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This paper demonstrates structural sizing optimizations of a fighter wing configuration
in the presence of uncertainties in structural parameters and material properties. The
design variables and input parameters are considered to have uncertainties and are treated
as aleatory and epistemic random variables in the optimization process. The aleatory un-
certainties are quantified and propagated via inexpensive sampling of kriging surrogate
models, whereas the epistemic uncertainties are propagated using a box-constrained opti-
mization approach. The considered loading condition arises from trimmed flight at a 220◦/s
roll maneuver. The resulting designs are shown to be robust against input anomalies to
desired probabilistic levels.

Nomenclature

α aleatory realizations

β epistemic realizations

d vector of design variables

f exact function

f∗ extremum of the function

f̂ surrogate approximated function value

g inequality constraint

g∗ extremum of the constraint

J objective function
dJ
dξ aleatory variable gradient
dJ
dη epistemic variable gradient

M number of variables or dimensions

µ mean

N number of surrogate training points

Ñ number of Monte Carlo samples

n number of exact function evaluations

for box-constrained optimization

Pk probability of constraint satisfaction

σ standard deviation

σ2 variance

ξ aleatory random variables

η epistemic random variables

I. Introduction and Motivation

A systematic definition and inclusion of uncertainties in input parameters at the design stage holds
the key for producing robust and versatile designs. For example, when designing a system such as an
aircraft wing or fuselage, traditionally the structural engineers treat many characteristic random variables
as constants or fixed, in an attempt to simplify the design process or due to the absence of infrastructure
for uncertainty analysis. These random elements influencing the design form a broad spectrum ranging
from material properties, operating conditions to manufacturing tolerances. A conventional optimization
approach assumes all inputs to be precise and known, which naturally leads to a design that exhibits optimal
performance for these exact input settings. Consequently, when such systems encounter off-design conditions,
they tend to show degraded performance or can even fail. For example, when the effects of a likely operating
environment anomaly such as strong turbulence is not considered upfront, the additional stresses generated
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and acting on the wing can potentially compromise the structural integrity. Similarly, head and tail winds
are known to be critical for take-off and landing performance of an airplane. Thus, when a system is designed
allowances must be made to accommodate likely variations in the objective function or constraint values that
can disrupt the nominal performance. In an optimized design, the optimum solution tends to lie either at the
extremum of the objective function or at a constraint boundary.1 Considering the random elements during
the design process, a deterministic optimum can be seen as a vulnerable solution with a large likelihood of
violating the design requirements: even small perturbations in the inputs can lead to poor performance or
failure of the design. To alleviate some of these problems, a factor of safety is traditionally incorporated
into the constraints. The factor of safety serves to move the optimum away from the constraint boundary
by a considerable distance, thereby preventing the design from an imminent failure. However, the designer
assigning a factor of safety can easily overlook the real effects of uncertainties, and create either over- or
under-conservative designs that can lead to weight penalties or vulnerable products, respectively. Moreover,
with the continuous evolution of radically new designs, it is increasingly difficult for a designer to assign
adequate factors of safety.1

The ability to design a system which is less sensitive to randomness in its inputs has, therefore, become the
target of recent research efforts. This is accompanied by the emergence and availability of uncertainty analysis
procedures and computational resources. Uncertainty quantification (UQ) has grown to be a major field of
interest, where the goal is to account for the effect of uncertainties in designs through a modified optimization
process known as optimization under uncertainty (OUU), where the inputs are treated as random variables.
OUU can be subdivided into two fields, namely robust design optimization (RDO) and reliability based design
optimization (RBDO).2–4 Though these two fields share many common attributes, they differ in their key
objectives: RDO techniques minimize the expected mean and variance of the output, whereas the goal of
RBDO is to minimize the probability of failure of the system. This work focuses on methods to produce
robust designs which involves finding an optimum that is less sensitive to input variability in the objective
function or constraint values – as opposed to a deterministic optimum that can exhibit a sharp change in
the objective function value for minor perturbations in the inputs. Usually, a robust optimum is obtained
at the expense of an increased cost function value compared to a deterministic optimum. Some other goals
of OUU are:

• To determine the effects of uncertainties on designs (knowing whether they are robust or vulnerable).

• To identify the limitations of designs and find potential improvements.

• To construct confidence intervals on output quantities that provide valuable information to the designer
(e.g., output means and variances).

• To carry out reliability analysis for certification and quality assurance purposes.

“Quantifying uncertainties” is the key to all the potential outcomes including the ones listed above.
Uncertainties fall into one of two categories, namely aleatory (Type A or reducible) and epistemic (Type B
or irreducible) uncertainties.1,5–9 In recent years, design teams and regulatory agencies are increasingly being
asked to specifically characterize and quantify different types of uncertainties and separate their individual
effects.5–9 The most popular and easiest approach for the propagation of uncertainties is the Monte Carlo
simulation (MCS) (also known as Monte Carlo sampling), where the simulation output is sampled many times
to obtain output statistics or to determine worst case scenarios. However, multiple realizations of the output
functions are not always computationally tractable: for example, high-fidelity physics-based simulations such
as computational fluid dynamics (CFD) or finite element analyses (FEA) can be very time consuming. To
mitigate the problem of exorbitant computational expenses, surrogate models can be constructed to model
the uncertainties. Surrogate models are “an approximate but inexpensive to evaluate” representation of the
expensive output quantity of interest. They can be sampled exhaustively at a cheaper computational cost
to propagate the input uncertainties and determine the output effects. This approach is referred to as the
inexpensive Monte Carlo simulation (IMCS).10 The accuracy of surrogate models is influenced primarily by
the choice of training point locations. Training point selection is typically done using design of experiment
(DoE) techniques: for example, uniform design,11 Monte Carlo (MC),12 latin hypercube (LHS),13 quadrature
nodes,14,15 and low-discrepancy sequences.16 To overcome the difficulties with these methods (e.g., missing
important areas, correlated distributions, poorly conditioned linear systems), the authors have recently
developed a dynamic training point selection strategy that ably chooses training points in regions that are
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most viable to improve the accuracy of the surrogate models (see Boopathy and Rumpfkeil17–19). This
work entails the application of dynamically trained kriging surrogate models for propagating uncertainties
in robust structural sizing optimizations.

Outline of the paper

The remainder of this paper is organized as follows. A detailed discussion of the employed robust optimization
under uncertainty framework is provided in Section II. The structural optimization of the wing of a fighter
airplane is considered as the model application. The current effort focuses on uncertainties of structural and
material origin only – other sources of uncertainties are ignored for simplicity. The setup of the optimization
problem and the results are discussed in Section III. A summary of important observations are furnished in
Section IV.

II. Design in the Presence of Uncertainty

This section provides a detailed discussion of the different stages in optimization under uncertainty,1,5–9

with a greater emphasis on robust optimization than reliability-based optimization. There are three main
stages:

II.A Identification, modeling and representation of uncertainties, to translate the available data into math-
ematical models that are either probabilistic or non-probabilistic in nature.

II.B Propagation of uncertainties using computational models to quantify the impacts on system perfor-
mance.

II.C Formulation and solution of the optimization problem with appropriate objective function and con-
straints to ensure that the optimum solution is robust against input uncertainties.

II.A. Uncertainty Modeling

The modeling of uncertainties begins with the treatment of appropriate inputs as random variables. Uncer-
tainties can be classified as aleatory or epistemic uncertainties.1,5 Aleatory uncertainties are the inherent
randomness or variations in physical systems, inputs or operating environments.5 In other words, the inputs
that fluctuate around some mean value with a known probability distribution can be attributed as aleatory
random variables. They are inherent because they can not be eliminated (but can be modeled). For example,
from a flight operations stand-point, the airline companies possess data for the mean weight and standard
deviation of the passengers and their cargo with prescribed probability distributions. Epistemic uncertain-
ties, on the other hand, arise due to the lack of knowledge or information in any phase or activity of the
modeling process. It is not an inherent property of the system and thus can be eliminated (or converted to
aleatory form) when sufficient data becomes available. Epistemic uncertainties are design inputs which are
specified in the form of bounds or intervals (e.g. manufacturing tolerances, range of temperatures during
atmospheric re-entries). The underlying probability distributions or other statistical parameters within the
interval are unknown.

II.A.1. Probabilistic Modeling

Statistical tools can be used to mathematically model the available data in the form of probability density
functions (e.g. Gaussian, log-normal, exponential). The statistical parameters can either be estimated from
the available data or in some cases assumed. Figure 1 shows an illustration of fitting available angle of
attack information with a normal distribution function. The mean and standard deviation can easily be
estimated from the available data and used to define the probability density function (PDF) mathematically

as: p(ξ) = 1√
2πσ2

e−
(ξ−µ)2

2σ2 . When only limited data is available, it is usually prudent to treat the underlying

random variable as epistemic rather than aleatory.

3 of 20

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d 

by
 G

eo
rg

ia
 I

ns
tit

ut
e 

of
 T

ec
hn

ol
og

y 
on

 M
ay

 1
8,

 2
02

4 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/6
.2

01
5-

09
20

 



Figure 1: An illustration for the use of probabilistic methods for aleatory uncertainty representation. A
histogram of the available angle of attack data (left) is shown with the fitted Gaussian probability density
function (right) whose parameters (µ and σ) are estimated from the available data.

Figure 2: An illustration for interval representation of epistemic uncertainties.

II.A.2. Non-Probabilistic Modeling

The use of probability theory to model the distribution of input uncertainties is not justified, when sufficient
information is unavailable. Under these circumstances, non-probabilistic approaches (e.g. possibility theory,
interval analysis, convex modeling and evidence theory1) can be used for uncertainty modeling. The simplest
non-probabilistic approach is the interval representation of input uncertainties. The input random variable
is represented by the interval [η−, η+], where η− and η+ denotes the lower and upper interval-bounds on the
input random variable, respectively. This scenario is illustrated for a two-variable example in Figure 2. The
random process can take any value within the specified interval, but the underlying probability distribution
is unknown. The goal of the uncertainty propagation via an analysis model (e.g. CFD, FEA) is then to
construct intervals for the output quantities of interest based on the input intervals1 which for non-linear
design spaces is non-trivial.
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II.B. Uncertainty Propagation

The approaches for the propagation of input uncertainties are discussed next. Having quantified the uncer-
tainties, the next task is to model the input–output relationship through numerical methods. The aleatory
variables are denoted as ξ and realizations of aleatory variables from their probability distribution are rep-
resented as α. The epistemic variables are denoted as η and their realizations within the specified interval
are denoted as β.

II.B.1. Propagation of Aleatory Uncertainties

Probabilistic methods which mandate a multitude of realizations are commonly used for computing the
output statistics based on the input probability distributions. In other words, the distribution types of the
input random variables (e.g., α ∼ N (ξ̄,σ2

ξ)) are known, whereas the functional dependence f(ξ) on these
random variables is not known, and are modeled using numerical simulations.

Monte Carlo Simulation: The simplest approach to achieve uncertainty propagation is the Monte
Carlo simulation (MCS). When information such as the mean, standard deviation and PDF of the inputs
is available, the statistics of the output function can be computed using MCS as demonstrated in Figure 3.
In this method, numerous samples (realizations) α(j) are generated from the distribution p(ξ) of the input
random variables and the response function or simulation code is evaluated for these realizations. This leads
to the following estimates for the mean:

f̄ = µf =
1

Ñ

Ñ∑
j=1

f(α(j)), (1)

and variance of the output quantity:

σ2
f = ϑf =

1

Ñ

Ñ∑
j=1

(f(α(j))− f̄)2, (2)

where Ñ is the number of Monte Carlo samples. MCS can be used on any output function f(ξ) and is hence
non-intrusive in nature.

Set of input variables with distributions

10 20 30 40 50 60 70 80 90 100
Output Function

0.00

0.01

0.02

0.03

0.04

0.05

P
D

F

Distribution of the output function

Figure 3: An illustration for modeling the input-output relationship during the propagation of aleatory
uncertainties.

Inexpensive Monte Carlo Simulation: It is well known that repeated evaluations of the exact function,
f(ξ), is prohibitively expensive or impractical most of the times. To mitigate this problem, surrogate models

can be built and inexpensively probed to yield approximated output function values f̂(ξ) for the calculation
of approximate means and variances. The required number of function values (training points) for building
a surrogate is usually much smaller than the number required for statistically converging a Monte Carlo
simulation. In this work, the domain over which the surrogate model is built is taken to be three standard
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deviations in all aleatory input dimensions from the specified mean value i.e., the surrogate domain is:
[ξ̄ ± 3 · σξ]. This implies that for normally distributed input variables more than 99 % of all samples
(aleatory realizations) fall within the surrogate domain and the less accurate extrapolation capabilities of
the surrogate model only need to be employed for a small fraction of the samples. A larger domain can be
specified for the surrogate (e.g. 6σ from mean) to account for even remote possibilities which is recommended
for reliability calculations.

In this work, kriging surrogate models trained using a dynamic framework developed by Boopathy and
Rumpfkeil17,18 are employed for aleatory uncertainty propagation. The employed kriging surrogate models
have the capability to incorporate higher-order derivative information, however, the surrogates here are built
using function values only to reduce the complexity in presenting the results.

II.B.2. Propagation of Epistemic Uncertainties

Epistemic uncertainties represent the lack of knowledge about the appropriate value to use:7 for example,
manufacturers typically provide tolerances in terms of intervals (e.g. ± 0.5 mm for length of a bolt), – but
the exact values are not known and cannot be guaranteed. Here, the goal is to have bounds on the output
quantity of interest or to determine worst case scenarios (e.g., maximum possible constraint violation, least
possible lift), in order to minimize the sensitivity or variation of the design with respect to these uncertainties.
In a situation where only the input intervals I(η) = [η−,η+] = [η̄−τ , η̄+τ ] are known, the above assessment
can be accomplished in a straightforward manner by either one of the two methods discussed below.

Sampling: An extensive sampling of the interval I(η) can be performed and a simple sorting of the
resulting outputs f(η) can be carried out to determine the extreme values (worst and best cases). However,
the computational burden can be prohibitive in the case of high-fidelity physics-based simulations and for
higher-dimensional spaces. As a remedy, a surrogate model can be constructed over the domain I(η) (similar
to aleatory uncertainties), which can then be sampled inexpensively. However, with an increasing number
of input variables, building an accurate surrogate model requires typically thousands of simulation outputs
(referred to as the “curse of dimensionality”) and quickly becomes prohibitively expensive as well. In a real
life problem there are usually more epistemic than aleatory variables, making surrogate building as well as
naive sampling suffer from the “curse of dimensionality”.

Box-Constrained Optimization: Alternatively, box-constrained optimizations (BCO)20,21 can be em-
ployed to find the worst and best behavior of the constraint/objective functions within the specified interval
I(η). A gradient-based BCO scales only mildly with the number of input variables, making it computa-
tionally more attractive than sampling for quantifying the effect of epistemic uncertainties, particularly for
larger problems. In BCO, the problem of finding the extreme value of the function, f∗, (and the constraints,
g∗i ) within the interval I(η) can be cast as follows:

minimize/maximize
β

f = f(η),

subject to β ∈ I(η) = [η̄ − τ , η̄ + τ ].
(3)

In most cases the extremum occurs at either the upper or lower bound of the interval due to the quasi-
linearity of the usually small space described by I(η). Thus, BCO typically takes only about five to ten
simulation output and gradient evaluations to reach f∗ and is used as the method of choice throughout this
work to propagate epistemic uncertainties. An L-BFGS22,23 algorithm which utilizes function and gradient
information is used to solve the BCO problem given by Eq. (3).

Figure 4 illustrates the key differences in the treatment of aleatory and epistemic variables in OUU
problems.

II.B.3. Propagation of Mixed Uncertainties

Table 1 summarizes four methods that can be employed for the propagation of mixed epistemic and aleatory
uncertainties along with their corresponding approximate simulation requirements. The computational re-
quirements can be better interpreted by assuming a typical range of values for: (i) the number of Monte

Carlo sample points (Ñ = 105 − 108), (ii) the number of surrogate training points (N = 50 − 5000), and
(iii) the number of simulation output evaluations (with gradients) for a BCO (n = 10 − 100). The most
straightforward way to propagate mixed uncertainties is to carry out a nested-sampling approach (Method
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Analysis Model
(CFD, FEA)

Aleatory input distributions Output PDF

Epistemic interval bounds

min and max 
values

Figure 4: Figure illustrating the propagation of aleatory and epistemic uncertainties.

Table 1: Methods for optimization under mixed uncertainties along with their simulation requirements per
iteration.

Method Propagation Method No. of Evaluations Total per iteration

Aleatory Epistemic Aleatory Epistemic

1 MCS MCS Ñ1 Ñ2 Ñ1Ñ2

2 MCS BCO Ñ n Ñ · n
3 IMCS IMCS N1 N2 N1 ·N2

4 IMCS BCO N n N · n

1), where for each aleatory random variable realization, α(i), i = 1, 2, . . . , Ñ , drawn from its probability
distribution p(ξ), a Monte Carlo sampling (or LHS for a better search performance) has to be performed over

the epistemic variable realizations β(j), j = 1, 2, . . . , Ñ , to determine the extreme behavior. Method 2 uses
BCO for epistemic uncertainties and is less expensive than Method 1, but can still represent an enormous
computational endeavor for the aleatory uncertainties, and is hence impractical for high-fidelity simulations.
It can be seen that the last two methods employing surrogate models for uncertainty propagation are several
orders of magnitude cheaper. Method 3 turns out to be the cheapest for smaller problems (dimensions less
than or equal to 5), but can easily suffer from the curse of dimensionality and thus lacks robustness, whereas
it can be inferred that Method 4 is still computationally manageable for bigger problem sizes. Thus, this
work employs the IMCS-BCO approach (Method 4) for the propagation of mixed uncertainties in a robust
optimization problem. The employed IMCS-BCO framework has been developed by Lockwood et al.20 and
Rumpfkeil.21 A detailed discussion of the steps involved is given in Subsection II.C.3.

The computational requirements in Table 1 are given for just one iteration of the numerical solution of
the robust optimization problem. If the optimizer requires K iterations to converge, the numerical figure
in the last column has to be multiplied with K to obtain an approximation for the number of simulation
evaluations needed. As a last remark, a deterministic gradient-based optimization requires on the order
of 2K (one function and one gradient evaluation per iteration) simulation output evaluations to reach the
optimum.

In the mixed uncertainty problem, the trial design variable vector d used here is comprised of both
aleatory and epistemic components i.e., d = [ξ̄, η̄], where ξ̄ represents the mean of aleatory uncertainties
and η̄ refers to the midpoint of the epistemic uncertainty bounds. The aleatory uncertainties are assumed
to be statistically independent. Equations for correlated aleatory variables can also be derived; however, the
analysis and resulting equations become more complex24 and are beyond the scope of this work. In addition,
the assumed input standard deviation σ for aleatory variables as well as the upper and lower bounds of the
interval for epistemic variables defined by τ are treated as fixed throughout the optimization for simplicity.
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II.C. Optimization Problem Formulation

II.C.1. Deterministic Optimization

A conventional constrained optimization problem for an objective function, J , that is a function of input
variables, d, state variables, q(d), and simulation outputs, f(d) = F (q(d),d), can be written as:

minimize
d

J = J(f, q,d),

subject to R(q,d) = 0,

g(f, q,d) ≤ 0.

(4)

Here, the state equation residual, R, is expressed as equality constraint, and other system constraints, g, are
represented as general inequality constraints. In the case where the input variables are precisely known all
functions dependent on d are deterministic. However, in the presence of input uncertainties all functions in
Eq. (4) can no longer be treated deterministically.

II.C.2. Robust Optimization

The set up and solution methodologies of the robust OUU problem is discussed next.

Objective Function: A robust objective function, J , can be written in terms of the mean values of the
functional outputs µf∗ and variance σ2

f∗. A robust optimization problem is then given by minimizing the
weighted sum of the extremum of the mean and variance of the function. Mathematically, the objective
function assumes the form:

J = w1µf∗ + w2 σ
2
f∗, (5)

where w1 and w2 are some user specified weights. In this work, the weights w1 and w2 are set to one. The
asterisk (∗) refers to the extremum of the BCO problem.

Constraint Functions: The state equation residual equality constraint, R, is deemed satisfied for all
values of α and β. The inequality constraints can be cast into a probabilistic statement such that the
probability that the constraints are satisfied is greater than or equal to a desired or specified probability, Pk.
The constraints are written as a function of mean values and their standard deviations:25,26

gr(µf∗, σf∗, q, ξ,η) = g(µf∗, q, ξ,η) + kσf∗ ≤ 0, (6)
where k is the number of standard deviations σg∗ that the constraint g must be displaced in order to achieve
the required Pk.

Problem Formulation: Lastly, the deterministic optimization problem given by Eq. (4) can be recast
into a robust design optimization problem24,27 as follows:

minimize
ξ,η

J = J (µf∗, σ
2
f∗, q, ξ,η),

subject to R(q, ξ,η) = 0,

g(µf∗, q, ξ,η) + kσf∗ ≤ 0.

(7)

Optimization Software: The software package IPOPT (Interior Point OPTimizer)28 is used for the
solution of the robust optimization problem given by Eq. (7). IPOPT also allows users to impose actual
bound constraints on the design variables, which can be very helpful in ensuring the robustness of the
simulation output analysis by preventing the exploration of too extreme regions of the design space.

II.C.3. Robust Optimization Framework

The steps involved in robust optimization under mixed uncertainties21 are detailed here (see Figure 5).
As described above, surrogate models are built to propagate aleatory uncertainties and box-constrained
optimizations are used to propagate epistemic uncertainties.
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Design
variable
iterate
d = [ξ̄, η̄]

Choose N surrogate
training locations

{α(1),α(2), · · · ,α(N)} for
aleatory uncertainties

where α(i) ∈ [ξ̄ ± 3 · σξ]

Epistemic uncertainty
β ∈ I(η̄) = [η̄−τ , η̄+τ ]

(α(1),β) (α(2),β) (α(N),β)

BCO
β ∈ I(η̄)

( fixed α(1) )

BCO
β ∈ I(η̄)

( fixed α(2) )

BCO
β ∈ I(η̄)

( fixed α(N) )

(α(1),β∗(1)) (α(2),β∗(2)) (α(N),β∗(N))

Main Optimizer
ξ̄ ∈ [ξ̄min, ξ̄max]
η̄ ∈ [η̄min, η̄max]

f(α(1),β∗(1)) f(α(2),β∗(2)) f(α(N),β∗(N))

Construct
surrogate model

for aleatory
variables only

Monte Carlo
sampling with
α ∼ N (ξ̄,σ2

ξ )

Compute output
statistics (e.g.

mean and variance)

Obtain objective
function &
constraints

1

Figure 5: Framework for robust optimization under mixed epistemic and aleatory uncertainties.

1. Initialize: The main optimizer for the OUU problem (IPOPT) takes a trial design vector d = [ξ̄, η̄] at
each iteration. Based on this design vector, the aleatory surrogate model domain is determined as: [ξ̄±3·σξ].
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Within this aleatory domain, surrogate training locations α(i), i = 1, . . . , N, are selected using the dynamic
training point selection framework.17,18 For the epistemic counterpart of the design vector, the intervals are
determined by I(η) = [η−,η+] = [η̄ − τ , η̄ + τ ].

2. Propagate epistemic effects: For each surrogate training pointα(i), i = 1, . . . , N , a BCO problem is
solved for determining the worst or best epistemic realization β∗(i) within the interval I(η). Mathematically,
this refers to the determination of the extremum f∗ of the output function within the interval I(η):

minimize/maximize
β

, f = f(α(i),β)

subject to β ∈ I(η).
(8)

The aleatory variables remain fixed during the BCO process, while the epistemic variables are allowed to
change within the specified interval. This completes the propagation of epistemic uncertainties. Note that
the BCO problem only needs a few exact function and gradient evaluations to reach the extremum.

3. Obtain surrogate training data: The exact function f(ξ,η) is evaluated at (α(i),β∗(i)), i =
1, . . . , N, and the data is used to train the surrogate model. Note that, if the number of aleatory vari-
ables is large, the surrogate suffers from the curse of dimensionality, i.e., tens of thousands of BCO results
may be required as input training data to the surrogate.

4. Propagate aleatory effects: Once the surrogate model is built using the training data, it can be
probed inexpensively to yield the output statistics of the function (e.g. mean µf∗ and variance σ2

f∗).

5. Update objective/constraints: The aleatory statistics are used to update the objective function
and constraints defined in Subsection II.C.2.

Steps (1) to (5) are continued until meeting a user-specified stopping criteria for the robust optimization
loop, for example, constraint tolerance, design change tolerance and norm of gradient of the function.

II.C.4. Gradient Evaluation

Aleatory Gradients The gradient of the objective function with respect to design variables associated
with aleatory uncertainties (random variables) is given by:21

dJ
dξ

=
∂J
∂µf∗

dµf∗
dξ

+
∂J
∂ϑf∗

dϑf∗
dξ

= w1
dµf∗
dξ

+ w2
dϑf∗
dξ

, (9)

where the mean µf∗ and variance ϑf∗ are computed using the kriging surrogate model. The mean extremum
of the simulation output is approximated as:

µf∗ ≈
1

Ñ

Ñ∑
k=1

f̂∗(αk). (10)

The derivative of the mean extremum with respect to aleatory variables can be calculated as:

dµf∗
dξ
≈ 1

Ñ

Ñ∑
k=1

df̂∗(αk)

dαk
dαk

dξ
=

1

Ñ

Ñ∑
k=1

df̂∗(αk)

dαk
, (11)

where df̂∗(αk)
dαk

can be obtained from the kriging surrogate model. Likewise, the variance and its derivative
can be approximated as follows:

ϑf∗ ≈

 1

Ñ

Ñ∑
k=1

f̂∗
2
(αk)

− µ2
f∗ (12)

dϑf∗
dξ

≈

 2

Ñ

Ñ∑
k=1

f̂∗(αk)
df̂∗(αk)

dαk

− 2µf∗
dµf∗
dξ

. (13)

Epistemic Gradients The gradient of the objective function with respect to design variables associated
with epistemic uncertainties (random variables) is given by:

dJ
dη

=
∂J
∂µf∗

dµf∗
dη

+
∂J
∂ϑf∗

dϑf∗
dη

= w1
dµf∗
dη

+ w2
dϑf∗
dη

. (14)
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In this case, the calculation of
dµf∗
dη and

dϑf∗
dη is not trivial: moving the midpoint of the epistemic intervals

will lead in general to different extrema for the training points and thus to a different surrogate model, which
when sampled provides different values for µf∗ and ϑf∗. In comparison, the aleatory gradient was easy to
obtain because the same surrogate model is used and only the change in sample points (random realizations)
has to be accounted for. In this work the following approximations are used:21

dµf∗
dη

≈ df

dη

∣∣∣∣
(ξ=ξ̄,η=η̄)

and
dϑf∗
dη
≈ 0, (15)

i.e., the derivative of the mean extremum µf∗ with respect to the epistemic variables η, is approximated
by the derivative of the function f with respect to η, evaluated at the mean values of the aleatory variables
and midpoints of the interval for the epistemic variables. Generally, this derivative is non-zero: since for the
epistemic optimizations via BCO, the extreme value is typically encountered at the interval bound. Since
the variances are small in comparison with the mean values, their sensitivities are neglected:

dϑf∗
dη ≈ 0.

III. Wing Optimization

III.A. Analysis Software and Model

ASTROS (Automated Structural Optimization System) is a finite element analysis and optimization soft-
ware developed at the Air Force Research Laboratory for the preliminary design of aircraft structures.29–32

ASTROS has built-in analysis and optimization capabilities, however in this work ASTROS is used only for
structural analysis i.e., it supplies the objective function, constraint values and their corresponding sensi-
tivities to the robust optimization framework described in the previous section. An in-house Fortran-Python
interface is used to obtain these values for the given set of input parameters from the produced CADDB
database.29

Y

X

Z

Y

X

Z

Figure 6: Structural analysis model of a fighter wing used in optimization.

The structural analysis model of a fighter wing is shown in Figure 6. In this work, optimization is
demonstrated for the structural components only; robust aero-structural optimization under uncertainty
falls beyond the scope of this work. The structural components of the wing and their associated finite
element types are listed in Table 2.

For the analyses, trimmed flight at 220◦/s roll maneuver at a Mach number of 0.7 and a dynamic pressure
of 5.86 psi is considered as the loading condition.

III.B. Optimization Problem

The setup of the deterministic optimization problem is described next, followed by the robust OUU problem.
The deterministic objective is to design a minimum weight wing structure by optimizing the thickness/cross-
sectional area of the structural members (listed in Table 2), while meeting user-defined constraints (listed in
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Table 2: Components of the wing analysis model with corresponding element types.

Wing component Element Type Design Variable ID Lower Limit Upper Limit

Connection Rods for
Shear Elements

PROD 1 0.10 in2 10.0 in2

Spars PSHEAR 2, 3, 4, 5, 19, 20, 21, 22 0.25 in 1.50 in

Spar Caps PROD 6, 7, 8, 9, 23, 24, 25, 26 0.10 in2 1.25 in2

Ribs PSHEAR 10 0.25 in 1.50 in

Skins PQDMEM1/
11, 12, 13, 14, 15, 16, 17,
18

0.10 in 1.50 in

PTRMEM1

Table 3). Mathematically, the optimization problem can be written as:
minimize

d
W = W (d),

subject to gdisp =
Z

Zmax
− 1 ≤ 0,

gstress =
Σ

Σmax
− 1 ≤ 0,

dlb ≤ d1−26 ≤ dub,

(16)

where Σ refers to the von Mises stresses and Z refers to the vertical nodal displacements at the aft end of
the wing.

Table 3: List of constraints in the optimization problem.

Constraint Type Description Symbol Quantity Value

Displacement Wing tip (6 nodes)
g1−6

g7−12

Upper limit
Lower limit

+3.0 in
−3.0 in

von Mises Stress Top skins (28) g13−40

Tensile limit(13-21)
Compression limit(22-30)
Shear limit(32-40)

+1.0 · 104 psi
−1.0 · 104 psi
+5.0 · 103 psi

von Mises Stress Bottom skins (28) g41−68

Tensile limit(41-49)
Compression limit(50-59)
Shear limit(60-68)

+1.0 · 104 psi
−1.0 · 104 psi
+5.0 · 103 psi

In the robust optimization problem, the inputs are considered to have uncertainties and are treated as
random variables. The type of uncertainties attributed with these inputs are detailed in Table 4: the struc-
tural entities are assumed to have epistemic uncertainties, whereas the material properties of Aluminum are
assumed to have aleatory uncertainties with Gaussian distributions. Many other input parameters such as
Mach number and roll rate could also be treated as random variables, but they are not considered here for
simplicity. The deterministic problem is transformed into a robust optimization problem by minimizing the

Table 4: Assumed input uncertainties for the wing optimization under uncertainty problem.

Random Symbol Uncertainty Distribution Lower Upper Mean Std. Unit

Variable Type Type Bound Bound Dev.

Skins, spars, spar caps d1−26 Epistemic – -0.025 0.025 – – in

ribs, posts

Young’s modulus E Aleatory Normal – – 107 2.5 · 104 psi

Poisson ratio ν Aleatory Normal – – 0.33 0.033 –

Weight density ρ Aleatory Normal – – 0.10 0.003 lb/in3
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equally weighted sum of mean and variance of the weight, while the constraints are moved user-specified
k-standard deviations away from their mean values (in the direction of decreasing constraint value). Math-
ematically,

minimize J = µW + σ2
W ,

subject to gri = µgi + kσgi ≤ 0, for i = 1, . . . , 68,
(17)

where i refers to the stress or displacement constraints that are listed in Table 3. The total number of
constraints in the optimization problem is 68.

From a robust OUU stand-point, this implies that for each of these constraints and the objective function,
a kriging surrogate model needs to be built (as described in Section II) and sampled to yield the necessary
statistics (output mean and standard deviation/variance) to update Eq. (17).

III.C. Optimization Results

The results of the deterministic and robust wing optimizations are discussed next. A total of 6 cases were
considered: one deterministic and five robust optimizations corresponding to k = 0 , 1, 2, 3, 4, for all of
which IPOPT has been used as the optimization software.

III.C.1. Objective Function

The design variable values at the optimum solution for different optimization cases are listed in Table 5.
One can see a clear difference in the optimized values for the deterministic vs non-deterministic approach
especially for design variables one, ten, thirteen to nineteen, and twenty-three.
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Table 5: The design variable values at the initial and optimum designs.

DV Initial Deterministic k = 0 k = 1 k = 2 k = 3 k = 4

1 5.050 0.617 0.699 0.701 0.704 0.710 0.711

2 0.875 0.252 0.254 0.254 0.254 0.255 0.255

3 0.875 0.250 0.251 0.251 0.251 0.251 0.251

4 0.875 0.252 0.251 0.251 0.251 0.251 0.251

5 0.875 0.260 0.260 0.259 0.258 0.258 0.257

6 0.675 0.104 0.108 0.107 0.109 0.108 0.108

7 0.675 0.100 0.100 0.100 0.100 0.100 0.100

8 0.675 0.102 0.102 0.102 0.102 0.102 0.102

9 0.675 0.104 0.104 0.104 0.104 0.104 0.104

10 0.875 0.354 0.409 0.412 0.413 0.416 0.422

11 0.800 0.111 0.111 0.111 0.111 0.111 0.111

12 0.800 0.128 0.133 0.134 0.134 0.132 0.133

13 0.800 0.342 0.395 0.397 0.397 0.405 0.406

14 0.800 0.386 0.428 0.421 0.413 0.435 0.436

15 0.800 0.166 0.210 0.212 0.213 0.217 0.219

16 0.800 0.265 0.324 0.324 0.325 0.325 0.325

17 0.800 0.519 0.581 0.588 0.594 0.600 0.605

18 0.800 0.405 0.443 0.449 0.458 0.456 0.463

19 0.875 0.276 0.297 0.300 0.304 0.311 0.319

20 0.875 0.257 0.256 0.255 0.254 0.254 0.253

21 0.875 0.324 0.360 0.365 0.366 0.372 0.376

22 0.875 0.316 0.347 0.347 0.349 0.354 0.361

23 0.675 0.332 0.434 0.440 0.451 0.455 0.458

24 0.675 0.101 0.101 0.101 0.101 0.101 0.101

25 0.675 0.104 0.107 0.106 0.106 0.106 0.106

26 0.675 0.113 0.116 0.117 0.118 0.119 0.121

Table 6 compares the objective function values of the deterministic design with those of the robust
designs. By observing the optimum weights, it can be inferred that the robust design is heavier than the
deterministic design, whose percentage increases are given in the last two column. The deterministic design
is feasible and has the lowest cost function value J , but is highly likely to violate one or many of the
stress and displacement requirements, when the parameters are deviant from the expected values because
of uncertainties. This likelihood is reduced for the robust solutions, to probability levels specified in column
Pk, because the thicknesses (area for the first design variable) of the structural design components and their
material properties are treated as random variables upfront and their effects are analyzed within the IMCS-
BCO approach. The penalty for the more robust designs is that the optimizer has to add more weight to the
structure. Note that the fixed weight of the structure which is the part that is not designed, for example,
fuel, payload, tip missile, etc., is not included in the objective function directly and is 24360 lb. Thus, the
total weight is the sum of the objective function and this fixed weight.
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Table 6: Summary of results pertaining to the objective function values for deterministic and robust optima.

Type k Pk µW σ2
W J Total Structural % Increase in % Increase

lb lb lb Weight lb Cost Function Total Weight

Deterministic - - 103.7 - 103.7 24463.7 - -

Robust 0 0.5000 144.3 18.7 163.0 24504.3 39.2 0.166

Robust 1 0.8413 144.8 18.9 163.7 24504.8 39.6 0.168

Robust 2 0.9772 145.4 19.0 164.4 24505.4 40.2 0.170

Robust 3 0.9986 146.0 19.2 165.2 24506.0 40.8 0.173

Robust 4 0.9999 146.5 19.3 165.8 24506.5 41.3 0.175
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Figure 7: PDFs (left) and CDFs (right) of the objective function for different robust cases.
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Figure 8: Plot of change in PDF (left) and CDF (right) of the objective function with the number of optimizer
iterations (k = 4).

Figure 7 depicts the PDF and CDF of the objective function at the optimum design for the five different
robust cases. Figure 8 provides a visualization of the same at different stages (iterations) in the optimization
for k = 4. These PDFs and CDFs can give an idea of the possible spread of values as well as probabilities to
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the designer. Figure 9 shows the optimization convergence history of the objective function. One can notice
the inability of the optimizer to make further progress in the last 10 or so iterations.
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Figure 9: Plot of change in objective function with the number of optimizer iterations.

III.C.2. Constraints

Table 7 provides the list of constraints that are active at the optimum solution out of the total 68 constraints.
These constraints have a greater impact on the design. It can be noticed that the deterministic design has
more active constraints than the robust ones.

Table 7: List of constraints that are active at the optimum solution: |gi| < 10−2.

Opt. Case Deterministic Robust-k0 Robust-k1 Robust-k2 Robust-k3 Robust-k4

# of active 10 1 4 2 1 1

constraints

31,32 57 47,48 32 57 57

List 47,48,49,50 57, 58 57

55,56,57,58

Figure 10 shows the PDF and CDF of selected constraints. The designer can assess the probability that
the given constraint is satisfied from the CDFs as well as the spread of potential outcomes from the PDFs.
The robust optimization tends to move the constraints in the direction of greater constraint compliance,
which can be observed from the plots corresponding to different k values. This helps produce a design that
is less prone to failure due to the effect of uncertainties. The probability that a constraint will be violated for
a design corresponding to k = 0 is 50%, whereas this probability reduces and becomes negligible as k value
increases. The requirement for a greater constraint compliance adds more penalty to the objective function
though, as shown in Table 6. Figure 11 plots the distributions of selected constraints for k = 4 with the
number of optimizer iterations.

Figure 12 compares the nodal displacements for the deterministic and the robust design corresponding to
k = 4. Though displacement constraints did not actively govern the optimization process, it can be inferred
from the figure that the robust design leads to less nodal displacement.

Figure 13 shows the spanwise vertical displacement plotted along the leading and trailing edges of the
wing box. The deterministic design has higher displacement values than the robust one.

III.C.3. Verifications and Computational Cost

Here, verifications for the IMCS-BCO approach are provided by a selective comparison of the k = 4 case
with exact Monte Carlo simulation (MCS) and BCO, i.e., the surrogate models are replaced with exact FEA
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Figure 10: Comparison of PDFs (top) and CDFs (bottom) different robust design for selected constraints.
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Figure 11: Change in PDFs with the number of iterations for selected constraints (k = 4).

solves. Only 10000 Monte Carlo samples are used for this test. For each Monte Carlo sample drawn from
the input aleatory distribution, a BCO problem is solved and statistics obtained are presented in Table 8.
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Figure 12: Nodal displacements in vertical direction for deterministic (left) and k = 4 robust designs (right).
Note that warping has been done for better visualizations with a scale factor of 15.
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Figure 13: Plot of spanwise nodal displacements along the leading (left) and trailing edges (right).

Table 8: Comparison of IMCS-BCO with MCS-BCO for mixed OUU propagation.

Function Simulation µW σ2
W No. of ASTROS

Type calls

Weight IMCS-BCO 405.2625 147.8309 61

MCS-BCO 405.4212 148.1853 31322

Table 9 summarizes the number of FEA solutions (i.e., ASTROS calls) to yield function and gradient
values as needed, as well as the CPU time taken to solve each one of these OUU problems. A total of 69
surrogate models were built in every robust optimization iteration with 20 training points each. A BCO
problem needs to be solved for each training point for the surrogates. Though the number of FEA solutions
are quite high, it is noteworthy that the surrogate models produce sufficiently accurate representation of the
objective function/constraint values, for a fraction of computational cost as shown in Table 8. Without the
use of surrogate models for aleatory uncertainties, a naive MCS would have increased the number of FEA
solves by a factor of Ñ/20.
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Table 9: A comparison of computational cost for robust and deterministic optimizations.

Opt. Case Deterministic Robust-k0 Robust-k1 Robust-k2 Robust-k3 Robust-k4

CPU Hours 0.15 353.3 394.1 343.9 343.5 402.0

Avg. # F/FG - 189 190 189 189 189

per surrogate

(including BCOs)

Avg. # F/FG 69 13010 13073 13020 12998 13011

per OUU iteration

No. of optimizer 26 27 29 26 26 30

iterations

Total # of 1794 351270 379110 338504 337941 390327

F/FG Evals.

IV. Conclusion

This paper demonstrated a robust optimization framework under mixed epistemic and aleatory un-
certainties using surrogate models for an application of interest to aircraft structural engineers. Robust
optimizations were carried-out using the IMCS-BCO framework for different user specified k values (0 to 4)
and the designs were compared with the deterministic solution. The number of function and gradient evalu-
ations needed for deterministic and robust optimizations were included, with an emphasis on computational
savings by the use of surrogate models. Robustness studies in terms of PDFs and CDFs of the objective
function and constraints were presented and discussed. Finally, verifications for the propagation of aleatory
uncertainties were shown by selective comparisons with full Monte Carlo simulations.
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