
Robust Optimizations of Structural and Aerodynamic

Designs

Komahan Boopathy ∗

University of Dayton, Ohio, 45469, USA

Markus P. Rumpfkeil †

University of Dayton, Ohio, 45469, USA

This paper demonstrates the use of polynomial chaos and kriging surrogate models,
which are enhanced with a dynamic training point selection framework, for the propaga-
tion of mixed epistemic and aleatory uncertainties in robust optimization problems. The
selection of training points for the two surrogate models is guided by local surrogate models
(multivariate interpolation and regression) which are built using a subset of the available
training data. The aleatory uncertainties are propagated via extensive sampling of the sur-
rogate models, whereas the epistemic uncertainties are propagated using a box-constrained
optimization approach. Robust optimizations are demonstrated for two structural and one
aerodynamic test problem. The structural test cases include designing a three-bar truss and
a cantilever beam, whereas the aerodynamic test case involves the robust lift-constrained
drag minimization of an airfoil under transonic flow conditions.

Nomenclature

α angle of attack

β epistemic realizations

α aleatory realizations

d vector of design variables

µ mean

σ standard deviation

σ2 variance

Ñ number of Monte Carlo samples

ξ aleatory random variables

η epistemic random variables

CD drag coefficient

CL lift coefficient

f exact function
dJ
dξ aleatory variable gradients

dJ
dη epistemic variable gradients

f∗ extremum of the function

Fs factor of safety

g inequality constraint

g∗ extremum of the constraints

M number of variables or dimensions

M∞ Mach number

N number of surrogate training points

n number of exact function evaluations

for box-constrained optimization

p(ξ) probability distribution

Pk probability of constraint satisfaction

J objective function

f̂ surrogate approximated function value

I. Introduction and Motivation

When designing a system uncertainties associated with the inputs lead to uncertainties in the output
quantities of interest. Some of the common sources of uncertainties are geometrical, modeling (physics,
turbulence models), parametric (model parameters), operating environment, boundary conditions, and so
on. A deterministic optimization approach assumes no variations in the design variables and other parameters
i.e., all the inputs are assumed to be precise which produces a deterministic output. In reality, this can easily
lead to sub-optimal performance or failure of many deterministically optimized designs. For instance, when
an aircraft designed to cruise at specific optimal settings (e.g. Mach number, angle of attack, shape) deviates
from these settings (e.g. due to continuous wind gusts, ice accumulation, faulty calibration of instruments,
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wear and tear) the flight performance can be adversely affected leading to an increased fuel burn or other
undesirable characteristics. Therefore, when a system is designed allowances must be made to accommodate
likely variations that can disrupt the nominal performance. When such variations or uncertainties are not
accounted for in the design process (as in the case of a deterministic optimization practice), a degraded
performance of the optimized design is inevitable.

In a heavily optimized design, the optimum solution tends to lie either at the extremum of the objective
function or at a constraint boundary.1 Considering the random elements during the design process, a
deterministic optimum is a vulnerable solution with a greater likelihood of violating the design requirements:
even small perturbations in the input can lead to a poor performance or failure of the design. To alleviate
some of these problems, a factor of safety is traditionally incorporated into the constraints. The factor of
safety serves to move the optimum away from the constraint boundary by a considerable distance, thereby
preventing the design from an imminent failure. However, the reality is that the designer assigning a factor
of safety is seldom aware of the real effects of uncertainty and predominantly produces either over- or under-
conservative designs leading to weight penalty or vulnerable products, respectively. With the continuous
evolution of radically new types of design, it is increasingly difficult for a designer to assign an adequate
factor of safety.1

The ability to design a system that is less sensitive to variations of the input variables is thus far beyond
the control of the designer, as stated by Genichi Taguchi,1 and has therefore become the target of recent
research efforts with the emergence and availability of uncertainty analysis procedures and computational
resources. Uncertainty quantification (UQ) has grown to be a major field of interest, where the goal is to
account for the effect of uncertainties on designs, through a modified optimization process known as optimiza-
tion under uncertainty (OUU), where the inputs are treated as random variables. OUU can be subdivided
into two fields as robust design optimization (RDO) and reliability based design optimization (RBDO).2–4

Though these two fields share many common attributes, they differ in their objectives: RDO techniques are
used to produce a design that is more robust (less sensitive) to design parameter anomalies, whereas the
goal of RBDO is to minimize the probability of failure of the system. Robust optimization minimizes the
expected mean and variance of the output. This work focuses on methods to produce robust designs which
involves finding an optimum that is less sensitive to input variability, as opposed to a deterministic optimum
that can exhibit a sharp change in the objective function value for minor perturbations in the inputs.
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Figure 1: An illustration for the sensitivity of optimum designs to input variations.

Usually, a robust solution is obtained at the expense of an increased cost function value1 as illustrated
in Figure 1. Some of the main goals in OUU are listed below:

• To determine the effects of uncertainties on designs (knowing whether they are robust or vulnerable).

• To identify the limitations of designs and find potential improvements.
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• To construct confidence intervals on output quantities that provide valuable information to the designer
(e.g., output means and variances).

• To carry out reliability analysis for certification and quality assurance purposes.

“Quantifying uncertainties” is the key to all the potential outcomes including the ones listed above. Un-
certainties fall into one of two categories; namely aleatory (Type A or reducible) and epistemic (Type B or
irreducible) uncertainties.1,5–9 In recent years, design teams and regulatory agencies are increasingly being
asked to specifically characterize and quantify different types of uncertainties and separate their individual
effects.5–9 The most popular and easiest approach for the propagation of uncertainties is the Monte Carlo
simulation (MCS), where the simulation output f is sampled many times to obtain output statistics or
to determine worst case scenarios. However, multiple realizations of the output function f are not always
computationally tractable; for example, high-fidelity physics-based simulations such as computational fluid
dynamics (CFD) or finite element analyses (FEA) can be very time consuming.

To overcome the problem of exorbitant computational expenses, surrogate models can be constructed to
model the uncertainties. Surrogate models are an approximate but inexpensive to evaluate representation
of the output quantity of interest. They can be sampled exhaustively at a cheaper computational cost to
propagate the input uncertainties and determine the output effects. This approach is referred to as the in-
expensive Monte Carlo simulation (IMCS).10 The accuracy of surrogate models are influenced primarily by
the choice of training point locations. Training point selection is typically done using design of experiments
(DoE) techniques; for example, uniform design,11 Monte Carlo (MC),12 latin hypercube (LHS),13 quadrature
nodes,14,15 and low-discrepancy sequences.16 To overcome the difficulties with these methods (e.g. missing
important locations, correlated distributions, poorly conditioned linear systems) and to put the expensive
surrogate training information to good use, the authors have recently developed a dynamic training point
selection strategy that ably chooses training points in regions that are most viable to improve the accuracy
of the surrogate models (see Boopathy and Rumpfkeil17–19). This work entails the application of the dynam-
ically trained kriging and polynomial chaos (PC) surrogate models for propagating uncertainties in robust
optimizations.

Outline of the paper

The remainder of this paper is organized as follows. Section II reviews practices for uncertainty analysis and
provides a detailed account of the framework for robust optimization under mixed epistemic and aleatory
uncertainties which is employed here. Sections III and IV discuss the results for a three-bar truss and can-
tilever beam design problem, respectively. Section V discusses the robust lift-constrained drag minimization
of an airfoil and Section VI summarizes the results.

II. Design in the Presence of Uncertainty

This section provides a discussion of the different stages in optimization under uncertainty.1,5–9

1. Identification, modeling and representation of uncertainties to translate the available data into math-
ematical models that are either probabilistic or non-probabilistic in nature,

2. Propagation of uncertainties through computer models to quantify their impact on system performance,

3. Formulation and solution of an optimization problem with appropriate objective and constraint func-
tions ensuring that the optimum solution is robust against variations.

II.A. Uncertainty Modeling

The modeling of uncertainties begins with the treatment of inputs as random variables. Uncertainties can
be classified as aleatory and epistemic uncertainties.1,5 Aleatory uncertainties are the inherent randomness
or variation in a physical system, input parameters and variables, or operating environment.5 For example,
operating conditions are predominantly dissimilar to the ones used in design calculations and typically
fluctuate around some mean value. Epistemic uncertainties arise due to the lack of knowledge or information
in any phase or activity of the modeling process. It is not an inherent property of the system and thus
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can be eliminated (or converted to aleatory form) when sufficient data becomes available. As an example,
situations can arise where only the bounds or intervals of the uncertain random variables are known (e.g.
manufacturing tolerances) whereas the underlying probability distribution or other statistical parameters
within the interval are unknown (unlike aleatory random variables).

II.A.1. Probabilistic Modeling
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Figure 2: An illustration for the use of probabilistic methods (aleatory uncertainty representation). A
histogram of the available angle of attack data (left) is shown with the fitted Gaussian probability density
function (right) whose parameters (µ and σ) are estimated from the available data.

The use of probabilistic methods to model uncertainties is possible when sufficient data is available.
When field data is available a probability density function can be fit to the available data. Alternatively,
a distribution function (Gaussian, log-normal, exponential, etc.) can be assumed and its parameters can
be estimated from the available data. Figure 2 shows an example of fitting the available angle of attack
information to a normal distribution function. The mean and standard deviation are estimated from the
data and can be used to define the probability density function (PDF) of the random variable as p(ξ) =

1√
2πσ2

e−
(ξ−µ)2

2σ2 (Gaussian PDF). The angle of attack (and similarly any other variables) can now be treated

as random variable in optimization formulations.
Distributions should be assumed with caution when only limited data is available to the designer for

assessment.1 For example, a normal distribution can not be assumed for Young’s modulus, as a Gaussian
distribution supports [−∞,+∞] and a zero probability would mean a negative Young’s modulus which
is unrealistic. In reliability calculations, the probability of failure is estimated near the tail end of the
distribution, which can be very erroneous if a wrong distribution structure is assumed.

II.A.2. Non-Probabilistic Modeling

The use of probability theory to model the distribution of input uncertainties is questionable when not
enough information is available. This naturally leads into non-probabilistic approaches such as possibility
theory, interval analysis, convex modeling and evidence theory.1 The simplest non-probabilistic approach
is perhaps the interval representation of input uncertainties. The input random variable is represented by
the interval [η−, η+] where η− and η+ denote the lower and upper bounds on the input random variable,
respectively. This scenario is illustrated with a two-variable example in Figure 3. The random process can
take any value within the specified interval but the underlying probability distribution is unknown. The
input bounds need to be processed into the analysis model to construct bounds on the output quantity of
interest.1

In summary, probabilistic approaches are apt for modeling aleatory uncertainties featuring an abundance
of data and non-probabilistic approaches are suitable for epistemic uncertainties suffering from a data scarcity.
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Figure 3: An illustration for the bounds on input variables (epistemic uncertainty representation).

II.B. Uncertainty Propagation

In this section, approaches for the propagation of input uncertainties are discussed. The goal is to quantify the
uncertainties and model the input–output relationship through numerical methods. The aleatory variables
are denoted as ξ and realizations of aleatory variables from their probability distribution are represented as
α. The epistemic variables are denoted as η and their realizations within the specified bounds are denoted
as β.

II.B.1. Propagation of Aleatory Uncertainties

Sufficient input data is generally available for the analysis of aleatory uncertainties. Thus, probabilistic
methods which mandate multitude of realizations are commonly used for computing the statistics based on
the input probability distribution. In other words, the distribution type of the input random variables (e.g.
α ∼ N (ξ̄,σ2

ξ)) are known, whereas the functional dependence f(ξ) on these random variables is not known,
and are modeled using numerical simulations.

Monte Carlo Simulation: The simplest approach to achieve uncertainty propagation is the Monte
Carlo simulation (MCS). When information such as the input mean, standard deviation and PDF of design
variables and other parameters (collectively known as inputs) are available, the statistics of the output
function can be computed using MCS. In this method, numerous samples (realizations) α(j) are generated
from the distribution p(ξ) of the input random variables and the response function or simulation code is
evaluated. This leads to the following estimates for the mean:

f̄ = µf =
1

Ñ

Ñ∑
j=1

f(α(j)), (1)

and variance of the output quantity:

σ2
f = ϑf =

1

Ñ

Ñ∑
j=1

(f(α(j))− f̄)2, (2)

where Ñ is the number of Monte Carlo samples. MCS can be used on any output function f(ξ) and is hence
non-intrusive in nature.

Inexpensive Monte Carlo Simulation: It is well known that repeated evaluations of the exact function,
f(ξ), is prohibitively expensive or impractical most of the times. To overcome this problem, surrogate models

can be built and inexpensively probed to yield approximated output function values f̂(ξ) for the calculation
of approximate means and variances. The required number of function values (training points) for building
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Figure 4: An illustration for modeling the input-output relationship of uncertainties (propagation of uncer-
tainties).

an accurate surrogate is usually way less than the number required for statistically converged Monte Carlo
simulation. In this work, the domain over which the surrogate model is built is taken to be three standard
deviations in all aleatory input dimensions from the specified mean value i.e., the surrogate domain is:
[ξ̄ ± 3 · σξ]. This implies that for normally distributed input variables more than 99 % of all samples
(aleatory realizations) fall within the surrogate domain and the less accurate extrapolation capabilities of
the surrogate model only need to be employed for a small fraction of the samples. A larger domain can
be specified for the surrogate (e.g. 6σ from mean) to account for even remote possibilities, but is not used
here (recommended for reliability calculations). In this work, polynomial chaos and kriging surrogate models
trained using the dynamic framework developed by Boopathy and Rumpfkeil17,18 are employed for aleatory
uncertainty propagation. Both surrogate models have the capability to incorporate higher-order derivative
information (gradients and Hessian), however, the surrogates are built using function values only to reduce
the complexity in presenting the results.

II.B.2. Propagation of Epistemic Uncertainties

Epistemic uncertainties represent the lack of knowledge about the appropriate value to use.7 For instance,
manufacturers typically provide intervals in terms of tolerances (e.g. ± 0.5 mm for length of a bolt), but
the exact values are not known or cannot be guaranteed whatsoever. Here, the goal is to have bounds
on the output quantity of interest or to determine worst case scenarios (e.g. maximum possible constraint
violation, least possible lift), in order to minimize the sensitivity or variation of the design with respect to
these uncertainties. In a situation where only the input interval I(η) = [η−,η+] = [η̄ − τ , η̄ + τ ] is known,
the above assessment can be accomplished in most straightforward manner by either one of the two methods
discussed below.

Sampling: An extensively sampling of the interval I(η) can be done and an ordering of the resulting out-
puts f(η) is carried out to determine the extreme values (worst and best cases). However, the computational
burden can be prohibitive in the case of high-fidelity physics-based simulations and for higher-dimensional
spaces. As a remedy, a surrogate model over the domain I(η) can be constructed (similar to aleatory
uncertainties), which can then be sampled using inexpensive Monte Carlo simulations (IMCS). However,
with increasing number of variables, building an accurate surrogate model requires thousands of simulation
outputs (referred to as the curse of dimensionality) and quickly becomes prohibitively expensive as well.

Bound-Constrained Optimization: A bound- or box-constrained optimization (BCO)20–22 can be em-
ployed to find the worst and best behavior of the constraint/objective function within the specified interval
I(η). A gradient-based BCO scales mildly with the number of input variables, making it computationally
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more attractive than MCS for quantifying the effect of epistemic uncertainties, particularly for larger prob-
lems. In BCO, the problem of finding the extreme value of the function, f∗, (and the constraints, g∗i ) within
the interval I(η) can be cast as follows:

minimize/maximize
β

f = f(η),

subject to β ∈ I(η) = [η̄ − τ , η̄ + τ ].
(3)

In most cases the extremum occurs at either the upper or lower bound of the interval due to the quasi-
linearity of the typically small space described by I(η). Thus, BCO typically takes only about five to
ten simulation output and gradient evaluations to reach f∗ and is used throughout this work to propagate
epistemic uncertainties. An L-BFGS23,24 algorithm which utilizes function and gradient information is used
to solve the BCO problem given by Eq. (3).

II.B.3. Propagation of Mixed Uncertainties

Table 1 summarizes the four typical methods that can be employed for the propagation of mixed epistemic
and aleatory uncertainties along with their corresponding approximate simulation requirements. The com-
putational requirements can be interpreted assuming an approximate range of values for: (i) the number of

Monte Carlo sample points (Ñ = 105 − 108), (ii) the number of surrogate training points (N = 50− 5000),
and (iii) the number of simulation output evaluations (with gradients) for a BCO (n = 10− 100). The most

Table 1: Methods for optimization under mixed uncertainties along with their simulation requirements per
iteration.

Method Propagation Method No. of Evaluations Total per iteration

Aleatory Epistemic Aleatory Epistemic

1 MCS MCS Ñ1 Ñ2 Ñ1Ñ2

2 MCS BCO Ñ n Ñ · n
3 IMCS IMCS N1 N2 N1 ·N2

4 IMCS BCO N n N · n

straightforward way to propagate mixed uncertainties is to carry out a nested-sampling approach (Method

1), where for each aleatory random variable realization, α(i), i = 1, 2, . . . , Ñ , drawn from its probability
distribution p(ξ), a Monte Carlo sampling (or LHS for a better search performance) has to be performed over

the epistemic variable realizations β(j), j = 1, 2, . . . , Ñ , to determine the extreme behavior. Method 2 uses
BCO for epistemic uncertainties and is less expensive than Method 1, but can still represent an enormous
computational endeavor for the aleatory uncertainties, and is hence impractical for high-fidelity simulations.
It can be seen that the last two methods employing surrogate models for uncertainty propagation are several
orders of magnitude cheaper. Method 3 turns out to be the cheapest for smaller problems (M less than
six or so), but can easily suffer from the curse of dimensionality and thus lacks robustness, whereas it can
be inferred that Method 4 is still computationally manageable for bigger problem sizes. Thus, this work
preferably employs the IMCS-BCO approach (Method 4) for the propagation of mixed uncertainties in a
robust optimization problem. The employed IMCS-BCO framework has been developed by Lockwood et
al.20–22 and Rumpfkeil.25 A detailed discussion of all the steps involved is given in Section II.C.3.

The computational requirements in Table 1 are given for just one iteration of the numerical solution of
the robust optimization problem. If the optimizer requires K iterations to converge, the number in the last
column has to be multiplied with K to obtain an approximation for the number of simulation evaluations
needed. As a last remark, a deterministic gradient-based optimization requires only on the order of 2K (one
function and one gradient evaluation per iteration) simulation output evaluations to reach the optimum.

In the mixed uncertainty problem, the trial design variable vector d is comprised of both aleatory and
epistemic components i.e., d = [ξ̄, η̄], where ξ̄ represents the mean of aleatory uncertainties and η̄ refers
to the midpoint of the epistemic uncertainty bounds. Here, the aleatory uncertainties are assumed to be
statistically independent and normally distributed with α ∼ N (ξ̄,σ2

ξ). Equations for correlated and/or non-
normally distributed aleatory variables can also be derived; however, the analysis and resulting equations
become more complex26 and are beyond the scope of this work. In addition, the assumed input standard
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deviation σ for aleatory variables as well as the upper and lower bounds for epistemic variables defined by
τ are treated as fixed throughout the optimization for simplicity (could be easily changed).

II.C. Optimization Problem Formulation

II.C.1. Deterministic Optimization

A conventional constrained optimization problem for an objective function, J , that is a function of input
variables, d, state variables, q(d), and simulation outputs, f(d) = F (q(d),d), can be written as:

minimize
d

J = J(f, q,d),

subject to R(q,d) = 0,

g(f, q,d) ≤ 0.

(4)

Here, the state equation residuals, R, are expressed as an equality constraint, and other system constraints,
g, are represented as general inequality constraints. In the case where the input variables are precisely known
all functions dependent on d are deterministic. However, in the presence of input uncertainties all functions
in Eq. (4) can no longer be treated deterministically.

II.C.2. Robust Optimization

The setup of a robust optimization problem under mixed uncertainties is discussed below.

Objective Function: A robust objective function, J , can be written in terms of the mean values of the
functional outputs µf∗ and variance σ2

f∗. The robust optimization problem is minimizing the weighted sum
of mean extremum and variance of the function. Mathematically, the objective function assumes the form:

J = w1µf∗ + w2 σ
2
f∗, (5)

where w1 and w2 are some user specified weights. In this work, the weights w1 and w2 are set to one. The
asterisk (∗) refers to the extremum of the BCO problem.

Constraint Functions: The state equation residual equality constraint, R, is deemed satisfied for all
values of α and β. The inequality constraints can be cast into a probabilistic statement such that the
probability that the constraints are satisfied is greater than or equal to a desired or specified probability, Pk.
The constraints are written as a function of mean values and their standard deviations:27,28

gr = g(µf∗, q, ξ,η) + kσf∗ ≤ 0, (6)
where k is the number of standard deviations σg∗ that the constraint g must be displaced in order to achieve
the required Pk.

Problem Formulation: Lastly, the deterministic optimization problem given by Eq. (4) can be recast
into a robust design optimization problem26,29 as follows:

minimize
ξ,η

J = J (µf∗, σ
2
f∗, q, ξ,η),

subject to R(q, ξ,η) = 0,

gr = g(µf∗, q, ξ,η) + kσf∗ ≤ 0.

(7)

Optimization Software: The software package IPOPT (Interior Point OPTimizer)30 for large-scale
nonlinear constrained optimization is used for the solution of the robust optimization problem given by
Eq. (7). IPOPT allows users to impose bound or box constraints on the design variables, which can be
very helpful in ensuring the stability of the simulation output analysis by preventing the exploration of too
extreme regions of the design space.

II.C.3. Robust Optimization Framework

The steps involved in robust optimization under mixed uncertainties20–22,25 are detailed here (see Figure 5).
Surrogate models are built to propagate aleatory uncertainties and bound-constrained optimizations are used
to propagate epistemic uncertainties.

8 of 30

American Institute of Aeronautics and Astronautics



Design
variable
iterate
d = [ξ̄, η̄]

Choose N surrogate
training locations

{α(1),α(2), · · · ,α(N)} for
aleatory uncertainties

where α(i) ∈ [ξ̄ ± 3 · σξ]

Epistemic uncertainty
β ∈ I(η̄) = [η̄−τ , η̄+τ ]

(α(1),β) (α(2),β) (α(N),β)

BCO
β ∈ I(η̄)

( fixed α(1) )

BCO
β ∈ I(η̄)

( fixed α(2) )

BCO
β ∈ I(η̄)

( fixed α(N) )

(α(1),β∗(1)) (α(2),β∗(2)) (α(N),β∗(N))

Main Optimizer
ξ̄ ∈ [ξ̄min, ξ̄max]
η̄ ∈ [η̄min, η̄max]

f(α(1),β∗(1)) f(α(2),β∗(2)) f(α(N),β∗(N))

Construct
surrogate model

for aleatory
variables only

Monte Carlo
sampling with
α ∼ N (ξ̄,σ2

ξ )

Compute output
statistics (e.g.

mean and variance)

Obtain objective
function &
constraints

1

Figure 5: Framework for robust optimization under mixed epistemic and aleatory uncertainties.

1. Initialize: The main optimizer IPOPT (see Subsection II.C.2) provides a trial design variable vector
d = [ξ̄, η̄] at each iteration, based on which the surrogate domain is determined as: [ξ̄ ± 3 · σξ], from which
surrogate training point locations α(i), i = 1, . . . , N, are selected (using the dynamic training point selection
framework17,18). The interval for the bound-constrained optimization for epistemic random variables is
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represented as I(η) = [η−,η+] = [η̄ − τ , η̄ + τ ].

2. Propagate epistemic effects: For each surrogate training pointα(i), i = 1, . . . , N , a BCO problem is
solved for determining the worst or best epistemic realization β∗(i) within the interval I(η). Mathematically,
this refers to the determination of the extremum f∗ of the output function within the interval I(η):

minimize/maximize
β

, f = f(α(i),β)

subject to β ∈ I(η).
(8)

The aleatory variables remain fixed during the BCO process, while the epistemic variables are allowed to
change within the specified bounds. This completes the propagation of epistemic uncertainties. The BCO
problem needs only a few exact function and gradient evaluations to reach the extremum.

3. Obtain surrogate training data: The exact function f(ξ,η) is evaluated at (α(i),β∗(i)), i =
1, . . . , N, and the data is used to train the surrogate model. Note that, if the number of aleatory vari-
ables is large, the surrogate suffers from the curse of dimensionality, i.e., tens of thousands of BCO results
may be required as input training data to the surrogate.

4. Propagate aleatory effects: Once the surrogate model is built using the training data, it can be
probed inexpensively to yield the output statistics (e.g. mean µf∗ and variance σ2

f∗).

5. Update objective/constraints: The aleatory statistics are used to update the objective function
and constraints defined in section II.C.2.

Steps (1) to (5) are continued until meeting user-specified stopping criteria for the robust optimization
loop.

II.C.4. Gradient Evaluation

Aleatory Gradients The gradient of the objective function with respect to design variables associated
with aleatory uncertainties (random variables) is given by:25

dJ
dξ

=
∂J
∂µf∗

dµf∗
dξ

+
∂J
∂ϑf∗

dϑf∗
dξ

= w1
dµf∗
dξ

+ w2
dϑf∗
dξ

, (9)

where the mean µf∗ and variance ϑf∗ are computed using the surrogate model (kriging or polynomial chaos).
The mean extremum of the simulation output is approximated as:

µf∗ ≈
1

Ñ

Ñ∑
k=1

f̂∗(αk). (10)

The derivative of the mean extremum with respect to aleatory variables can be calculated as:

dµf∗
dξ
≈ 1

Ñ

Ñ∑
k=1

df̂∗(αk)

dαk
dαk

dξ
=

1

Ñ

Ñ∑
k=1

df̂∗(αk)

dαk
, (11)

where df̂∗(αk)
dαk

is obtained from the surrogate models. Likewise, the variance and its derivative can be
approximated as follows:

ϑf∗ ≈

 1

Ñ

Ñ∑
k=1

f̂∗
2
(αk)

− µ2
f∗ (12)

dϑf∗
dξ

≈

 2

Ñ

Ñ∑
k=1

f̂∗(αk)
df̂∗(αk)

dαk

− 2µf∗
dµf∗
dξ

. (13)

Epistemic Gradients The gradient of the objective function with respect to design variables associated
with epistemic uncertainties (random variables) is given by:

dJ
dη

=
∂J
∂µf∗

dµf∗
dη

+
∂J
∂ϑf∗

dϑf∗
dη

= w1
dµf∗
dη

+ w2
dϑf∗
dη

. (14)

In this case, the calculation of
dµf∗
dη and

dϑf∗
dη is not simple because moving the midpoint of the epistemic

intervals will lead in general to different extrema for the training points and thus to a different surrogate
model, which when sampled provides different values for µf∗ and ϑf∗. In comparison, the aleatory gradient
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was easy to obtain because the same surrogate model is used and only the change in sample points (random
realizations) has to be accounted for. In this work the following approximations are used:25

dµf∗
dη

≈ df

dη

∣∣∣∣
(ξ=ξ̄,η=η̄)

and
dϑf∗
dη
≈ 0, (15)

i.e., the derivative of the mean extremum µf∗ with respect to the epistemic variables η, is approximated
by the derivative of the function f with respect to η, evaluated at the mean values of the aleatory variables
and midpoints of the interval for the epistemic variables. Generally, this derivative is non-zero since for the
epistemic optimizations via BCO, the extreme value is typically encountered at the interval bound. Since
the variances are small in comparison with the mean values, their sensitivities are neglected:

dϑf∗
dη ≈ 0.

III. Three-bar Truss Design

In this section the robust optimization of a three-bar truss is discussed.

III.A. Deterministic Problem

The truss shown in Figure 6 is subjected to a load inclined at an angle θ from the horizontal, which puts bars
1 and 2 under tension and bar 3 under compression. The nodes are represented with numbers 1 through 4.
The goal is to minimize the total weight W of the structure. The mathematical formulation of the problem
is given below in Eq (16).

minimize
d

W =
A1γH

sin(φ1)
+

A2γH

sin(φ2)
+

A3γH

sin(φ3)
,

subject to g1 =
σ1

σ1max

− 1 ≤ 0,

g2 =
σ2

σ2max

− 1 ≤ 0,

g3 =
σ3

σ3max

− 1 ≤ 0,

g4 = − σ1

σ1max

− 1 ≤ 0,

g5 = − σ2

σ2max

− 1 ≤ 0,

g6 = − σ3

σ3max

− 1 ≤ 0,

g7 =
Q4x

Q4xmax

− 1 ≤ 0,

g8 =
Q4y

Q4ymax

− 1 ≤ 0,

bounds 0.25 in2 ≤ A1, A2, A3 ≤ 5.0 in2,

30◦ ≤ φ1 ≤ 60◦,

60◦ ≤ φ2 ≤ 120◦,

120◦ ≤ φ3 ≤ 150◦.

(16)

The problem has a total of six design variables d = [A1, A2, A3, φ1, φ2, φ3], i.e., the areas (A1, A2 and A3)
and the orientations (φ1, φ2 and φ3) of the bars with respect to the horizontal. The structure has to be
designed to withstand a total of 8 constraints gi(d). It is to be noted that the constraints are normalized
with respect to their allowable values (denoted with subscript max). The first three, the next three, and the
last two constraints impose tensile stress, compressive stress and displacement requirements, respectively.
The axial stresses and nodal displacements used in Eq. (16) are calculated using a finite element procedure
described in Appendix A. The other parameters used for this problem are listed in Table 2.
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Figure 6: A schematic diagram of the three-bar truss structure.

Table 2: Design data for three-bar truss.

Quantity Description Value Unit

P Load 30000 lb

θ Loading angle 50 deg

E Young’s modulus 107 psi

γ Weight density 0.1 lb/in3

H Reference length 10 in

(projection on y−axis)

σ1max Allowable axial stress on bar 1 5000 psi

σ2max Allowable axial stress on bar 2 10000 psi

σ3max Allowable axial stress on bar 3 5000 psi

u4xmax Allowable x-displacement at 4 0.005 in

u4ymax Allowable y-displacement at 4 0.005 in

ε1 Constraint violation tolerance 10−3 -

ε2 Norm of design change ‖∆d‖ 10−3 -

III.B. Robust Optimization Problem

The robust optimization problem involves minimizing the following objective function:
minimize

ξ,η
J = µW + σ2

W ,

subject to gri = µgi + kσgi ≤ 0, for i = 1, . . . , 8,
(17)

i.e. the minimization of an equally weighted sum of the mean and variance of the weight subject to eight
constraints. The area design variables Ai are assumed to have epistemic uncertainties with bounds τi =
±0.1 in2 and the orientations φi are assumed to have aleatory uncertainties with standard deviation σi = 1◦.
The input aleatory uncertainties are modeled as α(j) ∼ N (µφi , σ

2
φi

) and the epistemic uncertainties are

represented as an interval β(j) ∈ [Ai − τi, Ai + τi]. All other input parameters are kept fixed throughout the
optimization.
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Surrogate Models: The kriging surrogate model is built with seventy training points. The polynomial
chaos surrogate is a fourth order polynomial with an oversampling factor of two which also requires seventy
training points. The training points are chosen via the dynamic training point selection framework.17,18

Note that each training data f∗ comes from solving a BCO problem as discussed in Subsection II.B.2.

III.C. Optimization Results

III.C.1. Deterministic and Robust Designs

Table 3 compares the robust design optima with the deterministic optimum. From the optimum weights,
it can be inferred that the deterministic design is the best in terms of lightness of the structure, but lacks
robustness. A deterministic design with no assumed factor of safety is 15% lighter than a highly robust design
specified by k = 4. However, a deterministic design with a small factor of safety of 1.3 is 29% heavier than a
highly robust design specified by k = 4. The designers can capitalize on such a behavior for over-conservative
designs that are in use today or the ones that need to be built in the future. A design corresponding to
k = 0 with a weight of 14.65 ± 0.24 has a 50% chance of violating the constraints and is not as robust as
a design corresponding to k = 3 with a weight of 16.54± 0.25 that has less than one percent probability of
violating the constraints. As the desired robustness specified with k increases, an increase in the objective
function value can be seen, meaning that robustness is obtained at the expense of additional weight to the
structure. The designer can carry out a trade-off study between the weight of the structure and the required
robustness specified with k or Pk. It can be seen that the kriging and polynomial chaos based results agree
very closely with each other for all the tested cases.

Table 3: Optimization results for three-bar truss problem.

Type k Pk A1 A2 A3 φ1 φ2 φ3 µW σW Cv No. of F/FG Evals.

in2 in2 in2 deg deg deg lb lb - & Iterations

Initial design - - 2.0 2.0 2.0 45.0 90.0 135.0 7.66 - - -

Det Fs = 1.0 - - 5.00 1.42 2.30 37.6 60.0 150.0 14.45 - - 108/108-12

Det Fs = 1.3 - - 5.00 4.95 5.00 39.5 60.0 143.6 22.00 - - 126/126-14

Robust-KR 0 0.5000 5.00 1.45 2.37 37.7 60.0 150.0 14.65 0.24 0.0162 17559/17559-12

Robust-PC 0 0.5000 5.00 1.45 2.37 37.7 60.0 150.0 14.65 0.24 0.0162 17615/17615-12

Robust-KR 1 0.8413 5.00 1.66 2.66 37.5 60.0 149.3 15.41 0.24 0.0159 21963/21963-14

Robust-PC 1 0.8413 5.00 1.66 2.66 37.5 60.0 149.3 15.41 0.24 0.0159 20555/20555-13

Robust-KR 2 0.9772 5.00 1.84 2.92 37.5 60.0 148.6 16.02 0.25 0.0155 23594/23594-13

Robust-PC 2 0.9772 5.00 1.84 2.92 37.5 60.0 148.6 16.02 0.25 0.0155 33555/33555-18

Robust-KR 3 0.9986 5.00 1.99 3.15 37.5 60.0 148.2 16.54 0.25 0.0153 20771/20771-12

Robust-PC 3 0.9986 5.00 1.99 3.15 37.5 60.0 148.2 16.54 0.25 0.0153 17938/17938-12

Robust-KR 4 0.9999 5.00 2.13 3.36 37.6 60.0 147.9 17.00 0.26 0.0151 31178/31178-17

Robust-PC 4 0.9999 5.00 2.13 3.36 37.6 60.0 147.9 17.00 0.26 0.0151 19500/19500-12

It can also be noted that area A1 is pushed to its upper limit for all designs, while the other two areas
(A2 and A3) and orientations generally govern the robustness of the structure.

Since the standard deviation is always associated with a mean it is advantageous to use a dimensionless
number, the coefficient of variation Cv (also known as relative standard deviation or relative amount of
uncertainty)2 that measures the extent of variability in relation to the mean of the output. It can be used as
a metric of comparison with different data sets or designs that involve different units, or different assumed
input mean and standard deviations. A decrease in the coefficient of variation can be observed across the
robust designs.

III.C.2. Simulation Requirements

Table 3 also presents the number of exact function and gradient evaluations needed to reach the final design.
Here, each constraint evaluation is counted towards the total number of simulations. The box-constrained
optimization takes 2− 3 exact function and gradient evaluations for this test case. On average, the kriging
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and polynomial chaos took roughly the same number of function and gradient evaluations to reach the
optimum. Figure 7 plots the change in the objective function with the number of optimizer iterations.
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Figure 7: Change in the objective function with the number of optimizer iterations.

III.C.3. Constraint Status

Table 4: Constraint status for three-bar truss problem.

Type k gr1 gr2 gr3 gr4 gr5 gr6 gr7 gr8
Initial design - 0.12 · 101 −0.43 · 100 −0.21 · 101 −0.32 · 101 −0.16 · 101 0.69 · 10−1 0.14 · 100 0.23 · 101

Det Fs = 1.0 - −0.14 · 100 −0.41 · 100 −0.12 · 101 −0.19 · 101 −0.16 · 101 0.82 · 100 −0.48 · 10−8 −0.17 · 10−8

Det Fs = 1.3 - −0.29 · 100 −0.58 · 100 −0.13 · 101 −0.17 · 101 −0.14 · 101 0.71 · 100 −0.46 · 100 −0.34 · 10−7

Robust-KR 0 −0.15 · 100 −0.41 · 100 −0.12 · 101 −0.18 · 101 −0.16 · 101 −0.82 · 100 −0.56 · 10−6 −0.87 · 10−5

Robust-PC 0 −0.15 · 100 −0.41 · 100 −0.12 · 101 −0.18 · 101 −0.16 · 101 −0.82 · 100 −0.84 · 10−5 −0.78 · 10−5

Robust-KR 1 −0.17 · 100 −0.42 · 100 −0.11 · 101 −0.18 · 101 −0.15 · 101 −0.79 · 100 0.90 · 10−4 0.49 · 10−4

Robust-PC 1 −0.17 · 100 −0.42 · 100 −0.11 · 101 −0.18 · 101 −0.15 · 101 −0.79 · 100 −0.12 · 10−4 0.38 · 10−4

Robust-KR 2 −0.19 · 100 −0.43 · 100 −0.11 · 101 −0.18 · 101 −0.15 · 101 0.77 · 100 −0.73 · 10−4 0.13 · 10−3

Robust-PC 2 −0.19 · 100 −0.43 · 100 −0.11 · 101 −0.18 · 101 −0.15 · 101 0.77 · 100 −0.16 · 10−4 −0.12 · 10−3

Robust-KR 3 −0.20 · 100 −0.43 · 100 −0.11 · 101 −0.17 · 101 −0.15 · 101 0.76 · 100 0.28 · 10−3 −0.12 · 10−3

Robust-PC 3 −0.20 · 100 −0.43 · 100 −0.11 · 101 −0.17 · 101 −0.15 · 101 0.76 · 100 0.16 · 10−3 −0.76 · 10−4

Robust-KR 4 −0.21 · 100 −0.43 · 100 −0.11 · 101 −0.17 · 101 −0.14 · 101 −0.74 · 10−3 0.90 · 10−4 0.20 · 10−3

Robust-PC 4 −0.21 · 100 −0.43 · 100 −0.11 · 101 −0.17 · 101 −0.14 · 101 −0.74 · 10−3 0.75 · 10−3 −0.36 · 10−3

Table 4 displays the status of all eight constraints at the initial design, deterministic optimum, and robust
optimum. Here, a positive value for g represents a constraint-violation, whereas a negative value means that
the constraint is satisfied. It can be inferred that constraints 1, 7 and 8 are the ones that significantly affect
the design throughout the optimization (tight or ε-active constraints). The kriging and polynomial chaos
based values are a little different for these tight constraints, yet within the specified tolerance to ensure that
the constraints are not violated. All other constraints are inactive and both surrogate models provide the
same values for these constraints.
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III.C.4. Output PDF and CDF

Figures 8 and 9 show the probability density function (PDF) and cumulative distribution function (CDF)
of the objective function (weight) as well as the constraints (normalized) at their optimum designs. As
the desired robustness specified with k increases, an increase in the objective function value by means of a
shift to the right can be seen. The robust optimization problem formulation serves to move the constraint
values k standard deviations away from a potential violation which is evident from the PDF and CDF of
the constraints. It can be seen that a design corresponding to k = 4 has less than a 1% chance of constraint
violation, whereas k = 0 features a 50% chance of constraint violation due to the effect of input uncertainties.
It can also be seen that the spread of values is reduced as the robustness increases (compare PDFs of k = 0
and k = 4 cases), which shows that the design is less sensitive to uncertainties/variations in the input.
Overall, both surrogate models produce comparable distributions apart from occasional differences.
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Figure 8: Probability density function of objective and constraint functions at robust optimum designs.
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Figure 9: Cumulative distribution function of objective and constraint functions at robust optimum designs.

IV. Cantilever Beam Design

This section describes the robust optimization of a cantilever beam.

IV.A. Problem Description

A cantilever beam of rectangular cross-section is subjected to a bending momentM (N ·mm) and shear force
V (N). The bending stress in the beam is calculated as σ = 6M/bd2 (N/mm2) and the average shear stress
is calculated as τ = 3V/2bd (N/mm2), where b is the width and d is the depth of the beam. The maximum
allowable stress in the form of bending, σallow, is 10 N/mm2 and the maximum allowable shear, τallow,
is 2 N/mm2. The goal is to minimize the cross-sectional area A (mm2) of the beam. The mathematical
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formulation of the problem is given below:
minimize

b,d
A(b, d) = bd,

subject to g1(b, d,M) =
6M

bd2σallow
− 1 ≤ 0,

g2(b, d,V) =
3V

2bdτallow
− 1 ≤ 0,

g3(b, d) =
d

2b
− 1 ≤ 0,

bounds 100 mm ≤ b, d ≤ 600 mm,

(18)

where the constraints g1 and g2 enforce bending and shear stress requirements, respectively, while g3 imposes
an aspect-ratio requirement for the rectangular cross-section. All the constraints are represented in standard
normalized form. The design variables are the width and depth of the beam.

IV.B. Robust Optimization Problem

The two allowable stresses (σallow and τallow) in Eq. (18) are assumed to be precise (hence kept fixed) whereas
the remaining parameters are assumed to have uncertainties and are therefore treated as random variables
as listed in Table 5. The bending moment and shear force are assumed to have normally distributed aleatory

Table 5: Data and assumed uncertain parameters for cantilever beam design problem.

Random Description Uncertainty τmin τmax Mean Standard Unit

Variable Type Deviation

b Width Epistemic -10 10 - - mm

d Depth Epistemic -10 10 - - mm

M Bending Moment Aleatory - - 40 · 106 40000 N ·mm
V Shear Force Aleatory - - 150 · 103 1500 N

uncertainties with specified mean and standard deviations as shown in Table 5. Only the constraints g1 and
g2, which are functions of the bending moment and shear force, are influenced by these aleatory variables.
Unlike the three-bar truss problem where all random variables were also considered as design variables, the
cantilever beam problem involves random variables which are not design variables, but their effects will be
considered in the optimization procedure. The robust optimization problem can be written as:

minimize
b,d

A(b, d) = µA + σ2
A,

subject to gr1(b, d,M) = µg1 + kσg1 ≤ 0,

gr2(b, d,V) = µg2 + kσg2 ≤ 0,

gr3(b, d) = µg3 + kσg3 ≤ 0.

(19)

In this problem only the epistemic random variables (width and depth) govern the cost function and the
aspect-ratio constraint and therefore the output standard deviations are unavailable for these functions:
σA = σg3 = 0.

Surrogate Models: The robust optimization results will be compared using both kriging and polynomial
chaos. The kriging surrogate model is built with 20 training points and the polynomial chaos metamodel is
a third order polynomial which is also built with 20 training points.

IV.C. Optimization Results

Table 6 presents the optimization results. It can be seen that the objective function value increases with the
desired robustness, for example, the cross-sectional area increases by roughly 17% for a design corresponding
to k = 4 compared to a deterministic design with no factor of safety. However, the robust design (k = 4)
has 29% less cross-sectional area (hence lighter) than a deterministic design with a factor of safety of 1.5.

Figure 10 shows all three constraints plotted along with the objective function contours. The objective
function is parallel to the constraint g2, therefore, any point on the cure A–B is a feasible deterministic
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Table 6: Optimization results for cantilever beam design problem.

Type k Pk Width b Depth d Area A No. of F/FG Evals.

mm mm ·103 mm2 & Iterations

Initial Design - - 300 300 90.0 -

Det (Fs = 1.0) - - 335.5 335.4 112.5 33/33-7

Det (Fs = 1.5) - - 595.5 283.4 168.7 45/45-8

Robust-KR 0 0.5000 347.4 343.4 126.3 7046/3523-7

Robust-PC 0 0.5000 347.4 343.4 126.3 7917/7917-8

Robust-KR 1 0.8413 349.7 344.5 127.5 7146/3573-7

Robust-PC 1 0.8413 349.7 344.5 127.5 8037/8037-8

Robust-KR 2 0.9772 398.5 305.4 128.8 7686/3843-7

Robust-PC 2 0.9772 398.5 305.4 128.8 9661/9661-9

Robust-KR 3 0.9986 386.5 317.8 130.0 8694/4347-8

Robust-PC 3 0.9986 386.5 317.8 130.0 11669/11669-10

Robust-KR 4 0.9999 356.6 347.5 131.1 7286/3643-7

Robust-PC 4 0.9999 356.6 347.5 131.1 8196/8196-8
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Figure 10: Graphical solution to the minimum area beam design problem.

optimum. At point A, the constraints g2 and g3 are active; at point B, the constraints g1 and g2 are active;
while any point on the curve A–B has the constraint g2 active. Through robust optimization, the optimum
solution is moved by a distance of k standard deviations away from the deterministic solution, which is shown
by an increment in the objective function values in Table 6. However, the robust optimization accounts for the
exact amount of uncertainty in the problem and achieves a reduced cost function compared to deterministic
designs employing an arbitrary factor of safety which could easily be over- or under-conservative.
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IV.C.1. Simulation Requirements

The box-constrained optimizations took only 2 to 3 function and gradient evaluations to reach the extremum.
On average, the robust optimization takes about 7500 function and gradient evaluations (including the
constraint evaluations) and the simulation requirements for the polynomial chaos method are roughly 20%
higher than that of kriging.
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Figure 11: Optimization history for the beam design problem.

Figure 11 plots the change in the objective function with the number of optimization iterations for the
different tested cases (deterministic and robust).

IV.C.2. Output PDF and CDF

Figure 12 shows the probability density and cumulative distribution functions of constraints g1 and g2. The
PDFs show the spread of possible values taken by the constraints corresponding to different robust designs,
whereas the CDFs show the probability of obtaining a specified value or less. Knowing the spread of values
helps a designer to make informed decisions about the performance of the design. For example, a robust
design corresponding to k = 4 (red lines) features negligible occurrence of gi > 0 (signifies a constraint
violation). It can also be observed that the constraint values are normally distributed.

19 of 30

American Institute of Aeronautics and Astronautics



Constraint Value (Normalized)

P
D
F

­0.4 ­0.35 ­0.3 ­0.25
0

0.02

0.04

0.06

0.08

0.1

PC ­ k0

PC ­ k1

PC ­ k2

PC ­ k3

PC ­ k4

KR ­ k0

KR ­ k1

KR ­ k2

KR ­ k3

KR ­ k4

PDF (g1)

Constraint Value (Normalized)

C
D
F

­0.4 ­0.35 ­0.3 ­0.25
0

0.2

0.4

0.6

0.8

1
PC ­ k0

PC ­ k1

PC ­ k2

PC ­ k3

PC ­ k4

KR ­ k0

KR ­ k1

KR ­ k2

KR ­ k3

KR ­ k4

CDF (g1)

Constraint Value (Normalized)

P
D
F

­0.1 ­0.05 0 0.05
0

0.02

0.04

0.06

0.08

0.1

0.12
PC ­ k0

PC ­ k1

PC ­ k2

PC ­ k3

PC ­ k4

KR ­ k0

KR ­ k1

KR ­ k2

KR ­ k3

KR ­ k4

PDF (g2)

Constraint Value (Normalized)

C
D
F

­0.1 ­0.05 0 0.05
0

0.2

0.4

0.6

0.8

1

PC ­ k0

PC ­ k1

PC ­ k2

PC ­ k3

PC ­ k4

KR ­ k0

KR ­ k1

KR ­ k2

KR ­ k3

KR ­ k4

CDF (g2)

Figure 12: Output PDF (left) and CDF (right) of constraint g1 and g2.

V. Airfoil Design

In this section the robust optimization of an airfoil is discussed.

V.A. Aerodynamic Analysis

The steady inviscid flow around an airfoil governed by the Euler equations is solved by using a second-order
accurate finite-volume approach.31,32 The computational mesh is shown in Figure 13. Hicks-Henne sine
bump functions33 are used to control the shape of the airfoil resulting from perturbations of shape design
variables. The resulting deformation of the mesh is calculated via a linear tension spring analogy.34,35

V.B. Robust Optimization Problem

Seven shape design variables are placed on the upper surface and seven on the lower surface of the airfoil (at
20%, 30%, 40%, 50%, 60%, 80%, and 90% chord). The bounds on the flow variables, angle of attack and Mach
number, are taken as 0◦ ≤ α ≤ 4◦ and 0.6 ≤ M∞ ≤ 0.78. All fourteen shape design variables are assumed
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Figure 13: Computational mesh for NACA 0012 airfoil with 19, 548 elements (left), pressure distribution at
α = 2.0◦ and M∞ = 0.65 (right).
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Figure 14: The NACA 0012 airfoil (in black) and airfoils resulting from perturbations of ±0.0025 (in red
and green).

to have epistemic uncertainties and the two flow variables are assumed to have aleatory uncertainties.

Table 7: Data for robust optimization of airfoil.

Random Description Uncertainty τmin τmax Standard

Variable Type Deviation

η1,2,13,14 Shape design variables Epistemic -0.00125 0.00125 -

η3−12 Shape design variables Epistemic -0.01 0.01 -

ξα Angle of attack Aleatory - - 0.1◦

ξM∞ Mach number Aleatory - - 0.01

Figure 14 shows the baseline NACA 0012 airfoil used as the initial (starting) design and the airfoils
resulting from perturbations of the fourteen shape design variables within the bounds specified in Table 7.
The initial value of the angle of attack is 2◦ and the Mach number is 0.65. The mathematical formulation
of the problem is given as follows,

minimize
ξ,η

J = µCdmax + σ2
Cdmax

,

subject to g = (µClmin + kσClmin )− Cl+ ≥ 0,
(20)

where C+
l refers to a target lift coefficient of 0.6, and Clmin and Cdmax are the least possible lift and highest

possible drag within the specified set of epistemic variables, respectively.
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Surrogate models: The kriging surrogate model is built with 11 training points. The polynomial chaos
surrogate is a second-order polynomial with an over sampling factor of two forming a regression surface
which requires 12 training points. The surrogate models are built only over the assumed aleatory variables:
the angle of attack and Mach number. The domain of the surrogate model is three standard deviations wide
from the mean values ξ̄ provided by the main optimizer (IPOPT) at every iteration.

V.C. Optimization Results

Table 8: Optimization results for airfoil design problem.

Type k Pk µcdmax σ2
cdmax

µclmin σclmin α M∞ No. of F/FG Evals.

& Iterations

Initial - - 4.72 · 10−4 - 0.335 - 2.000◦ 0.650

Deterministic - - 1.17 · 10−3 - 0.600 - 2.510◦ 0.600 49/49-24

Robust-KR 0 0.5000 2.72 · 10−3 2.03 · 10−7 0.600 1.84 · 10−2 2.013◦ 0.600 844/844-23

Robust-PC 0 0.5000 2.62 · 10−3 5.80 · 10−8 0.600 1.82 · 10−2 2.389◦ 0.600 675/6751-16

Robust-KR 1 0.8413 2.93 · 10−3 3.07 · 10−7 0.619 1.86 · 10−2 2.065◦ 0.600 434/434-13

Robust-PC 1 0.8413 2.73 · 10−3 2.50 · 10−7 0.618 1.84 · 10−2 3.058◦ 0.600 434/434-15

Robust-KR 2 0.9772 3.10 · 10−3 4.46 · 10−7 0.637 1.88 · 10−2 2.179◦ 0.600 831/831-19

Robust-PC 2 0.9772 3.20 · 10−3 8.58 · 10−7 0.637 1.89 · 10−2 2.193◦ 0.600 710/710-22

Robust-KR 3 0.9986 3.28 · 10−3 6.23 · 10−7 0.657 1.90 · 10−2 2.301◦ 0.600 650/650-21

Robust-PC 3 0.9986 3.25 · 10−3 9.83 · 10−7 0.658 1.92 · 10−2 2.352◦ 0.600 1145/1145-21

Robust-KR 4 0.9999 3.56 · 10−3 9.50 · 10−7 0.677 1.93 · 10−2 2.421◦ 0.600 620/620-15

Robust-PC 4 0.9999 3.65 · 10−3 1.25 · 10−6 0.677 1.93 · 10−2 2.427◦ 0.600 2104/2104-36

Table 8 compares the robust design optima with the deterministic optimum. The average drag and mean
angle of attack increase as the desired probability of achieving the target lift C+

l is increased. The optimum
solution is sought from the optimizer at a distance of k-standard deviations away from the lift-constraint
hyperplane. As a result, the amount of lift produced is higher as more robustness is expected from the
design i.e., the additional lift produced defines the robustness of the design and the design will be less
prone to failure (violation of the lift-constraint). On the contrary, during a deterministic optimization an
optimum design is sought at the constraint boundary, that can very well violate design requirements when
the underlying variables are not representative of the ones considered during optimization. Another inference
is that robustness is achieved at the expense of the objective function (drag penalty). Also by observing
the optimum aleatory variables on the right, it can be seen that the Mach number remains the same for all
designs (at its lower bound), whereas the angle of attack varies.

V.C.1. Airfoil shape

Figure 15 shows the original, deterministic and robustly optimized (k = 4, with polynomial chaos) airfoils.
It can be inferred that the deterministically optimized airfoil (shown in blue) is thinner than the robustly
optimized airfoil (shown in red).
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Figure 15: Original NACA 0012 (gray), deterministic (blue) and robust with k = 4 (red) airfoils produced
using polynomial chaos. The kriging produced very similar airfoils (hence not shown).

The robust airfoils corresponding to increasing k are shown in Figure 16. Except for the first two cases
(k = 0 and k = 1), the epistemic shape design variables attain similar values for both models. For the k = 1
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Figure 16: Plots showing the shape (also angle of attack) of different robust airfoils. Red and blue lines
correspond to polynomial chaos and kriging, respectively.
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case, the kriging based robust airfoil is thicker and has a lower angle of attack, whereas the polynomial chaos
based airfoil is thinner and attains the target lift with an increased angle of attack.

Overall, the kriging surrogate based robust designs (shown as blue lines) tend to have a lower angle of
attack than its polynomial chaos counterpart (shown as red line). This behavior can be observed across all
five robust designs. In general, it may be advantageous for an airplane to fly faster rather than having an
increased angle of attack for generating more lift. The solution to the Euler equations ignores important
viscous effects, such as boundary layers, wakes and flow separation. If a Navier-Stokes solver is used, it can
be expected that the optimizer places a greater emphasis on the shape optimization rather than the flow
parameter optimization.

V.C.2. Simulation Requirements

The last column of Table 8 presents the number of function and gradient evaluations needed as well as
the number of iterations taken by the optimizer to converge. Here a single flow solve provides the lift
(constraint) and drag (objective) values. For this airfoil optimization test case, the robust optimization
needs on average roughly 1000 flow and adjoint solutions, compared to close to 50 evaluations needed for the
deterministic optimization, placing a roughly 20 times higher simulation requirement on the designer. The
box-constrained optimizations took 2 to 3 flow and adjoint solutions to determine the worst possible lift and
the highest possible drag within the specified epistemic uncertainty bounds. For the aleatory uncertainty
propagation, though kriging and polynomial chaos involve similar amounts of training information (eleven
and twelve points, respectively), at the end of the main optimization, the latter’s simulation requirements are
50% higher than that of the kriging (on average). This shows that kriging is more effective for non-smooth
functions such as this aerodynamic test case.
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Figure 17: Optimizer iteration history for airfoil design problem.

Figure 17 plots the change in the objective function with the number of optimizer iterations.

V.C.3. Output PDF and CDF at the Optimum

Figures 18 and 19 show the PDF as well as CDF of the drag and lift coefficients, respectively, at several robust
designs using kriging and polynomial chaos. The PDFs shown in the left show the distribution of possible
drag and lift coefficient values due to the effect of uncertainties, whereas the CDFs show the probability of
obtaining a specified value or less. For example, the distribution of drag (see the left of Figure 18) helps the
designer to construct confidence bounds on possible drag values. Similarly, the probability that the target
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lift coefficient (C+
L = 0.6) is not attained is 50% for the k = 0 case and is less than 1% for the k = 4 case. As

the required robustness increases, the distributions shift to the right, which signifies a higher lift generation
as well as drag penalty. A Gaussian distribution is seen for the lift coefficient, whereas the distribution of
drag coefficient resembles a log-normal one.
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Figure 18: PDFs and CDFs of the drag coefficient at optimum designs.
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Figure 19: PDFs and CDFs of the lift coefficient at optimum designs.

V.C.4. Pressure Contours at the Optimum

Figures 20 and 21 show the pressure distribution around deterministically and robustly optimized airfoils
using kriging and polynomial chaos, respectively. It can be seen that the pressure distributions are very
similar among the robust airfoils, whereas a distinct difference can be noticed between the robust and
deterministic ones.

V.D. Validation with Exact Monte Carlo Simulation

Here, validations for the IMCS-BCO approach are provided by a selective comparison of the k = 1 case with
exact Monte Carlo simulation (MCS) and BCO i.e., the surrogate models are replaced with exact function
evaluations (Euler flow solutions). Due to the expense of the Euler flow solutions, only 3000 Monte Carlo
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Figure 20: Contour plots of pressure coefficients Cp at different optimum designs using kriging.
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Figure 21: Contour plots of pressure coefficients Cp at different optimum designs using polynomial chaos.
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samples are used for this test. For each Monte Carlo sample, a BCO problem is solved and statistics obtained
are presented in Tables 9 and 10.

Table 9: Validations for k = 1 robust case at the initial design (NACA 0012, α = 2◦ and M∞ = 0.65) for
kriging and polynomial chaos.

Type µcdmax σ2
cdmax

µclmin σclmin No. of Function/

Gradient Evals.

IMCS-BCO (Kriging) 8.85 · 10−4 4.32 · 10−9 0.186 1.72 · 10−2 38/38

IMCS-BCO (PC) 9.27 · 10−4 3.97 · 10−8 0.186 1.72 · 10−2 36/36

MCS-BCO 8.98 · 10−4 2.98 · 10−8 0.186 1.72 · 10−2 6153/6153

Table 10: Validations for k = 1 robust case at the final design for kriging (robust shape, α = 2.065◦ and
M∞ = 0.6) and polynomial chaos (robust shape, α = 3.058◦ and M∞ = 0.6).

Type µcdmax σ2
cdmax

µclmin σclmin No. of Function /

Gradient Evals.

IMCS-BCO (Kriging) 2.93 · 10−3 3.07 · 10−7 0.619 1.86 · 10−2 23/23

MCS-BCO 2.73 · 10−3 2.50 · 10−7 0.618 1.84 · 10−2 6153/6153

IMCS-BCO (PC) 2.96 · 10−3 2.86 · 10−7 0.619 1.86 · 10−2 23/23

MCS-BCO 2.65 · 10−3 2.90 · 10−8 0.620 1.81 · 10−2 6152/6152

Overall, it can be noticed that the surrogate models produce reasonably accurate statistics for a fraction of
the computational cost compared to MCS. Also, kriging is more accurate than polynomial chaos in predicting
the statistics.

VI. Conclusion

In this paper, surrogate models (kriging and polynomial chaos) enhanced with a dynamic training point
selection methodology have been employed for robust optimizations under mixed epistemic and aleatory
uncertainties. As a result of robust optimization, designs that are less sensitive to the randomness in design
variables and input parameters are produced. The distribution of the possible outcomes are shown in the
form of probability density functions and the probability of getting a specified outcome or less are shown
in the form of cumulative distribution functions, whose availability helps the designer to make informed
decisions and tune the performance accordingly. It is observed that robustness comes at the expense of an
increased cost function and that designs employing a factor of safety featured higher cost penalties com-
pared to robust designs. The performances of both surrogate models are also assessed when applied to
uncertainty quantification and robust optimization under uncertainty (mixed epistemic/aleatory) on struc-
tural and aerodynamic test problems. It is observed that the kriging is better than polynomial chaos by
virtue of its superior capability to approximate non-smooth functions. The accuracy of the surrogate models
is reflected in the total number of exact function evaluations needed by the surrogate models during the
robust optimizations as well as in the quality of output statistics.

A. Finite Element Procedure for Three-bar Truss Analysis

The finite element procedure adopted for obtaining the nodal displacements (ux and uy) as well as the
elemental stresses (σ1, σ2, and σ3) for the three-bar truss problem from Section III is discussed here. The
structure is assumed to have three elements with two degrees of freedom at each node (i.e., a two-dimensional
truss analysis). The element connectivity information is given in Table 11.
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Table 11: Connectivity of elements.

Element Node Element length λe = cos(φe) µe = sin(φe)

i j le

1 1 4 L1 = H/sin(φ1) cos(φ1) sin(φ1)

2 2 4 L2 = H/sin(φ2) cos(φ2) sin(φ2)

3 3 4 L3 = H/sin(φ3) cos(φ3) sin(φ3)

The stiffness matrix of the e-th element in global coordinate system is given by,

[k]e =
EeAe
Le


λe

2 λeµe −λe2 −λeµe
λeµe µe

2 −λeµe −µe2

−λe2 −λeµe λe
2 λeµe

−λeµe −µe2 λeµe µe
2

 . (21)

The individual stiffness matrices of each element: [k]1, [k]2, and [k]3 are obtained using Eq. (21) and Ta-
ble 11. The elemental stiffness matrices are assembled to form the global stiffness matrix K of size 8×8 (not
shown here). After applying the boundary conditions (i.e. x- and y-displacements at nodes 1, 2 and 3 are

zero) and performing elimination, a simplified linear system is obtained: KQ = F , where Q =

{
Q4x

Q4y

}
,

F =

{
F4x

F4y

}
and K =

[
E1A1

L1
λ1

2 + E2A2

L2
λ2

2 + E3A3

L3
λ3

2 E1A1

L1
λ1µ1 + E2A2

L2
λ2µ2 + E3A3

L3
λ3µ3

E1A1

L1
λ1µ1 + E2A2

L2
λ2µ2 + E3A3

L3
λ3µ3

E1A1

L1
µ1

2 + E2A2

L2
µ2

2 + E3A3

L3
µ3

2

]
.

The x- and y-displacements at node 4 are given by, Q = K−1F . Once the nodal displacements are found,
the stresses in element i− j can be calculated using:

σe =
Ee
Le

{
−λe −µe λe µe

} 
Qix

Qiy

Qjx

Qjy

 . (22)

Using Eq. (22) and Table 11, expressions for the stresses acting on each element can be obtained:

σ1 =
E1

L1

{
−λ1 −µ1 λ1 µ1

} 
0

0

Q4x

Q4y

 =
E1

L1
(Q4xλ1 +Q4yµ1) ,

σ2 =
E2

L2

{
−λ2 −µ2 λ2 µ2

} 
0

0

Q4x

Q4y

 =
E2

L2
(Q4xλ2 +Q4yµ2) ,

σ3 =
E3

L3

{
−λ3 −µ3 λ3 µ3

} 
0

0

Q4x

Q4y

 =
E3

L3
(Q4xλ3 +Q4yµ3) .

(23)

The constraints (for the optimization problem) can be evaluated by substituting Eq (23) into Eq. (16). The
gradients of the constraints and objective function with respect to the design variables are obtained via
differentiation with Maple.
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