bodies
and their corresponding materials are picked to facilitate the transfer of potential energy of the counterweight to kinetic
energy of the projectile mass. The rigid part of the multibody dynamic system contains 90 unknowns, 60 kinematic
and dynamic variables and 30 unknown internal reaction forces and torques.

Table 3: List of bodies in the trebuchet system and their properties.

Body Name Density Length Width Thickness

A Counter weight 25 4 4 1
B Connecting link 10 0.5 0.5 2
C Arm 2 20 0.5 2
D Projectile link 10−2 0.2 0.5 6
E Projectile 10−2 1 1 1

Figure 8 depicts the motion of the trebuchet system. The trebuchet arm starts from a horizontal orientation and
reaches a near vertical position as it rotates about the axle. Note that the axle is not shown explicitly. The angular
momentum of the swinging motion generated by the counterweight is transferred to the projectile mass through the
arm and projectile link.

Figure 9 shows the kinetic and potential energy in the trebuchet system over the time history of the simulation.
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~FC

~FD

~FB

~FA

~FI

~FE

1

2
5

3

4

Figure 7: The schematic of the trebuchet system.

During the motion, the potential energy of the system, stored primarily in the counterweight is transferred to kinetic
energy. The total energy of the system is conserved, since no non-conservative forces are modeled. The integration
error produces a small change of less than 3× 10−2 J in the total energy in the system, as shown in Figure 9. This
energy loss can be reduced by utilizing a smaller time integration step size.

2. Trebuchet optimization

In this section, we present the results from the optimization of the trebuchet system described above. The objective
of the optimization problem is to maximize projectile range, estimated using the kinematics of the projectile motion
under gravity. The precise release point of the projectile is not calculated. Instead, we use the optimal release point
by taking the maximum of the projectile range if it were released at any time during the entire trebuchet motion. We
estimate this maximum range using the KS function, in a similar manner to the maximum velocity function described
above. We also impose a constraint that the projectile must clear a barrier of specified height at a location down range
along the path of the projectile.

This optimization problem is solved using ParOpt [11], an in-house interior-point optimization algorithm devel-
oped for large-scale optimization problems. The present trebuchet problem consists of six design variables and one
constraint. The six design variables consist of the mass of the different components within the trebuchet system and
an initial condition variable governing the release height of the counterweight.

Figure 10 show the initial and optimized trebuchet designs. Note that the counterweight release height is un-
constrained at the final design point. The release height is selected such that the motion of the counterweight is
synchronized with the arm and projectile motion to achieve maximum velocity at the release point.

C. Flexible double-plate pendulum
In this section, we illustrate the flexible multibody dynamics capabilities of the framework with the simulation of a
flexible double-plate pendulum. This double pendulum system consists of two flexible plates which are free to rotate
about a common connected edge. The double-plate system is also free to rotate about an edge of the root plate that is
fixed in space. In this simulation, both plates consist of a 4×16 mesh of 3rd-order MITC9 elements.

The time history of the motion of the flexible multibody system is shown in Figure 11. The contours illustrate the
bending strain along the axial direction of each plate. The plates are given an initial angular velocity which propels
them upwards from their initial starting configuration before gravity overcomes this initial inertia. During the motion,
the joint between the two plates is evident. No moment is transmitted across this edge, producing an interesting
motion.

VI. Conclusions
Aerospace structures are increasingly lightweight, are subject to dynamic loads, and are often composed of mul-

tiple connected components. To design structures subject to these conditions, we have proposed an analysis method
for coupled flexible multibody dynamic simulations. Our proposed framework provides adjoint-based derivative eval-
uation capabilities that can be used in conjunction with gradient-based design optimization methods. This framework
will be useful for the assessment and design of flexible multibody systems that arise in many aerospace applications.

14 of 17

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d 

by
 G

eo
rg

ia
 I

ns
tit

ut
e 

of
 T

ec
hn

ol
og

y 
on

 M
ay

 1
8,

 2
02

4 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/6
.2

01
6-

19
07

 



Figure 8: Motion of the trebuchet
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(a) Initial design (b) Optimized design

Figure 10: Figure illustrating the initial and final trebuchet designs.

Figure 11: Time lapse of the flexible double-plate pendulum over the time history of the motion.
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