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A unified framework for surrogate model training point selection and

error estimation is proposed. Building auxiliary local surrogate models

over sub-domains of the global surrogate model forms the basis of the pro-

posed framework. A discrepancy function, defined as the absolute differ-

ence between response predictions from local and global surrogate models

for randomly chosen test candidates, drives the framework – thereby not re-

quiring any additional exact function evaluations. The benefits of this new

approach are demonstrated with analytical test functions and the construc-

tion of a two-dimensional aerodynamic database. The results show that

the proposed training point selection approach improves the convergence

monotonicity and produces more accurate surrogate models compared to

random and quasi-random training point selection strategies. The intro-

duced root mean square discrepancy (RMSD) and maximum absolute dis-

crepancy (MAD) exhibit close agreement with the actual root mean square

error (RMSE) and maximum absolute error (MAE) respectively, and is

therefore proposed as a measure for the approximation accuracy of surro-

gate models in applications of practical interest. Multivariate interpolation

and regression is employed to build local surrogates, whereas kriging and

polynomial chaos expansions serve as global surrogate models in demon-

strating the applicability of the proposed framework.
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Nomenclature

CD Coefficient of drag

CL Coefficient of lift

f Exact function

f̂ Approximated function

∇f̂ Approximated gradients

∇2f̂ Approximated Hessian

M Number of input parameters

M∞ Mach number

N Number of training points for global surrogate model

Ninit Number of initial training points

Ncyc Number of training points added per cycle

Nt Number of nodes in Cartesian mesh

p Order of expansion

T Number of terms in the expansion

u Polynomial chaos coefficients

x Training point location

x∗ Closest training point to a test candidate

α Angle of attack

δ Discrepancy function at a given location

ε Actual error at a given location

ξ Test candidate location

ρ Distance between the test candidate and closest training point

ψ Orthogonal polynomial

Subscripts

(.)global Corresponds to global surrogate

(.)i i-th variable of multidimensional variable (.)

(.)local Corresponds to local surrogate

Superscripts

(.)(j) j-th training point or test candidate

(̄.) Mean of (.)

(̂.) Surrogate approximated value of (.)
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I. Introduction and Motivation

Non-availability of theoretical solutions to many engineering problems as well as the high

expenses associated with performing laboratory testing have caused an increased reliance

upon numerical simulations. Owing to an increasing availability of computational resources

and sophisticated algorithms, numerical methods are extensively used in engineering research

and development to solve many real-life problems. In spite of many advances in computer

hardware and parallel computing, a striking imbalance still exists between the requirements

and availability of computational power. For example, the number of required mesh points

for direct numerical simulations (DNS) scales with Reynolds number as Re9/4, but current

state-of-the-art computing can only support on the order of 109 - 1010 mesh points and

is thus limited to Reynolds numbers of about 10, 000 or so. Other high-fidelity physics-

based simulations, such as large eddy simulations (LES) and unsteady Reynolds-averaged

Navier-Stokes (RANS) computations, can also require significant amount of computational

resources and time. In order to reduce the computational burden from multiple simulations,

e.g. for optimization or uncertainty quantification, surrogate models (also called metamodels

or response surfaces) have been employed by the scientific community. Surrogate models

provide an approximate but inexpensive to evaluate representation of the output quantity

of interest as a function of input variables, and are thus bound to have approximation

errors. The surrogate models considered here are sample-based and not physics-based. Major

research topics that are extensively pursued related to surrogate modeling are discussed in

the following paragraphs (Sections I.A to I.C).

I.A. Choice of training points

The accuracy of a given surrogate model is influenced primarily by the non-linearity of

the function to be modeled and by the choice of training point locations. Training point

selection is typically done using design of experiments (DoE) techniques (e.g. uniform de-

sign [1]). Many other methods, which have been originally developed to approximate multi-

dimensional integrals, are also being used for training data selection for surrogate models.

These include Monte Carlo (MC) [2], latin hypercube (LHS) [3], quadrature nodes [4, 5],

and low-discrepancy sequences [6]. However, these strategies tend to suffer from deficiencies,

such as the exponential growth in the number of required points with dimensionality (e.g.

quadrature nodes), missing important regions by chance (e.g. LHS, MC), poor and correlated

distribution of training points in higher dimensions (e.g. Sobol [7] and Halton [6] sequences),

etc. Apart from having been developed for a different purpose, all of these strategies are

domain-based, i.e., they neither take into account function values nor their non-linearities.

Thus, plenty of research has been conducted to address the aforementioned problems and to
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develop adaptive strategies which consider response values and similar criteria such as the

expected improvement and mean squared error [8–10].

The appropriate choice of training points is an important open research question as

pointed out recently by Roderick et al. [11,12] and Cheng et al. [13]. Appendix A contains a

brief review of some popular methods for training point selection. For a comprehensive review

of these topics the reader is referred to Keane and Nair [14], Arora [15], and Forrester et

al. [16].

I.B. Surrogate model approximation error

Theoretically, the approximation error associated with surrogate models can be quantified

by comparison with the exact function values, by means of computable quantities such as

the root mean square error (RMSE) and L∞-norm. However, in real-life applications, it is

computationally impractical to calculate any of these quantities since they require too many

exact function evaluations. Without having a good measure for the accuracy of surrogate

models, the validity of application results involving surrogate models becomes highly ques-

tionable. In this article a kriging model which finds the best linear unbiased predictor and

minimizes the expected mean squared error (MSE) is employed. One could simply use this

MSE to estimate the approximation error, however, in practice MSE is really much more of

a measure of how well the training points fill the domain uniformly than an actual model

approximation error. Recently, Mehmani et al. [9] proposed a method for the regional error

estimation of surrogates (REES) (see Appendix A.B.3). Other error measurement techniques

include [17]: split sampling, cross validation, bootstrapping and Akaike’s information crite-

rion (AIC) [18]. These error measures either require additional exact function evaluations or

provide limited information regarding the accuracy of surrogates. A brief note on the widely

used cross validation method is provided in Appendix B.

I.C. Curse of dimensionality

The exponential rise in required training data and computational cost as the number of

input dimensions to a surrogate model increases is referred to as the “curse of dimension-

ality”. To address this problem, the introduction of higher-order derivative information

(gradients and Hessian) within surrogate models as additional training data has attracted a

lot of attention. For example, many gradient-enhanced surrogate models have been devel-

oped and have shown very beneficial results [19–22]. This is mainly due to the availability

of computationally efficient and accurate gradient evaluation methods such as the adjoint

formulation [23,24]. The easiest to implement and popular method for obtaining derivatives

is the finite-difference method which is highly sensitive to the choice of step-size as well as
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computationally expensive with increasing number of input dimensions, M . The adjoint

method, on the other hand, provides a more efficient means of calculating the derivative

and features better accuracy. When targeting a single output objective, the effort needed

to compute the full gradient is comparable to the effort needed to compute the function

itself. The main appeal is to use function values and their derivatives for the construction

of surrogate models in higher dimensions, since one can obtain M + 1 pieces of information

for the constant cost of roughly two function evaluations using adjoint techniques.

The ability to compute second-order sensitivity derivatives is also highly desirable for

many science and engineering simulation problems [25–28]. For example, the availability of

Hessian information allows the use of much stronger Newton optimization strategies which

hold the potential for greatly reducing the expense of solving difficult optimization problems.

An efficient Hessian evaluation method has been developed by Rumpfkeil and Mavriplis [29,

30] and using the same logic as above, it is also very promising to utilize Hessian information

within surrogate models in addition to gradients. The Hessian provides M · (M + 1)/2 pieces

of information for roughly the cost of M function evaluations, since, in general, the most

efficient full Hessian constructions require the solution of M forward linear problems (one

corresponding to each input variable) [25, 27, 30]. In summary, when using gradient and

Hessian information, one would compute the output function far fewer times to obtain an

accurate surrogate model thereby reducing the “curse of dimensionality”.

Another promising avenue is the use of variable-fidelity surrogate modeling [19, 31–36],

where one tries to reduce the computational burden by employing a larger amount of low-

fidelity data (e.g. Euler evaluations) in conjunction with a smaller amount of high-fidelity

data (e.g. Navier-Stokes evaluations). This indeed offers a great potential for savings since,

for example, Euler evaluations are 50–100 times cheaper to obtain compared to equivalent

RANS evaluations [37].

Scope and outline of the article

This work aims to provide a better selection strategy for training point locations that are

most viable to improve the accuracy of the surrogate model. It also aims to provide a sur-

rogate model approximation error which is computed in conjunction with the training point

selection process providing a computational advantage. The proposed framework does not

warrant additional exact function evaluations in the process. To show the applicability of

this framework to any surrogate model two different surrogate models are employed, namely

kriging [38] and polynomial chaos expansions [4] (PCE). In the process, the polynomial chaos

is newly enhanced with Hessian information, while a gradient- and Hessian-enhanced kriging

surrogate model is adopted from the literature [22,30]. The process of training point selection

will be discussed with two different scenarios in mind, as pointed out by Roderick et al. [11]:
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(i) selection in the absence of derivative information (function values only) and (ii) selection

in the presence of derivative information (function, gradient and Hessian values). The pro-

posed framework is studied in the context of building globally accurate surrogate models,

whereas the investigation pertaining to its application for surrogate-based optimization is

deferred to future research. The “curse of dimensionality” is not directly addressed here,

although an appropriate choice of training points and the inclusion of derivative information

can help to alleviate some of the computational burden.

The remainder of the article is organized as follows. Section II reviews kriging and poly-

nomial chaos surrogate modeling approaches. A brief note on multivariate interpolation and

regression used to construct auxiliary local surrogate models is also included. Section III

details the proposed dynamic training point selection and error estimation algorithm. Sec-

tion IV presents results for analytical test functions and Section V demonstrates the per-

formance of the framework for the construction of aerodynamic databases of drag and lift

coefficients. Section VI concludes this article.

II. Surrogate Models

In this work, kriging [38] and polynomial chaos expansions (PCE) [11, 12] are employed

as global surrogate models, whereas multivariate interpolation and regression (MIR) [39,40]

is used to build local surrogate models. In the following paragraphs, brief overviews of

kriging and MIR are provided, whereas PCE is discussed in more detail to explain the

newly-developed Hessian enhancement.

II.A. Kriging surrogate models

II.A.1. Original kriging surrogate model

The kriging surrogate model was originally developed in the field of geostatistics by the

South-African mining engineer Danie G. Krige [41]. Kriging was introduced in engineering

design following the work of Sacks et al. [42] and has found a lot of aerospace applications [20,

21, 43, 44]. Kriging predicts a function value by using stochastic processes and has the

flexibility to represent multi-modal and highly non-linear functions. The formulation based

on the conventional “ordinary kriging” model (used here for simplicity of description) is

given by [15],

f̂(x) = µ+ Z(x), (1)

where f̂ is the approximated function value, µ is the constant mean model, and Z(x) rep-

resents a local variation from the mean behavior using a Gaussian process. Kriging uses

spatial correlation between data points within its correlation matrix.
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II.A.2. Enhanced kriging surrogate models

Gradient- and Hessian-enhanced direct as well as indirect co-kriging models have previously

been developed and have shown very beneficial results [19,22,38,45]. In the direct co-kriging

approach, the correlations between gradient and Hessian values are also included in the

correlation matrix as opposed to the original kriging formulation where only the correlations

between function values are considered. The formulation of the indirect co-kriging model is

the same as that of the original kriging model but additional training points are constructed

around a real training point by using Taylor series expansions. The direct approach is

preferable since its correlation matrix has a better condition number and due to the lack of

tunable parameters. Apart from these derivative enhancements, the kriging model has also

been improved through an adaptive training point selection by the authors [46, 47], where

Dutch intrapolation [48, 49] and MIR [39, 40] are used as local surrogate models that guide

the selection of training points for the global kriging surrogate model, forming the basis of

this work which is also extended to PCE in this article. For a more detailed mathematical

background on kriging the reader is referred to Sacks et al. [42] and other articles in the

literature [22,38,45].

II.B. Multivariate interpolation and regression

Multivariate interpolation and regression (MIR) [39, 40] is a surrogate model where each

data point is represented as a Taylor series expansion, and higher-order derivatives in the

Taylor series are treated as random variables. Mathematically, the exact function, f , in an

M -dimensional domain is approximated as [39,40],

f̂(x) =
Nv∑
i=1

avi(x)f̃(xvi) +

Ng∑
i=1

agi(x)∇f̃(xgi), (2)

where Nv is the number of function data points and Ng is the number of gradient data points

(if used). avi and agi are the basis functions of the resulting polynomial. f̃ and ∇f̃ are the

function, f , and gradient values, ∇f , added with their corresponding measurement errors

σvi and σgi (if any). The scheme produces an interpolatory response surface when the data

points are exact, or a regression model if some measurement errors are associated with the

data points.

The main user-specified parameter is the Taylor order, n. The choice of an optimum Tay-

lor order is difficult as it depends on the function to be modeled as well as its dimensionality.

One would expect to improve the accuracy of the model by using a higher Taylor order, but

round-off errors, originating in the solution of the underlying least-squares problem for deter-

mining the coefficients, propagate to the approximated function value via Eq. (2). Therefore,

a higher Taylor order does not always guarantee an improved approximation and it is also
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difficult to know the optimum Taylor order a priori. The reader is referred to Wang et

al. [39, 40] for more details about the model.

II.C. Polynomial chaos expansions

Polynomial chaos expansions (PCE) refer to the polynomial representation of uncertainty

(chaos), where stochastic quantities are represented as spectral expansions of orthogonal

polynomials and can be classified into stochastic Galerkin (intrusive) and stochastic colloca-

tion (non-intrusive) methods. The current work focuses on non-intrusive methods and the

reader is referred to the literature for more details on intrusive methods [4, 5, 50,51].

A non-intrusive polynomial chaos regression procedure developed in Roderick et al. [11,12]

is employed in this work. A truncated spectral expansion of an output function, f , dependent

on a multidimensional random variable x takes the form,

f̂(x) =
P∑
k=0

ukψk(x), (3)

where ψ(x) denotes the selected basis function. This representation or expansion is called

the PCE surrogate model in this work, created by using a polynomial regression and is closely

related [11,12] to polynomial chaos methods such as interpolation [52], collocation [53], and

surface response [54,55]. The random variable x is assumed to be uniformly distributed and

a Legendre basis function is employed in this work since in the absence of any additional

information, uniform prior distribution is among the most reasonable assumptions [11, 56].

A data dependent basis selection has recently been developed in Roderick et al. [12] but not

is used here for simplicity.

The total number of terms in the expansion is given by,

T = P + 1 =
(M + p)!

M !p!
, (4)

where M is the number of input variables and p is the desired polynomial order. Multi-

dimensional orthogonal polynomial bases can be easily obtained through tensorization of

corresponding one-dimensional polynomial bases using a multi-index notation [4, 5, 50, 51],

ψk(x) = ψk(x1, x2, . . . , xM) =
M∏
i=1

ψαk
i
(xi), (5)

where the multi-index αki denotes the order of the one-dimensional polynomial.

II.C.1. Polynomial Regression Procedure

The polynomial regression procedure based on an available set of exact function values is

discussed below.

1. Setting up the linear system: The expansion in Eq. (3) can be written in matrix-
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form as follows.
ψ0(x

(1)) ψ1(x
(1)) · · · ψP (x(1))

ψ0(x
(2)) ψ1(x

(2)) · · · ψP (x(2))
...

...
. . .

...

ψ0(x
(N)) ψ1(x

(N)) · · · ψP (x(N))




u0

u1
...

uP


=


f(x(1))

f(x(2))
...

f(x(N))


(6)

Here, polynomial fitting conditions are enforced at points x(j), j = 1, 2, . . . , N , re-

sulting in a linear system with N equations and T = P + 1 unknown coefficients,

u.

2. Solving the linear system: An interpolation or regression model is formed depend-

ing upon the availability of information. If just enough data is present to solve for T

coefficients (i.e., N = T ), an interpolatory response surface is obtained. To prevent

accidental rank deficiency, an oversampling factor of 2 is recommended in the litera-

ture [51] and is adopted in this work as well. If oversampling (i.e., N > T ) is enforced

the linear system can only be solved in a least-squares sense and the resulting response

surface is a regression model.

3. Evaluating the response surface: Once the coefficients, u, are solved for, the PCE

response surface defined by Eq. (3) is successfully obtained. It can now be used to

obtain the approximated function value at any given location, x. In addition, gradient

and Hessian approximations from the PCE surrogate model at any location are also

readily obtained by differentiating Eq. (3). Mathematically, this is represented by,

∇f̂ =
P∑
k=0

uk
∂ψk(x)

∂x
(7)

and

∇2f̂ =
P∑
k=0

uk
∂2ψk(x)

∂x2
, (8)

where ∂ψk(x)
∂x

and ∂2ψk(x)
∂x2 again involve the multi-index notation given by Eq. (5).

II.C.2. Enhancing PCE with derivative information

Polynomial chaos enhanced with gradient information is shown to produce promising results

to reduce the curse of dimensionality in Roderick et al. [11, 12]. These authors have named

their approach polynomial regression with derivative information (PRD), which is extended

here to incorporate Hessian information. When gradient and Hessian information are in-

cluded, the resulting linear system is generally over-determined and can only be solved in a

least-squares sense resulting in a regression model.
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Augmenting gradient information:

When the linear system in Eq. (6) is augmented with gradient information, each row of the

matrix in Eq. (6) gives rise to M additional rows, where M is the number of components

in x. Thus, if there are N training points the size of the matrix becomes N ′ × T , where

N ′ = N · (1 +M).


ψ0(x

(1)) ψ1(x
(1)) · · · ψP (x(1))

∂ψ0(x(1))
∂x1

∂ψ1(x(1))
∂x1

· · · ∂ψP (x(1))
∂x1

...
...

. . .
...

∂ψ0(x(1))
∂xM

∂ψ1(x(1))
∂xM

· · · ∂ψP (x(1))
∂xM


...




u0

u1
...

uP


=




f(x(1))
∂f(x(1))
∂x1
...

∂f(x(1))
∂xM


...


(9)

The resulting surrogate model matches the function values and their corresponding first-

derivatives in a least-squares sense.

Augmenting Hessian information:

Similarly, the addition of Hessian information increases the size of the matrix to N ′ × T ,

where N ′ = N · (1 +M + M(M+1)
2

).



ψ0(x
(1)) ψ1(x

(1)) · · · ψP (x(1))
∂ψ0(x(1))

∂x1

∂ψ1(x(1))
∂x1

· · · ∂ψP (x(1))
∂x1

...
...

. . .
...

∂ψ0(x(1))
∂xM

∂ψ1(x(1))
∂xM

· · · ∂ψP (x(1))
∂xM

∂2ψ0(x(1))

∂x21

∂2ψ1(x(1))

∂x21
· · · ∂2ψP (x(1))

∂x21
...

...
. . .

...
∂2ψ0(x(1))
∂x1∂xM

∂2ψ1(x(1))
∂x1∂xM

· · · ∂2ψP (x(1))
∂x1∂xM

...
...

. . .
...

∂2ψ0(x(1))

∂x2M

∂2ψ1(x(1))

∂x2M
· · · ∂2ψP (x(1))

∂x2M


...




u0

u1
...

uP


=





f(x(1))
∂f(x(1))
∂x1
...

∂f(x(1))
∂xM

∂2f(x(1))

∂x21
...

∂2f(x(1))
∂x1∂xM

...
∂2f(x(1))

∂x2M


...



(10)

Again, the resulting surrogate model is now required to match the function values and their

corresponding first- and second-derivatives in a least-squares sense.

This discussed approach is non-intrusive as only the right hand side of the equation needs

function, gradient and Hessian values and one can use a black-box approach to obtain them.

10 of 42

American Institute of Aeronautics and Astronautics



III. Proposed Framework

A detailed description of the proposed dynamic training point selection and error esti-

mation framework is provided in this section. The global surrogate model refers to the main

surrogate model that is built over the entire domain of interest whereas the local surrogate

model refers to the ones that are built over sub-domains of the main surrogate.

III.A. Discussion of steps involved

Figure 1 shows a schematic diagram of the algorithm. The steps involved in the process are

Initial set of
training points

Center
of

domain

Few initial
points
by LHS

Evaluate
exact

function

Build global
surrogate

Max points /
Convergence?

Pick random
test candidates

No

Global surro-
gate’s value for
test candidates

Gather existing
data points in the
neighborhood of
test candidates

Build local
MIR surrogate

Local surro-
gate’s value for
test candidates

Compare global
and local sur-
rogate’s values

Sort discrepant
locations
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Figure 1. A schematic diagram of the proposed framework using a local surrogate (MIR)

as follows.

1. Initialization

The exact function (also gradients and Hessian, if desired) is evaluated at the center of the

domain and a few other points picked by LHS, totaling Ninit training points. The choice
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of Ninit is left to the user; however, it is recommended to start with a reasonably small

number depending on the dimensionality and size of the domain and to let the framework

pick additional locations. In this work, for two-dimensional test cases, Ninit has been set to

five for kriging and twelve for PCE, where the latter includes an oversampling factor of two

and the required number of data points to build a second-order accurate PCE (setting p = 2

and M = 2 in Eq. 4). For five-dimensional test cases, Ninit is set to fifty for kriging and

forty-two for PCE.

2. Evaluation of surrogate models

Numerous test candidates, ξ(j), j = 1, . . . , Ntest, are picked throughout the entire domain

via LHS and the following is done with the two surrogates:

(a) Global surrogate: The global surrogate model, which is built from all available training

data, is simply evaluated at all these test candidate locations yielding f̂
(j)
global(ξ), j =

1, . . . , Ntest and the values are stored.

(b) Local surrogate: During the first iteration (selection cycle), only one local surrogate is

built using all availableNinit training data points (making it a “second global surrogate”).

The local surrogate model is also simply evaluated yielding f̂
(j)
local(ξ), j = 1, . . . , Ntest.

During subsequent selection cycles, local surrogate models are rebuilt using Nlocal closest

existing training points for each test candidate ξ(j) to evaluate f̂
(j)
local(ξ).

In practical applications, it is intractable to use the exact function to calculate the root

mean square error of the global (main) surrogate model. A discrepancy function δ(ξ) is pro-

posed as an approximation to the actual error ε(ξ) between the exact function and surrogate

model at any given location ξ and is defined as δ(ξ) = |f̂global(ξ) − f̂local(ξ)|. The under-

lying assumption is that the local surrogate models provide a more accurate representation

of their corresponding sub-domain than the global surrogate model since piecewise approxi-

mations are generally considered to be more accurate for highly non-linear and non-smooth

functions [57, 58]. Though the local surrogate models can be inaccurate in some cases, for

example, due to the scarcity of training data, extrapolations in unbounded space, improper

tuning of the parameters for the local models, etc., they can still serve as reference models

for the global surrogate model. One could also construct multiple local approximations with

yet another local surrogate model (e.g. radial basis functions [59]) in addition to the MIR

local surrogate for added fidelity, but this avenue is not explored in this work.

A root mean square discrepancy (RMSD) for all Ntest test candidates can be defined as,

RMSD =

√√√√ 1

Ntest

Ntest∑
j=1

(f̂
(j)
global − f̂

(j)
local)

2 =

√√√√ 1

Ntest

Ntest∑
j=1

(δ(j))2, (11)
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and can be used as an approximation to the actual root mean square error (RMSE or L2-

norm) of the surrogate model. Similarly, a maximum absolute discrepancy (MAD) defined

as,

MAD = max{|f (j)
global − f̂

(j)
local|} j = 1, . . . , Ntest, (12)

measures the worst discrepancy between the local and global surrogate models and can be

used to emulate the actual maximum absolute error (MAE or L∞-norm).

Remark 1: The data used for building the local surrogate models is a subset of

already available data, f (i)(x), i = 1, 2 . . . , N . Thus, no additional exact function

evaluations are needed for constructing the local surrogates.

Remark 2: Although the number of training points used to build a local surrogate,

Nlocal, can be as high as the number of points used to build the global surrogate, N , it

is recommended to only use an Nlocal that is sufficient to produce a reasonably accurate

local surrogate. Using more points to increase the accuracy of the local surrogate model

will also increase the computational expenses in building and evaluating it. Thus, the

choice of Nlocal is a major heuristic factor in this work. As a rule of thumb, studies

similar to the ones shown in Section III.C can be used to assess the performance of the

local surrogate, or one can simply specify a certain percentage of the global training

data to be used for the local surrogate models. In this work, 5–50 closest existing

data points (depending on the dimension of the problem) are used to build the local

surrogate models.

Remark 3: The user should choose an appropriate number of test candidates, Ntest,

depending on the dimensionality of the design space. For example, one can adopt

heuristics used for Monte Carlo [7] or inexpensive Monte Carlo simulations [35] (IMCS)

from the literature. A larger Ntest facilitates a much wider exploration of the domain

but comes with a higher computational cost. In this work 1,000–25,000 test candidates

are used. Fortunately, building and evaluating the local surrogates can be executed in

parallel. As each test candidate is a potential training point location during the next

selection cycle, these terms will be used synonymously.

3. Selection of training points

Selection is the process that determines whether or not a test candidate becomes a training

point location at which the exact function (gradients and Hessian) is to be evaluated. This

includes the following two steps:
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(a) Sorting the discrepancies: Locations are prioritized based on their calculated discrep-

ancies. A sorted discrepancy function vector contains values in the order of decreasing

discrepancy and is represented as δsort.

(b) Proximity check: The distance, ρ(j), between each test candidate, ξ(j), and its nearest

existing training point, x∗(j), is calculated. Mathematically,

ρ(j)(ξ(j),x∗(j)) = ||ξ(j) − x∗(j)||2, j = 1, . . . , Ntest. (13)

The mean value of all these distances measure the average proximity of a potential

training point (belonging to the set of test candidates) to an existing training point and

is written as,

ρ̄ =
1

Ntest

Ntest∑
j=1

ρ(j). (14)

Now, each test candidate from the ordered set, δsort, starting with the one with the largest

discrepancy is checked for proximity to already existing training points by calculating

whether ρ(j) > cρ̄, where c is a control parameter that can be specified by the user to

relax or strongly emphasize the constraint. In this work c is set to 1.0. If a particular

test candidate passes the check, it is added to the actual set of training points and the

exact function (gradient and Hessian) is evaluated. After every successful selection of a

training point the distances given by Eqns. (13) and (14) are updated.

The proximity check is repeated until Ncyc new training points have been selected at this

iteration. The newly available training data can now be used in subsequent iterations of the

framework to update the surrogate models.

Remark 4: The enforcement of a geometric constraint works under the assumption

that the global surrogate model is sufficiently accurate within cρ̄ distance from an ex-

isting training data point. In other words, the main surrogate does not warrant any

additional training data within this radius, and the exact function can rather be eval-

uated at a more unexplored location. This approach ensures that the training points

are not clustered in one particular region and are sparse in other regions of the domain.

As already mentioned in Section I, each function evaluation can be computationally

very expensive, especially for high-fidelity physics-based simulations, and it is essential

to choose each new training point location effectively.

Remark 5: Due to the enforcement of geometric constraints the framework may not

support fast optimizations as these constraints can prevent the placement of many

training points close to the optimum. Though the framework is recommended for

building globally accurate surrogate models, the geometric constraints do not severely

restrict the applicability to optimizations as they are controllable.
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4. Termination

Steps (2) and (3) are repeated to iteratively update the global and local surrogate models

until any one of the following criteria is satisfied.

(a) Reach desired accuracy: One can either use the the maximum absolute discrepancy

(MAD) and/or root mean square discrepancy (RMSD) to monitor the estimated accuracy

of the current surrogate. An excellent agreement between MAD and MAE as well as

RMSD and RMSE will be shown in Section IV.A. The process of selecting additional

training data can be stopped when a desired accuracy level is reached.

(b) Exhaust computational budget: Usually one works with a specified computational

budget when applying surrogate models to applications of practical interest. Thus, when

a maximum number of exact function (gradients and Hessian) evaluations is reached the

user determines to stop the training point selection process.

Remark 6: One can also use the framework for only surrogate model error estimation

by skipping Step (3).

III.B. Test functions

Eqns. (15), (16) and (17) list the multidimensional exponential, Runge and Rosenbrock test

functions, respectively, that are used for evaluation purposes on a hypercube [−2, 2]M ;

f1(x1, . . . , xM) = e(x1+...+xM ) (15)

f2(x1, . . . , xM) =
1

1 + x21 + . . .+ x2M
(16)

f3(x1, . . . , xM) =
M−1∑
i=1

[
(1− xi)2 + 100(xi+1 − x2i )2

]
(17)

The root mean square error (RMSE) between the exact, f , and approximated function values,

f̂ , calculated on an M -dimensional Cartesian mesh with Nt total nodes is given by,

RMSE =

√√√√ 1

Nt

Nt∑
i=1

(fi − f̂i)2. (18)

The RMSE is calculated on a Cartesian mesh with 10, 201 and 100, 000 nodes for two- and

five-dimensional test cases, respectively.

III.C. Choice for local surrogate model

This section provides guidelines on choosing a good local surrogate model that can guide the

framework effectively. The authors have used dutch intrapolation and MIR as local surrogate

models in their recent works [46,47].
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Figure 2 compares the original kriging and MIR on two-dimensional exponential, Runge,

and Rosenbrock test functions as listed in Section III.B, where all training points are selected

through LHS. The general observation is that MIR approximates all test functions except

Runge better than kriging. The addition of gradient information (labeled FG, continuous

lines) yields better results than the approximation with function values alone (labeled F ,

dotted lines). The reader is referred to Wang et al. [39,40] for a detailed comparison of MIR

with other surrogate modeling methods and higher-dimensional test functions.
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Figure 2. Plots of RMSE of the surrogate versus the number of training points using kriging and MIR for
two-dimensional test functions (from left to right: exponential, Runge and Rosenbrock).

Figure 3 shows the effect of different Taylor orders on the accuracy of the MIR approxi-

mated function value, f̂ . It can be seen that a lower Taylor order, n, such as 1 or 2 produces

a less accurate approximation, whereas a higher n leads to an improved approximation. The

problem with a higher Taylor order is that it increases the computational time in building the

MIR surrogate significantly and there is not an easy way to choose the appropriate Taylor

order a priori. However, it is recommended to use a Taylor order that is equal to the number

of data points (i.e., n = N), or 3N if the data points contain gradient information [39,40].
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Figure 3. Plots of MIR RMSE versus the number of training points for different Taylor orders, n, on two-
dimensional test functions (from left to right: exponential, Runge and Rosenbrock).

Though building the MIR surrogate becomes computationally very expensive with an

increasing number of training points [39, 40], one can infer from Figure 2 that MIR is able

to produce reasonably good surrogates with only a few training points. Hence, one can
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construct cheaper and reasonably accurate local surrogates with MIR and use them to guide

the construction of a global surrogate.

It is generally acknowledged that kriging has the capability to represent multi-modal

functions and can effectively capture non-smooth functions [22]. Moreover, kriging supports

the usage of both high- and low-fidelity training points i.e., one can construct a variable-

fidelity surrogate with kriging [19,31–36]. Due to these reasons kriging is used as the global

surrogate model, whereas MIR is used to guide the training point selection process as well

as to provide a metric for the accuracy of the global surrogate.

IV. Results for Analytical Test Functions

This section details the results obtained using kriging and polynomial chaos expansions

for the analytical test functions listed in Section III.B. The kriging surrogate model employs

the Wendland C4 spatial correlation function [60]. In all comparative studies, the training

data set is forced to include the center of the domain, while all others are either selected

through LHS or dynamically. Whenever plots are shown in a group of three (triplets), the

leftmost, middle and rightmost figures, correspond to the exponential (f1), Runge (f2), and

Rosenbrock (f3) test functions, respectively.

IV.A. Validation of proposed error estimates

Conventional methods such as cross validation [61, 62] (see Appendix B) are being used

for validating the surrogate model. As discussed in Section III.A, the dynamic training

point selection framework also provides an approximate error estimate for the global (main)

surrogate model through the maximum absolute discrepancy (MAD) and the root mean

square discrepancy (RMSD).

IV.A.1. Comparison with actual errors and cross validation

In this section, comparisons of (i) the actual maximum absolute error (MAE or L∞-norm)

and the maximum cross validation error (Max–CVE) with the proposed MAD, and (ii) the

actual root mean square error (RMSE or L2-norm) and mean cross validation error (MCVE)

with the proposed RMSD, are provided. Figures 4 and 5 show results for kriging and PCE,

respectively. Leave-one-out cross validation [61, 62] is employed in this study.

The general observation is that both proposed error measures (MAD and RMSD) feature

an excellent agreement with the actual errors (MAE and RMSE) for all tested cases (expo-

nential, Runge and Rosenbrock functions) and surrogate modeling approaches (kriging and

PCE), with only a few occasional minor differences. This presented behavior shows great
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Figure 4. A comparison of the proposed error measures with actual errors and leave-one-out cross validation
on two-dimensional test functions using kriging.
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Figure 5. A comparison of the proposed error measures with actual errors and leave-one-out cross validation
on two-dimensional test functions using PCE.

promise to validate the surrogate model without warranting exact function evaluations in ap-

plications of practical interest. Cross validation exhibits satisfactory tendencies in matching

the actual errors but its overall performance is more chaotic. For all test cases a maximum of

twenty-five nearest existing training points is used to build local approximations with MIR.

IV.A.2. Comparison with error distributions in the domain

In Figures 4 and 5 quantitative metrics have been used to validate the proposed error es-

timate for surrogate models. This section is intended to provide an insight into the spatial

distribution of the actual error, ε, and the proposed discrepancy, δ. Figures 6, 7 and 8 show

contour plots of the distribution of (i) local surrogate model error, εlocal, (ii) global kriging

surrogate model error, εglobal, and (iii) the proposed discrepancy function, δ, for exponential,

Runge and Rosenbrock test functions, respectively.

The main assumption of the framework has been that the local surrogate models provide

a more accurate representation of their corresponding sub-domain than the global surrogate

model. The local and global surrogate model errors shown in the leftmost and middle contour

plots of Figures 6, 7 and 8 reveal that the local surrogate models are more accurate than the

global surrogate model. For all the cases the local surrogate models use the closest 25 data
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points to predict the function value at a test location. For the Rosenbrock test function (see

Figure 8) the local surrogate is indeed a “second global surrogate model” as all the available

data (25 data points) is used for its predictions.
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Figure 6. Contour plots for the exponential test function showing the distribution of: the local surrogate

model error (left), the global kriging surrogate model error (middle) and the proposed discrepancy function.

The global and local surrogate models are built with 50 and 25 training points (white circles), respectively.
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Figure 7. Contour plots for the Runge test function showing the distribution of: the local surrogate model

error (left), the global kriging surrogate model error (middle) and the proposed discrepancy function. The

global and local surrogate models are built with 75 and 25 training points (white circles), respectively.
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Figure 8. Contour plots for the Rosenbrock test function showing the distribution of: the local surrogate

model error (left), the global kriging surrogate model error (middle) and the proposed discrepancy function.

The global and local surrogate model(s) are both built with 25 training points (white circles).

The differences between the function predictions of the two surrogate models (local and
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global) is proposed as an approximation to the actual error in the global surrogate model as

discussed in Section III.A. From Figures 6, 7 and 8 a close agreement can be noticed between

the global surrogate model’s actual error distribution (middle) and the proposed discrepancy

function (right), which explains the excellent trends shown in Figures 4 and 5. Only for the

Runge function (see Figure 7) can differences be visually seen between the actual error and

the proposed discrepancy function.

Generally, it is possible for the local surrogate models to provide less accurate represen-

tation of the domain, especially when only a few training points are available. Therefore, it

is advisable to use all the available training data to build local surrogate model(s) during

the first few selection cycles. For example, in this work the local surrogate models for the

two-dimensional cases use all the available training data until the size of the training data

set increases beyond 25 after which it is fixed at 25 for computational efficiency purposes.

As a final remark, if one were to continue the training point selection process, the frame-

work would choose points where the discrepancies shown in the rightmost contour plots of

Figures 6, 7 and 8 are large.

IV.B. Number of additional training points per cycle

The proposed dynamic training point selection features a progressive evolution of the training

data set for the global surrogate model. The user provides the number of training points

(Ncyc) to be added at each iteration to the training data set - a factor that determines the

rate at which the training data set is evolved. In the case of PCE, the surrogate is built in

steps of one polynomial order per cycle and the required number of additional points can

be determined from Eq. (4) and the assumed oversampling factor which is two. In the case

of kriging, the choice is left to the user as kriging does not mandate any requirements on

the minimum number of points needed to build the surrogate. It is recommended to add

a moderate number of training points per iteration to facilitate a better evolution of the

training data set. Adding only a few points per cycle implies more computational burden

since the kriging (or any response surface) has to be constructed more often to reach a fixed

number of training points.

Figure 9 shows the effect of the number of training points added per iteration on the

accuracy of the global surrogate for all three analytical test functions in two dimensions.

Since the general monotonic behavior is preserved for all the tested cases (two, five and ten)

and the trade-off with accuracy being small, one may accelerate the process by adding more

training points per cycle. As an exception, for the two-dimensional Rosenbrock test function,

the kriging surrogate model does not present a monotone behavior after reaching about 40

training points. It will be shown later (see Section IV.D.2) that kriging exhibits the same

behavior with all the tested training point selection approaches which is due to the choice
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Figure 9. The effect of the number of training points selected per cycle on the RMSE for two-dimensional
test functions using kriging.

of the spatial correlation function.

IV.C. Training point distribution
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Figure 10. Training point distributions (N = 25) for two-dimensional test functions using LHS (top) and the
dynamic method (bottom).

Figure 10 shows typical training point distributions for all three test functions using LHS

as well as the proposed dynamic method using kriging. In this example, five points were

selected per iteration until reaching the final training data set with 25 points. One can

clearly observe that the dynamic strategy concentrates training points in regions where the

curvature is high, near the peaks and bounds, and in regions where the points are sparse.

For example, the top row of Figure 10 (LHS sampling) has larger unsampled regions in
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the domain than the bottom row (dynamic selection), where the training points are more

spread throughout the domain. Such a strategy can save a lot of computational time when

applied to high-fidelity simulations by reducing the number of required function evaluations

to produce a globally accurate surrogate model. On the other hand, LHS tends to miss

important locations and tends to affect the matrix conditioning through too closely spaced

points.

IV.D. Accuracy of dynamically enhanced kriging surrogate model

A quantitative comparison of the accuracy of the dynamic training point selection enhanced

kriging surrogate model will be provided in the following paragraphs by means of RMSE

comparisons.

IV.D.1. Comparison with low-discrepancy sequences using kriging
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Figure 11. A comparison of dynamic training point selection with some quasi-Monte Carlo sequences and LHS
on two-dimensional test functions using kriging.

The dynamic training point selection is compared with some quasi-Monte Carlo sequences

such as Sobol, Faure, and Halton. LHS is also included in the comparisons to show its per-

formance compared to other strategies. From Figure 11, it can be seen that the dynamic

training point selection is better at producing accurate surrogate models than the other

approaches. As discussed above, for the Rosenbrock test function all training point selec-

tion strategies suffer from poor convergence with kriging due to the choice of the spatial

correlation function.

IV.D.2. Comparison with kriging MSE

The kriging surrogate model provides an error estimate through the expected mean squared

error (MSE). One can use the MSE to guide the training point selection i.e., add training

points at locations where the MSE is large. Figure 12 shows a comparison of kriging surrogate

models built with LHS, built by minimizing MSE and the proposed framework for training
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point selection. For all three test functions, the proposed framework produces more accurate

surrogate models.

Number of Training Points

R
M
S
E

0 25 50 75 100 125 150
10

­3

10
­2

10
­1

10
0

10
1

10
2

LHS

Kriging MSE

Dynamic

Number of Training Points

R
M
S
E

0 25 50 75 100 125 150
10

­4

10
­3

10
­2

10
­1

10
0

LHS

Kriging MSE

Dynamic

Number of Training Points

R
M
S
E

0 25 50 75 100 125 150
10

­2

10
­1

10
0

10
1

10
2

10
3

10
4

LHS

Kriging MSE

Dynamic

Figure 12. A comparison of dynamic training point selection with minimizing the MSE method on two-
dimensional test functions using kriging. LHS is also included to show its relative performance.

For the Rosenbrock function f3, the MSE method features a poor convergence after about

40 training points and is even outperformed by LHS. In order to alleviate the non-smooth

convergence behavior of kriging for the Rosenbrock test function (using LHS, Sobol, Faure,

Halton, MSE, and the proposed framework) other spatial correlation functions have been

employed and the results are displayed in Figure 13. By comparing the rightmost Figure 12
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Figure 13. A comparison of accuracies of the kriging model built with Gaussian (left) and spline (right) spatial
correlation functions for two-dimensional Rosenbrock test function.

(using Wendland C4) with Figure 13 (using Gaussian and spline) it can be noted that spline

spatial correlation functions feature a much smoother convergence when compared to Wend-

land C4 and Gaussian spatial correlation functions. However, since a derivative-enhanced

kriging model is employed in this work, Wendland C4 spatial correlation function [60] is

used as default for the remainder of this article to ensure differentiability. Also, for further

comparisons only LHS will be considered to reduce the complexity in presenting the results.

IV.D.3. Dynamic versus LHS in 2D using kriging

In order to account for the inherent randomness in LHS all two-dimensional results are

averaged over ten separate runs and the mean results are presented with bounds referring
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to the best and worst case.
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Figure 14. Plots comparing training point selections using LHS and the dynamic method on two-dimensional
test functions (with function values only) with kriging. Five training points are selected per cycle.
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Figure 15. Plots comparing training point selections using LHS and the dynamic method on two-dimensional
test functions (with higher-order derivative information) with kriging. Five training points are selected per
cycle.

From Figure 14 one can infer that the dynamic method (shown with continuous lines)

performs better than LHS (shown with dashed lines), both in terms of monotonicity and

accuracy. The dynamic training point selection improves the accuracy of the surrogate by

roughly an order of magnitude when compared to LHS, for the first two test functions. For

the Rosenbrock test function (f3), though not as distinct as for the other test functions, the

lower bounds show that the dynamic method is still more accurate than LHS.

The training point selection in the presence of derivative information is shown separately

in Figure 15. It can be noted that the addition of gradient and Hessian information helps to

improve the accuracy of the response surface for both LHS and the dynamic training point

selection. The dynamic training point selection improves the accuracy even more by placing

the higher-order derivative information in the most viable locations. This behavior can be

observed across all test functions in Figure 15. Also, it can be seen that the LHS Hessian

cases (FGH) of f1 and f3 (Figure 15 left and right, respectively), are not more accurate than

the gradient cases (FG) as one would expect. But with the dynamic method, additional

auxiliary information always improves the accuracy of the surrogate model.
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The smaller bounds on the RMSE for the dynamic method in the figures indicate that it is

less random than LHS implying that only one run is sufficient whereas most random sample

point selection methods require multiple runs to ensure that “bad luck” does not impede

the results. In most instances, the upper bounds of the dynamic method (corresponding to

its worst approximation) are still better than the lower bounds of LHS (corresponding to its

best approximation). Hence one can expect the dynamic training point selection method to

produce more accurate surrogates for a fixed computational budget. The superiority of the

dynamic method over other quasi-Monte Carlo sequences has already been demonstrated in

Figure 11.

IV.D.4. Dynamic versus LHS in 5D using kriging
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Figure 16. Plots comparing training point selections using LHS and the dynamic method on five-dimensional
test functions with kriging. Fifty training points are selected per cycle.

Figure 16 shows the results for five-dimensional test functions. Due to the computational

resources needed to build five-dimensional surrogate models, error bounds are not included.

It can be seen that the dynamic method (shown as continuous lines) helps improve the

accuracy of the kriging surrogate compared to LHS (shown as dashed lines). The advantage of

including derivative information is also more evident for these higher-dimensional test cases.

If the proposed dynamic training point selection (or any response-based method) is used, the

surrogate is built progressively starting from an initial (small) number of training points, to

achieve better accuracy for a fixed computational budget. The cost of building the surrogate

model multiple times can generally be neglected in comparison with the computational cost

of high-fidelity physics-based simulations. If the surrogate construction should become too

expensive, one can accelerate the process by selecting a larger number of additional training

points per cycle for a minimal trade-off with accuracy as demonstrated in Figure 9.
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IV.E. Accuracy of of dynamically enhanced polynomial chaos expansion

Results pertaining to the polynomial chaos expansions are discussed in this section. An

oversampling factor of two is enforced to improve the matrix conditioning. The dynamic

training point selection is initiated by building a second-order accurate PCE including a

training point at the center of the domain. As the order of expansion increases, the required

number of training points are picked dynamically.

IV.E.1. Dynamic versus LHS in 2D using PCE
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Figure 17. Plots comparing training point selections using LHS and the dynamic method on two-dimensional
test functions (function values only) with PCE. The order of expansion, p, ranges from 2 to 11.

Number of Training Points

R
M
S
E

0 15 30 45 60 75
10

­6

10
­5

10
­4

10
­3

10
­2

10
­1

10
0

10
1

10
2

PCE ­ FG ­ LHS

PCE ­ FG ­ DYN

PCE ­ FGH ­ LHS

PCE ­ FGH ­ DYN

Number of Training Points

R
M
S
E

0 15 30 45 60 75
10

­3

10
­2

10
­1

10
0

10
1

10
2

10
3

PCE ­ FG ­ LHS

PCE ­ FG ­ DYN

PCE ­ FGH ­ LHS

PCE ­ FGH ­ DYN

Number of Training Points

R
M
S
E

0 15 30 45 60 75
10

­13

10
­11

10
­9

10
­7

10
­5

10
­3

10
­1

10
1

10
3

10
5

PCE ­ FG ­ LHS

PCE ­ FG ­ DYN

PCE ­ FGH ­ LHS

PCE ­ FGH ­ DYN

Figure 18. Plots comparing training point selections using LHS and the dynamic method on two-dimensional
test functions (with higher-order derivative information) with PCE. The order of expansion, p, ranges from 2
to 12.

Figure 17 compares PCE with LHS (shown as dashed lines) with that of PCE with

dynamic training point selection (shown as continuous lines) for all three test functions,

along with error bounds similar to the results presented for kriging. As one can see, the

convergence behavior of PCE with LHS is chaotic compared to that of the dynamic strategy

which is monotonic instead. Although the rational Runge function (f2) is known to pose

difficulties for PCE [63], the dynamic method shows good convergence whereas LHS shows

very poor results. Note that recently a rational polynomial chaos expansion scheme has

been developed by Sheshadri et al. [63] to address the difficulty of PCE with such functions.

26 of 42

American Institute of Aeronautics and Astronautics



The fourth-order polynomial Rosenbrock function (f3) is captured exactly using only a few

training points, however, it suffers from polynomial over-fitting [64] as the order of expansion

increases further. Overall, the dynamic training point selection consistently produces more

accurate surrogates compared to LHS. Figure 18 shows the improved performance of the

dynamic method for choosing training points that contain gradient (labeled FG) and Hessian

information (labeled FGH). In particular, for the Runge function, the advantage of the

proposed framework is very pronounced.

IV.E.2. Dynamic versus LHS in 5D using PCE
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Figure 19. Plots comparing training point selections using LHS and the dynamic method on five-dimensional

test functions. The order of expansion, p, ranges from 2 to 10.

Figure 19 shows the five-dimensional results. It is again evident that the dynamic method

is more consistent in producing a good PCE surrogate compared to LHS which tends to

show random fluctuations. When the function values alone are used, about 6000 points are

needed for a tenth order polynomial. If gradients are used, only about 1000 data points are

needed with function and gradient information and only about 200 points are required with

function, gradient and Hessian information to roughly obtain the same level of accuracy.

IV.F. Some observations on using higher-order derivatives

The following discussion is aimed at providing guidelines for choosing an appropriate com-

bination of training point selection method and incorporation of higher-order derivative in-

formation. Generally, the use of derivative information provides improved surrogate models

for both kriging and polynomial chaos, irrespective of whether the training points are chosen

dynamically or at random. As discussed in Section I, efficient gradient and Hessian calcula-

tion methods are available for high-fidelity physics-based simulations and they provide the

means to reduce the effects of the “curse of dimensionality”.

Figures 20 and 21 take into account the computational time for calculating the gradient

and Hessian and plot the model accuracy versus the number of equivalent exact function
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Figure 20. RMSE versus the number of equivalent function evaluations for two-dimensional test functions
using kriging and PCE with dynamic training point selection. Reference LHS results with function values only
are shown with dashed and continuous gray lines corresponding to kriging and PCE, respectively.
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Figure 21. RMSE versus the number of equivalent function evaluations for five-dimensional test functions
using kriging and PCE with dynamic training point selection. Reference LHS results with function values only
are shown with dashed and continuous gray lines corresponding to kriging and PCE, respectively.

evaluations for two- and five-dimensional test functions, respectively. For example, the

computational time for evaluating N data points with function values only (F), is the same

as evaluating N
2

points with function and gradient values (FG), which in turn is the same as
N

M+2
points with function, gradient and Hessian information (FGH), using the adjoint method

as discussed in Section I.C, where M is the number of dimensions. From these figures it can

be inferred that the gradient enhanced surrogates are computationally more efficient than

the others. The Hessian enhancement does not yield convincing results, however, one could

choose to use the Hessian information only in specific locations, for example, where data

points are sparsely distributed rather than to add Hessian information to all training points

as done here.

In summary, LHS and some low-discrepancy sequences have been shown to produce

less accurate results than the proposed dynamic method. Additionally, the computational

advantage of building gradient enhanced surrogate models is shown in Figures 20 and 21.

Hence, based on these observations, the dynamic training point selection in conjunction with

the use of gradient information for the construction of surrogate models offers the best of

both worlds.
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V. Aerodynamic Database of Drag and Lift Coefficients

In this section, the benefits of the dynamic training point selection is demonstrated for

an aerodynamic test case. Kriging and polynomial chaos are applied to construct two-

dimensional aerodynamic databases of drag and lift coefficients.

Figure 22. Computational mesh around NACA0012 with 19,548 triangular elements.

The steady inviscid flow around a NACA 0012 airfoil governed by the Euler equations is

solved by using a second-order accurate finite-volume approach [65,66]. The computational

mesh with 19,548 triangular elements is shown in Figure 22. The variations of the drag

and lift coefficients with changes in Mach number (0.5 ≤ M∞ ≤ 1.5) and angle of attack

(0◦ ≤ α ≤ 5◦) are studied. An “exact” database is obtained from Euler flow solves on a

Cartesian mesh of Nt = 51×51 = 2601 equispaced nodes and is used to validate both kriging

and PCE surrogate models.

Figure 23 shows the gradients obtained using a discrete-adjoint approach (demonstrated

to be accurate to machine precision [65,66]) for two typical angles of attack, α = 1◦ and 4◦.

It can be seen that they are quite noisy (due to the transonic behavior of the flux limiters)

and are hence counterproductive in the construction of the surrogate models and will not be

used here.

V.A. Validation of proposed error estimates

V.A.1. Comparison with actual errors and cross validation

In Figures 24 and 25, the proposed error estimates (MAD and RMSD) are compared with

the actual errors (MAE and RMSE) as well as leave-one-out cross validations for kriging and

PCE, respectively. The excellent agreement observed for analytical test functions cannot be
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Figure 23. Noisy gradients for α = 1◦ (left) and α = 4◦ (right).

seen here. This is due to the reason that the kriging excels MIR in approximating the non-

smooth drag and lift functionals, thereby making our initial assumption of a more accurate

local surrogate model invalid. However, when compared to cross validation the proposed

error measures are still much better.
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Figure 24. A comparison of proposed error measures with actual errors and leave-one-out cross validation for
drag (left) and lift coefficients (right) using kriging.

V.A.2. Comparison with error distributions in the domain

Figures 26 and 27 show the distribution of local (left) and global surrogate model error

(middle), along with the proposed discrepancy function (right), for drag and lift coefficients,
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Figure 25. A comparison of proposed error measures with actual errors and leave-one-out cross validation for
drag (left) and lift coefficients (right) using PCE.

respectively, using kriging as the global surrogate model. The regions where the actual errors

are high in the global kriging model (i.e., the transonic regime) are predicted reasonably well

by the discrepancy function, though the magnitudes are quite different. It can also be seen

that the MIR local surrogate models are less accurate than the global kriging model for

the drag and lift coefficients. Another observation that one can make is that the dynamic

training point selection method is adding a majority of the training points in the transonic

region. The kriging MSE minimization approach would not exhibit this behavior since MSE

is a measure of space filling. If one also prefers a better spread of training points, the control

parameter described in Section III.A can be set to a higher value such as 1.1 or 1.2, that

will enforce a more strict geometric constraint, or the vice versa when using the framework

for optimizations (not studied here).
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Figure 26. Contour plots for the drag coefficient showing the distribution of: the local surrogate model error
(left), the global kriging surrogate model error (middle) and the proposed discrepancy function. The global
and local surrogate models are built with 75 and 25 training points (white circles), respectively.
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Figure 27. Contour plots for the lift coefficient showing the distribution of: the local surrogate model error
(left), the global kriging surrogate model error (middle) and the proposed discrepancy function. The global
and local surrogate models are built with 75 and 25 training points (white circles), respectively.

V.B. Construction of aerodynamic database
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Figure 28. Plot of RMSE versus the number of training points for kriging (left) and PCE (right).

Figure 28 compares the performance of the proposed dynamic training point selection

with other DoE methods for kriging (left) and polynomial chaos (right), respectively. Here,

ten separate runs are averaged and the mean, best and worst trends are shown. It can be

seen that the dynamic training point selection performs better than LHS for both surrogate

models and for both functionals. In Figure 28 (left), which corresponds to kriging, min-

imization of MSE is also compared with the other two methods. Though not as distinct

as seen with analytical test functions, it can be observed that the dynamic method is still

consistently more monotonic and accurate. From Figure 28 (right), it can be noticed that

the accuracy of PCE tends to deteriorate with increasing order of the expansion when LHS

is used. However, the dynamic training point selection prevents the early onset of such

behavior.
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Figure 29. Contours of exact database (left), kriging (middle) and PCE (right) for drag (top) and lift coefficients
(bottom) with 30 training points chosen with dynamic training point selection.

Figure 29 shows the exact and surrogate based contours for both the drag and lift coeffi-

cients. It can be inferred that the kriging model shown in the middle column of Figure 29 is

in good agreement with the exact model when compared to PCE which features high over-

and undershoots in the domain as shown in the right column of Figure 29. In addition,

the kriging is able to capture the transonic behavior very well, demonstrating its ability to

model non-smooth functions. Thus, for this test case the kriging proves to be a much better

surrogate model than PCE.

Kriging supports the usage of both high- and low-fidelity training points [19,31–36]. The

general idea is to combine trends from low-fidelity data (e.g., coarser meshes, less sophis-

ticated models) with interpolations of high-fidelity data (e.g., finer meshes, better models,

experimental data). This approach can help to reduce the time taken to build an accurate

surrogate model since the low-fidelity data can be obtained much faster. In this work a simple

cokriging with cross-covariances between the low- and high-fidelity data is used [19,35]. The

low-fidelity data is calculated on a mesh with only 4,433 triangular elements (not shown),

which is roughly four times cheaper to solve than the mesh shown in Figure 22 on which the

high-fidelity data is calculated.

Figure 30 shows the variable-fidelity kriging contours for the drag and lift databases.

Here, 15 high-fidelity and 60 low-fidelity training points were used in the construction of

the kriging surrogate and the training point locations are shown as spheres, where the dark

spheres are high-fidelity training points picked dynamically and the smaller gray spheres
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Figure 30. Kriging contour plots demonstrating the use of variable-fidelity data for drag (left) and lift (right)
coefficients.

are low-fidelity training points picked via LHS. The overall computational cost is roughly

equivalent to the construction of the kriging surrogate model using 30 high-fidelity training

points. One can notice an improvement in capturing the contour levels using the variable-

Table 1. RMSE comparisons for different kriging models

RMSE High-fidelity Variable-fidelity

(30 high-fidelity points) (15 high-fidelity and 60 low-fidelity points)

Drag Coefficient 0.39× 10−2 0.31× 10−2

Lift Coefficient 0.35× 10−1 0.18× 10−1

fidelity kriging by comparing Figures 29 and 30 as well as from Table 1.

VI. Conclusions

A dynamic training point selection framework has been proposed and applied to two dif-

ferent surrogate models: kriging and polynomial chaos expansions. It provides a better choice

of training point locations for both surrogate models since it inherits the characteristics of

both domain- and response-based training point selection methods, i.e., a geometric criterion

is used to spread out the points and the points are chosen based on discrepancies between

local and global surrogate approximated response values. Comparisons with latin hyper-

cube sampling and other domain-based training point selection approaches show that more

monotone convergence behavior and better accuracies are achieved. The dynamic method

does not require extra exact function evaluations and the extra computational overhead of
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building and evaluating local surrogate models is negligible compared to most high-fidelity

physics-based function evaluations.

The framework also addresses the question of training point selection in the presence of

higher-order derivative information: the local surrogate models use the available derivative

information in approximating the function values and influence the training point selection

via the discrepancy function. As a result, it is shown that the dynamic method ably chooses

better locations to evaluate the gradient and Hessian information than LHS. In this process,

PCE has been newly enhanced to incorporate Hessian information. The computational

advantage of using higher-order derivative information for the construction of surrogate

models in conjunction with the proposed training point selection is also discussed. It is

shown that the addition of gradient information offers the highest computational advantage

in the construction of surrogates over its counterparts: function values only, and function,

gradient and Hessian values.

Lastly, the framework also introduces a local as well as global measure of surrogate

model accuracy. The proposed maximum absolute discrepancy (MAD) and root mean square

discrepancy (RMSD) show great promise for measuring surrogate model error in applications

of practical interest where it is intractable to calculate the actual errors (MAE or RMSE).

This is demonstrated by a good agreement between the proposed measures and actual errors

for a variety of analytical test functions and an aerodynamic test case for both surrogate

models.
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A. Training Point Selection Review

The location and number of training points used to construct any surrogate model has

a significant effect on its overall accuracy. Training point selection approaches can be

broadly classified into domain-based and response-based approaches [15]. In domain-based

approaches, training points are chosen based on information available from the domain (e.g.,

distance between two training points), whereas in response-based approaches, the training

points are chosen based on information provided by the surrogate model (e.g., mean squared

error approach). The latter approach was developed to enhance the efficiency of the selection

process by using information from the existing metamodel. For example, in the response-

based approach the user could monitor the progress of the model and choose to stop or

extend the selection process. Domain-based selection is based on space-filling concepts that

try to fill the domain with training points. It is, in general, not possible for the user to select

the number of training points a priori to ensure a given accuracy, due to the non-linearity

of most functions of interest. Following is a brief outline of some important domain- and

response-based approaches found in the literature.

A.A. Domain-based approaches

A.A.1. Monte Carlo

Monte Carlo (MC) techniques [2] are the simplest of all training point selection methods.

Here, a random number generator is used to select training point locations in the domain.

A major drawback of MC is the fact that for a small amount of training points large areas

of the domain may be left unexplored while others may be sampled densely [7, 14,16].

A.A.2. Latin hypercube sampling

Latin hypercube sampling (LHS) was proposed by McKay et al. [3] for designing computer

experiments as an alternative to MC techniques. The basic idea is to divide the range of

each design variable into N bins of equal probability, which yields NM bins in the domain,

where M is the dimension of the problem. Subsequently, N training points are generated

for each design variable such that no two values lie in the same bin (as shown in the left of
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Figure 31). In the middle of Figure 31, one can notice the random fluctuations in the root

mean square error (RMSE) of a generic surrogate model built with training points chosen

by LHS. In spite of increasing the number of training points, the RMSE does not necessarily

decrease, partly because all these points are picked at random. Thus, a superior strategy for

training point selection is required to ensure that the RMSE will reduce when one increases

the number of training points and this has been the major motivation for this research.
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Figure 31. Left: An example of LHS for a two-dimensional domain. Middle: A typical convergence history of
a generic surrogate model using LHS or MC. Right: A Delaunay triangulation example.

A.A.3. Delaunay triangulation

Delaunay triangulation is a geometrical method of training point selection, where the domain

is divided into hyper-triangles and the training points are chosen at some geometrically

significant locations such as the centers of the hyper-triangles and midpoints of the edges as

shown in Figure 31 (rightmost). A major drawback of the Delaunay triangulation is that it

does not scale well to higher dimensions [46].

A.A.4. Quadratures

Quadrature rules determine the nodes (training points) based on the underlying distribu-

tion, e.g., the roots of corresponding orthogonal polynomials. For example, Gauss-Hermite

and Gauss-Legendre quadratures have their nodes distributed at the roots of Hermite and

Legendre polynomials, respectively. Multi-dimensional quadratures are easily obtained using

tensor products of the corresponding one-dimensional quadrature. Though they have been

shown to provide optimal convergence [4, 5] for certain applications, they become compu-

tationally intractable for higher dimensions as they need (P + 1)M function evaluations in

M -dimensions. Though efforts have led to the development of sparse grid quadratures (e.g.,

Smolyak sparse grids) these still suffer from high computational cost requirements in higher

dimensions. Moreover, sparse grids tend to need smoother functions for good results as they
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involve extrapolations.

A.B. Response-based approaches

Response-based methods are adaptive (or dynamic) methods that are built progressively

starting from an initial number of training points.

A.B.1. Sequential response surface

Jones et al. [67] proposed a sequential response surface methodology which starts with a

small number of training points and adds additional training points at locations where the

standard error is high. During this process, the training point set is updated, the metamodel

is reconstructed, and the process of choosing new additional training points is continued until

the expected improvement from new training points has become sufficiently small.

A.B.2. Trust-region method

Alexandrov et al. [10] proposed a metamodel management framework using a trust-region

method for updating metamodels according to the improvement of the objective function

during an optimization procedure.

A.B.3. Regional error estimation

Mehmani et al. [9] developed a new methodology to quantify the surrogate error in different

regions of the domain, which is called the regional error estimation of surrogates (REES)

method. The REES method provides a model independent error measure that does not re-

quire any additional function evaluations. It works roughly as follows: after segregating the

domain into sub-spaces (or regions) variation of the error with sample points (VESP) regres-

sion models are constructed to predict the accuracy of the surrogate in each subspace. These

regression models are trained by the errors (the mean and the maximum error) evaluated

for the intermediate surrogates in an iterative process. At each iteration, the intermediate

surrogate is constructed using different subsets of training points and tested over the re-

maining points. Their results indicate that the REES measure is capable of evaluating the

regional performance of a surrogate with reasonable accuracy and that one could use this

error estimate to guide a surrogate-building process.

B. Cross Validation

Cross validation [61, 62] is a popular method to estimate a surrogate model’s accuracy

which does not mandate any additional function evaluations.
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B.A. k-fold cross validation

In k−fold cross validation the data set is divided into k disjoint subsets and the surrogate

model is constructed using the union of k− 1 subsets and points from the left out subset are

used to find the cross validation error (CVE). The entire procedure is repeated k times, each

time with a different subset left out for validation. Thus, the entire data is used for training

as well as validation. The average error across all k trials can be computed as mean cross

validation error (MCVE) and one can also compute the maximum cross validation error.

B.B. Leave-one-out cross validation

If the number of subsets, k, is equal to the total number of training points, N , then the

approach is termed leave-one-out cross validation. In this case the surrogate model has to

be reconstructed N times using N − 1 training points each time.
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