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ABSTRACT

UNCERTAINTY QUANTIFICATION AND OPTIMIZATION UNDER UNCERTAINTY

USING SURROGATE MODELS

Name: Boopathy, Komahan

University of Dayton

Advisor: Dr. Markus P. Rumpfkeil

Surrogate models are widely used as approximations to exact functions that are com-

putationally expensive to evaluate. The choice of model training information and the es-

timation of the accuracy of surrogate models are major research avenues. In this work, a

unified dynamic framework for surrogate model training point selection and error estima-

tion is proposed. Building auxiliary local surrogate models over sub-domains of the global

surrogate model forms the basis of the framework. A discrepancy function, defined as the

absolute difference between response predictions from global and local surrogate models for

randomly chosen test candidates, drives the framework.

The framework preferably evaluates the expensive exact function at locations, where

the value of the discrepancy function is high and when a distance-constraint to previously

existing training points are satisfied. As a result, the surrogate model is continually re-

fined in regions of higher uncertainty in prediction, and a better spread of training points

is also achieved. Unlike most training point selection approaches, the framework addresses

surrogate training from two disparate contexts, as training in the presence and absence
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of derivative information. The local surrogate models use the derivative information when

available and affect the framework via the discrepancy function, and helps determine the lo-

cations that require derivative information. The benefits of the dynamic training approach

are demonstrated with analytical test functions and the construction of a two-dimensional

aerodynamic database. The results show that the proposed method improves the con-

vergence monotonicity and produces more accurate surrogate models, when compared to

random and quasi-random training point selection strategies.

The newly introduced discrepancy function is proposed as an approximation to the ac-

tual error in the prediction of the surrogate model leading to the quantities: root mean square

discrepancy (RMSD) and maximum absolute discrepancy (MAD). The results demonstrate

a close agreement of RMSD and MAE with the actual root mean square error (RMSE) and

maximum absolute error (MAE), respectively. Therefore, RMSD and MAD are proposed

as measures for the accuracy of the surrogate models in applications of practical interest.

The benefit of surrogate validation comes without warranting any additional exact function

evaluations, which makes the framework computationally viable.

Multivariate interpolation and regression model is employed to build local surrogates,

whereas the kriging and polynomial chaos expansions serve as global surrogate models. This

demonstrates the applicability of the proposed framework to any surrogate model with an

open choice of training data selection.

Finally, the dynamically trained surrogate models are applied to uncertainty quantifi-

cations and optimizations under mixed epistemic and aleatory uncertainties (OUU), for

structural and aerodynamic test cases. In the OUUs epistemic uncertainties are propagated

via box-constrained optimizations, whereas the aleatory uncertainties are propagated via

iv



inexpensive sampling of the surrogate models. The structural test cases include design-

ing a three-bar truss and a cantilever beam, whereas the aerodynamic test case involves

the robust optimization (lift-constrained drag minimization) of an airfoil under steady flow

conditions.
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CHAPTER I

INTRODUCTION AND MOTIVATION

Numerical simulations are extensively used in science and engineering research to solve

real world problems whose theoretical solutions are undetermined and in cases where it

is impractical to conduct experiments. For example, analytical solution for the general

Navier-Stokes equations is unknown and it is impractical to conduct experiments on vehicles

operating in hostile and unpredictable environmental conditions (e.g. reentry vehicles).

Under such circumstances computational methods are very powerful in assisting the design

process and they play a pivotal role in design improvements and reductions in development

cost and time.

In recent years, owing to an increasing availability of computational resources and sophis-

ticated algorithms, numerical methods have been extensively used in engineering research

and development. However, in spite of several advancements in computer hardware (e.g.

CPU speed) and the increasing use of parallel computing (also known as high performance

computing), a striking imbalance still exists between the requirements and availability of

computational power. For example, the number of required mesh points for direct numerical

simulations (DNS) scales with the Reynolds number as Re9/4, but the current state-of-the-

art computing can only support on the order of 109 - 1010 mesh points and is thus limited

1



to Reynolds numbers of about 10, 000. Similarly, other high-fidelity physics-based simula-

tions such as large eddy simulations (LES) and unsteady Reynolds-averaged Navier-Stokes

(RANS) computations, also require significant amounts of computational resources and

time.

A simple gradient-based airfoil shape optimization requires many optimizer iterations

and hence flow solutions. The entire flow field needs to be solved for at each design iteration

and typically the gradient also needs to be computed (through finite-difference, adjoint [1–3]

or other techniques), which in total can require hundreds of flow solutions, potentially

demanding enormous computational time and storage. Therefore, the designer has to trade-

off accuracy versus computational time or limit the design spaces in scope, which can

lead to inefficient designs. Such a computational burden explains the need for alternatives

to expensive high-fidelity simulations, at least when function evaluations are repeatedly

required.

1.1 Surrogate Models

In order to reduce the computational burden from multiple simulations, surrogate models

(also called response surfaces or metamodels) have been employed by the research commu-

nity over the past few decades. Surrogate models provide an “approximate and inexpensive

to evaluate” representation of an output quantity of interest as a function of input variables.

A surrogate model, being an approximate representation of the original function space, is

bound to have an approximation error. A lot of today’s surrogate model research is directed

on improving the accuracy of existing models as well as developing versatile and robust sur-

rogates [4–8] considering its wide range of applications. Some popular applications are

discussed in the following paragraphs.
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1.1.1 Applications of Surrogate Models

In general, a surrogate model is used to approximate or predict a quantity of interest

based on available computational, experimental or statistical data, and hence finds appli-

cations in a wide array of disciplines. Some popular engineering applications are reviewed

as follows.

1.1.1.1 Database of Expensive Functions

In early stages of a design process it is desirable to rapidly evaluate several design config-

urations. These analyses, that can either be physical experiments or numerical simulations,

are expensive and time-consuming. As an example, in the design of aerospace systems

one of the main requirements is the accurate and efficient prediction of force and moment

coefficients of the vehicle. This information is required for different trial designs, and an

optimization procedure requires many design iterations (trials), which can be very expen-

sive and prolong the time span of the whole design process. Moreover, design of complex

systems such as airplanes are highly coupled with several disciplines (e.g. propulsion, aero-

dynamics, structures, controls, etc.) demanding many such optimization processes. Due to

these time-intensive operations, developing a successful design and its associated production

can take a long development time. Hence, design teams are shifting their focus on building

databases that could aid in the design process. Some examples are:

• NASA’s Constellation program has been working on a Heavy Lift Launch Vehi-

cle (HLLV) named Ares V, where a simulation protocol was developed to generate

databases of the aerodynamic force and moment coefficients for HLLV ascent [9].

• The NASA Langley Research Center was involved in the development of a preflight

aerodynamic database of the X-34 Reusable Launch Vehicle (RLV) [10], covering the
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entire range of Mach numbers, angles of attack, side-slip and control surface deflections

anticipated in the complete flight envelope.

• The Center for Computer Applications in Aerospace Science and Engineering (a part

of DLR) is working towards a “Digital Flight” (full flight simulation), for which they

develop databases covering the entire flight envelope for many different aircraft con-

figurations.

For such applications, surrogate models can be employed to predict the exact function

values, thereby providing a computational advantage through an effective reduction of the

overall number of required exact simulations.

1.1.1.2 Global Optimization

Gradient-based optimization algorithms typically converge to a local optimum and the

final optimum is highly dependent on the starting point in the design space. There is no

guarantee that the gradient-based optimizers lead to the global optimum unless the convex-

ity of the objective function is guaranteed. An illustration of a multi-modal design space

with several local optimum is provided in Figure 1.1. On the other hand, global optimiza-

tion strategies such as the genetic algorithms (GA), which are based on an extensive search

of the design space, are computationally intensive particularly when applied to problems

involving high-fidelity physics-based simulations. A surrogate model can be employed to

alleviate some of the computational burden in this process. For example, when a surro-

gate model is constructed with the given training data, the most promising locations in the

model can be explored for relatively lower computational cost. To aid in this, an initial

global surrogate model is constructed using the available training data. The surrogate model

is then sampled extensively to find the potential global optimum and the model is locally
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updated or refined until reaching the optimum. Even for such optimization applications,

Figure 1.1: A two variable multi-modal objective function.

the construction of an accurate initial global surrogate model provokes a higher likelihood

of locating the global optimum during subsequent local refinements of the surrogate model,

when compared to a poor initial surrogate that fails to capture the real behavior leading to

a premature convergence.

1.1.1.3 Uncertainty Quantification and Optimization Under Uncertainty

A deterministic optimization approach assumes no variations in the design variables and

other parameters. This can easily lead to sub-optimal performance or failure of many deter-

ministically optimized designs. For instance, when an aircraft designed to cruise at specific

optimal settings (e.g. Mach number, angle of attack, shape) deviates from these settings

(e.g. due to continuous wind gusts, ice accumulation, faulty calibration of instruments, wear

and tear) the flight performance can be adversely affected leading to an increased fuel burn

or other undesirable characteristics. Therefore, given the uncertainties in input variables,

parameters and operating environments, it is expected to have some measure of confidence
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placed on the output quantities of interest (e.g. weight, thrust, lift etc.), giving rise to the

field of uncertainty quantification (UQ) and optimization under uncertainty (OUU). Opti-

mization under uncertainty (also known as stochastic optimization) is an important avenue

in computational research owing to the rising need for robust and reliable designs, where the

key objective is to quantify uncertainties and account for them in the regular optimization

process. OUU can be subdivided into two main fields namely: robust design optimization

(RDO) and reliability based design optimization (RBDO) [11–13]. RDO techniques can

be used to produce a design that is more robust (less sensitive) to design variable and/or

operating environment changes, whereas RBDO minimizes the probability of failure of the

system.

In recent years, design teams and regulatory agencies are increasingly being asked to

specifically characterize and quantify different types of uncertainties and separate their in-

dividual effects [14–18]. The most popular and easiest approach for the propagation of

uncertainties is the Monte Carlo simulation (MCS), where the simulation output f is sam-

pled many times to obtain output statistics and to determine worst case scenarios. However,

multiple realizations of the output function f are not always computationally tractable (e.g.

for high-fidelity physics-based simulations such as computational fluid dynamics (CFD) or

finite element analyses (FEA)). To overcome this problem, a surrogate model can be con-

structed to model the uncertainties, which can then be sampled inexpensively and exhaus-

tively to propagate the uncertainties and determine output statistics. This approach is

referred to as the inexpensive Monte Carlo simulation (IMCS) [19]. More details on these

topics are provided in chapter VIII.
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1.1.2 Research Avenues

Major research areas which are extensively pursued related to surrogate modeling are

discussed in the following paragraphs.

1.1.2.1 Choice of Training Points

The accuracy of a surrogate model is influenced primarily by the non-linearity of the

function to be modeled and by the choice of training point locations. Training point se-

lection is typically done by using design of experiments (DoE) techniques such as uniform

design (UD) [20]. Many other methods, which have been originally developed to approxi-

mate multi-dimensional integrals, are also being used for training data selection for surro-

gate models: these include Monte Carlo (MC) [21], latin hypercube (LHS) [22], quadrature

nodes [23,24], and low-discrepancy sequences [25]. These strategies typically tend to suffer

from deficiencies, such as exponential growth in the number of required points with dimen-

sionality (e.g. quadrature nodes), missing important regions by chance (e.g. LHS, MC),

poor and correlated distribution of training points in higher dimensions (e.g. Sobol [26] and

Halton [25] sequences), etc. Apart from having been developed for a different purpose, all

these strategies are domain-based, i.e. they do not take into account function values or their

non-linearities and sensitivities. Thus, plenty of research has been conducted to address the

aforementioned problems and to develop adaptive strategies which consider response values

and similar criteria such as expected improvement and mean squared error [27–29]. The

appropriate choice of training points is an important open research question as recently

pointed out by Roderick et al. [30] and Cheng et al. [31].
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1.1.2.2 Surrogate Model Approximation Error

Theoretically, the approximation error associated with surrogate models can be quanti-

fied by comparison with the exact function values, by means of computable quantities such

as root mean square error (L2-norm) and maximum absolute error (L∞-norm). However,

in real-life applications, it is computationally impractical to calculate any of these quanti-

ties, since they require too many expensive exact function evaluations. Without having a

measure for the accuracy of surrogate models, the validity of application results involving

surrogate models become highly questionable. In this work a kriging model which minimizes

the expected mean squared error (MSE) is employed. MSE can simply be used to estimate

the approximation error, however, in practice MSE is really much more a measure of how

well the training points fill the design space uniformly than an actual model approximation

error. Other validation methods such as split sampling, cross-validation, bootstrapping

and Akaike’s information criterion (AIC) [32] either provide limited information regarding

the accuracy of surrogates, or require additional exact function evaluations [33]. Recently,

Mehmani et al. [28] proposed a framework for the regional error estimation of surrogates

(REES), but the authors do not show how it compares to actual approximation errors. This

portrays a continuous evolution of methods for surrogate validation.

1.1.2.3 Curse of Dimensionality

The exponential rise in the required amount of training data for the surrogate model as

the number of input variables, M , increase is referred to as the “curse of dimensionality”.

To address this problem, the introduction of higher-order derivative information (gradients

and Hessian) within surrogate models, as additional training data, has attracted a lot of

attention. For example, many gradient-enhanced surrogate models have been developed
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and have shown very beneficial results [8, 34, 35]. This is mainly due to the availability of

computationally efficient and accurate gradient evaluation methods such as the adjoint for-

mulation [3, 36]. Perhaps the easiest to implement and most popular method for obtaining

derivatives is the finite-difference method which is highly sensitive to the choice of step-size

as well as computationally expensive with an increasing number of inputs. The adjoint

method [1–3], on the other hand, provides a more efficient means of calculating the deriva-

tive and is more accurate as well, particularly when targeting a single output objective: the

effort needed to compute the full gradient is comparable to the effort needed to compute

the function itself. It is appealing to use function values and their derivative information for

the construction of surrogate models, since there are M + 1 pieces of information available

for the constant cost of roughly two function evaluations using adjoint techniques. How-

ever, a direct differentiation would be computationally more efficient when the number of

constraints is larger than the number of design variables (as in most structural optimization

problems).

The ability to compute second-order sensitivity derivatives is also highly desirable for

many science and engineering simulation problems [19, 37–39]. For example, the availabil-

ity of Hessian information allows the use of much stronger Newton optimization strategies,

which holds the potential for greatly reducing the expense of solving difficult optimization

problems. An efficient Hessian evaluation method has been developed by Rumpfkeil and

Mavriplis [40, 41] and using the same logic as above, it is also very appealing to utilize

Hessian information within surrogate models in addition to the gradient information. The

Hessian provides M · (M + 1)/2 pieces of information for roughly the cost of M function

evaluations, since, in general, the most efficient full Hessian constructions require the solu-

tion of M forward linear problems (one corresponding to each input parameter) [19,37,41].
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In summary, when using gradient and Hessian information along with function values to

train the surrogate model, the expensive exact function is expected to be computed far fewer

times, or alternatively it supplies additional “free” training information to the surrogate,

which either ways help to reduce the “curse of dimensionality”.

Another promising avenue is the use of variable-fidelity surrogate modeling, where the

computational burden is reduced by employing a larger amount of low-fidelity data (e.g.

Euler evaluations) in conjunction with a smaller amount of high-fidelity data (e.g. Navier-

Stokes evaluations) [8]. This indeed offers a great potential for savings since, for example,

Euler evaluations are 50–100 times cheaper to obtain compared to equivalent RANS evalu-

ations [42].

1.2 Research Objectives

The research objectives of this work are outlined as follows:

1. To develop a training point selection framework for surrogate models that will provide

the user with a better choice of training points than conventional methods. This will

be studied as: (i) selection in the absence of derivative information (function values

only) and (ii) selection in the presence of derivative information (function, gradient

and Hessian values),

2. To propose quantities for surrogate model error estimate that can be used in problems

of practical interest to assess the accuracy of surrogate models,

3. To apply and demonstrate the training point selection and error estimation framework

on kriging and polynomial chaos surrogate models which are widely used within the

research community,
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4. To advance gradient-enhanced polynomial chaos to Hessian-enhanced polynomial chaos

methods,

5. To compare the performances of kriging and polynomial chaos surrogate models on

analytical and aerodynamic test problems in terms of model accuracy,

6. To apply the improved surrogate models to uncertainty quantification and optimiza-

tion under uncertainty (mixed epistemic/aleatory) on structural and aerodynamic test

problems.

1.3 Thesis Organization

The organization of this thesis is as follows. Chapter II reviews the three surrogate

modeling approaches that are used in this work: kriging, polynomial chaos and multivari-

ate interpolation and regression. Reviews of different training point selection methods are

given in chapter III. Chapter IV provides brief accounts on existing methods for surro-

gate model validation. Chapter V details the proposed dynamic training point selection

and error estimation algorithm. Chapter VI presents the results implementing the pro-

posed training point selection and error estimation framework with kriging and polynomial

chaos on analytical test functions. Chapter VII details the construction of an aerodynamic

database of drag and lift coefficients with kriging and polynomial chaos, and discusses the

performance of the proposed framework for this aerodynamic test problem. Chapter VIII

details the methods for uncertainty quantification and optimization under mixed epistemic

and aleatory uncertainties. This is followed by robust optimization results for structural

and aerodynamic designs in chapter IX. Chapter X summarizes the major conclusions and

outlines future research directions.
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CHAPTER II

SURROGATE MODELS

The computational cost associated with the use of high-fidelity physics-based simulation

models pose a serious impediment to successful application of optimization algorithms [43].

In many engineering problems, thousands of function evaluations may be required to locate

an optimal solution. Therefore, when expensive high-fidelity simulations are employed,

the naive application of optimization algorithms can demand exorbitant number of exact

simulations. The computational requirement is even higher when uncertainties need to be

quantified and accounted in the optimization process.

In the 1960s numerical optimization was limited to perhaps fifty variables and was

computationally very expensive [44]. In the 1970s, Schmit et al. [45] introduced the concept

of a sequential approximate optimization to improve the efficiency of prevalent structural

optimization practices. The basic idea was to analyze an initial design to generate data that

could be used to construct approximations (local) to the objective function and constraints

and supply them to the optimizer. Appropriate move limits were applied to ensure the

validity of these approximations. After solving this approximate optimization problem,

the models are updated and the process is continued until suitable convergence criteria

are met. Subsequently, more general approximation techniques (local and global) have

been developed and it is now increasingly commonplace to employ computationally cheap
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approximation models in lieu of exact calculations. For a detailed understanding of the

evolution of approximation schemes, the reader is referred to the work of Schmit [46].

Several methods exist in the scientific literature for the purpose of modeling the input

– output relationship of an exact simulation [43]. This chapter aims to describe the three

surrogate modeling approaches employed in this work: (1) kriging [47], (2) polynomial chaos

expansions [23] and (3) multivariate interpolation and regression [48, 49].

2.1 Kriging Surrogate Model

The kriging surrogate model was originally developed in the field of geostatistics by a

South African mining engineer Danie G. Krige [6]. Kriging was introduced in engineering

design following the work of Sacks et al. [50] and has found a lot of aerospace applications [34,

35, 51, 52]. Kriging predicts the function value by using stochastic processes and has the

flexibility to represent multi-modal and non-smooth functions. A detailed mathematical

background for the kriging surrogate models is provided in the upcoming paragraphs. This

review is extracted from works in the literature such as Han et al. [53], Rosenbaum et

al. [27, 54], Yamazaki et al. [55, 56] and Jones [57].

2.1.1 Original Kriging Model

2.1.1.1 Model Construction

Universal Kriging

The formulation of “universal kriging model” is given by,

f̂(x) =
m∑

k=1

µkfk(x) + Z(x), (2.1)

where f̂ is the approximated function value. The first term is a lower-order polynomial of

order m modeling the mean behavior using regression and Z(x) represents a local variation

from the mean behavior modeled as a stochastic process.
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Ordinary Kriging

The simplest model called “ordinary kriging” has the following formulation [11],

f̂(x) = µ+ Z(x), (2.2)

where µ is an unknown constant term modeling the mean behavior. In both formulations

Z(x) is assumed to be a stationary Gaussian random process satisfying:

E[Z(x)] = 0 (2.3)

and

Cov[Z(x(i)), Z(x(j))] = σ2R(x(i), x(j)), (2.4)

where R is the user defined spatial correlation function.

The following mathematical discussions are based on ordinary kriging (constant mean

term) for simplicity and an extension to universal kriging is straight-forward.

2.1.1.2 Model Training

Let X = {x(1), x(2), . . . , x(N)} be a vector of N training point locations, where the

exact function f(x) is evaluated leading to a vector of training data denoted as F =

{f (1), f (2), . . . , f (N)}.

Correlation Parameters

The training of the kriging model occurs through correlation parameters as follows.

1. Correlation matrix: Kriging uses a spatial correlation function to relate stochastic

variables between the observed training points, that is, the available data F is cor-

related through a correlation matrix R. Hence the size of the resulting correlation
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matrix is N ×N . The correlation matrix takes the form,

R =



R(x(1), x(1)) · · · R(x(1), x(N))

...
. . .

...

R(x(N), x(1)) · · · R(x(N), x(N))


 . (2.5)

2. Correlation vector: A correlation vector, r, represents the correlation between an

untried point x and observed training points x(i) and can be written as,

r =



R(x(1), x)

...

R(x(N), x)


 . (2.6)

3. Correlation function: The construction of correlation matrix and vector requires a

user-specified correlation function.This correlation function, R, determines the nature

of the data fitting by the kriging model. Any function which renders the correlation

matrix positive definite can be used as the correlation function, and this is one of

the greatest flexibility of kriging. Some popular correlation functions are listed in

Table 2.1. The correlation function is dependent on the spatial distance between the

Table 2.1: Popular spatial correlation functions for the kriging surrogate model.

Basis Function R(x(i), x(j))

Exponential exp(−θ|x(i) − x(j)|p)
Gaussian exp(−θ|x(i) − x(j)|2)

Cubic Spline

1− 6ξ2 + 6ξ3 for 0 ≤ ξ < 0.5
2(1− ξ)3 for 0.5 ≤ ξ < 1
0 for ξ ≥ 1

where ξ = θ|x(i) − x(j)|

Wendland C2

(1− ξ)4(4ξ + 1)

3
for 0 ≤ ξ ≤ 1

0 for ξ > 1

where ξ = θ|x(i) − x(j)|

Wendland C4

(1− ξ)6(35ξ2 + 18ξ + 3)

3
for 0 ≤ ξ ≤ 1

0 for ξ > 1

where ξ = θ|x(i) − x(j)|
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given points x(i) and x(j) and a few hyper-parameters (denoted as Θ) that may be

introduced by the chosen correlation function.

Maximum Likelihood Estimation

The available training data F is assumed to be realizations of a normally distributed

random variable f(x) with mean µ and variance σ2, that is, f ∼ N (µ, σ2). In the process of

fitting the training data a maximum likelihood estimation (MLE) is carried out, that tunes

the unknown parameters of the random process (the mean and variance) as well as the hyper-

parameters, Θ, introduced by the correlation function (e.g. p and θ by an exponential), to

maximize the probability density function (also termed as likelihood function) of the assumed

Gaussian random process:

L(µ, σ2,Θ) =
1

(2πσ2)N/2|R|1/2 exp
[−(F − Iµ)TR−1(F − Iµ)

2σ2

]
. (2.7)

Here, I is a column vector of ones since a constant µ is used. Taking natural logarithm on

both sides yields:

ln{L(µ, σ2,Θ)} = −N
2
ln (2πσ2)− 1

2
ln(|R|)− (F − Iµ)TR−1(F − Iµ)

2σ2
. (2.8)

This form of the likelihood function is known as the ln-likelihood function and is preferred

over the original representation for stability reasons [58]. Now, by using the necessary

condition for optimality [11], the optimal estimations of mean,

µ∗(Θ) =
ITR−1F

ITR−1I
, (2.9)

and variance of the random process,

σ2
∗
(Θ) =

(F − Iµ)TR−1(F − Iµ)
N

, (2.10)

can be obtained analytically, but they still depend on the hyper-parameters Θ influencing

the spatial correlation function and thereby the correlation matrixR. However, the problem
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is now reduced to finding the optimum hyper-parameters Θ. By substituting Eqns. (2.9)

and (2.10) into Eq. (2.8) and by ignoring constant values (since the optimum is not affected)

a simplified ln-likelihood function (objective function) can be obtained:

ln{L(Θ)} ≈ −N ln(σ2
∗
)− ln(|R|)
2

, (2.11)

which in turn has to be maximized to find the optimum hyper-parameters Θ. The values

of µ∗ and σ2
∗
corresponding to the optimum hyper-parameters can then be found using

Eqns. (2.9) and (2.10). Once these parameters are determined for a particular set of training

data, the kriging model can be used to predict the function value at any given point x which

is described in more detail next.

2.1.1.3 Model Prediction

Once the correlation parameters are determined, kriging predicts the function value at

any given location x by maximizing the likelihood of “observed data and prediction” by

means of an augmented system similar to the one in Eq. (2.8) which takes the simplified

form (again ignoring constants),

ln(L) ≈ −

(
F − Iµ∗
f̂ − µ∗

)T [
R r

rT 1

]−1(
F − Iµ∗
f̂ − µ∗

)

2σ2∗
. (2.12)

By differentiating,

∂ ln(L)

∂f̂
= − (f̂ − µ∗)

σ2∗(1− rTR−1r)
+
rTR−1(F − Iµ∗)
σ2∗(1− rTR−1r)

= 0. (2.13)

The only unknown quantity in Eq. (2.13) is the kriging predicted function value f̂ . Thus

by rearranging, the kriging prediction at a given point x can be mathematically written as:

f̂(x) = µ∗ + rTR−1(F − Iµ∗), (2.14)
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where µ∗ is the generalized least-squares estimator of the term µ in Eq. 2.2 modeling the

mean behavior. The factor R−1(F − Iµ∗) can be considered as a weighting vector w and

hence the predicted response is a weighted sum of the correlation vector r, such that,

f̂(x) = µ∗ + rTw. (2.15)

2.1.1.4 Mean Squared Error

The kriging model provides an error estimate (uncertainty bound) for its predictions in

terms of a mean squared error (MSE) which can be written as:

MSE[f̂(x)] = σ2
∗

[
1−

(
r

1

)T [
R I

IT 0

]−1(
r

1

)]

= σ2
∗
[
1− rTR−1r +

(1− rTR−1r)2

ITR−1I

]
.

(2.16)

MSE is zero at training point locations and increases with the spatial distance from training

points. Thus, MSE is more of a measure of space filling than the actual error in the

approximation and it seldom matches the actual error in the model.

2.1.1.5 Expected Improvement

An expected improvement function (EI) quantifies the likely improvement in the ob-

jective function (when using kriging for optimization) in considering to evaluate the exact

function at a trial location x. It takes the form:

EI(x) = (fmin − f̂(x))φ

(
fmin − f̂(x)

σ∗(x)

)
+ σ∗(x)ϕ

(
fmin − f̂(x)

σ∗(x)

)
(2.17)

Here, fmin refers to the minimum among available training data F , φ is the Gaussian density

function and ϕ is the Gaussian distribution function. The first term favors “exploitation”

of high confidence regions, whereas the second term favors “exploration” of regions that

have high uncertainty. Thus, EI can be seen as a figure of merit that balances local and

global search for the optimum.

18



2.1.1.6 Summary

A short summary of the steps involved in constructing a kriging surrogate is provided

as follows [54]:

1. Choose a design of experiments strategy for X = {x(1), x(2), . . . , x(N)} and evaluate

the exact function values to obtain F (X) = {f (1), f (2), . . . , f (N)}.

2. Pick a spatial correlation function R.

3. Find the unknown model and hyper-parameters using a maximum likelihood estima-

tion approach.

4. Solve the kriging linear system to find the weighting vector w.

5. Evaluate the model at a given location x as f̂(x) = µ∗+rTw. Additional information

such as mean squared error and expected improvement can also be obtained.

2.1.2 Cokriging Models

Cokriging models are kriging models which also include derivative values of the exact

function (e.g. gradients, Hessian) in their formulations. Both, direct and indirect cokriging

models have been developed and have shown to provide beneficial results [8, 47, 56].

2.1.2.1 Indirect Cokriging

In the indirect cokriging approach additional training points are constructed around an

actual training point by using Taylor series extrapolations. The kriging is then constructed

using all available data points (actual and extrapolated). This approach is highly dependent

on extrapolation step sizes specified by the user which can either cause ill-conditioning of
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the correlation matrix if chosen too small or give poor Taylor series approximations if chosen

too large.

2.1.2.2 Direct Cokriging

In the direct cokriging approach, the covariances between gradient and/or Hessian in-

formation are directly included in the correlation matrix and are modeled by differentiating

the correlation function. The direct approach is preferable due to its lack of tunable pa-

rameters and better condition numbers of the correlation matrix. The correlation matrix

for a gradient-enhanced kriging model takes the form,

R =




R(x(1), x(1)) · · · R(x(1), x(N)) ∂R(x(1),x(1))

∂x(1)
· · · ∂R(x(1),x(N))

∂x(N)

...
. . .

...
...

. . .
...

R(x(N), x(1)) · · · R(x(N), x(N)) ∂R(x(N),x(1))

∂x(1)
· · · ∂R(x(N),x(N))

∂x(N)

∂R(x(1),x(1))

∂x(1)
· · · ∂R(x(1),x(N))

∂x(N)

∂2R(x(1),x(1))

∂2x(1)
· · · ∂2R(x(1),x(N))

∂x(1)∂x(N)

...
. . .

...
...

. . .
...

∂R(x(N),x(1))

∂x(N) · · · ∂R(x(N),x(N))

∂x(N)

∂2R(x(N),x(1))

∂x(N)∂x(1)
· · · ∂2R(x(N),x(N))

∂2x(N)




. (2.18)

The correlation vector takes the form,

r =




R(x(1), x)
...

R(x(N), x)
∂R(x(1),x)

∂x(1)
...

∂R(x(N),x)

∂x(N)




. (2.19)

The correlation matrix for Hessian-enhanced direct cokriging models are not shown here

due to the complexity of its representation. The size of the correlation matrix increases to

N · (1 +M) when gradient-enhanced and N · (1 +M + M(M+1)
2

2
) when Hessian-enhanced.

2.1.3 Variable-Fidelity Kriging Model

It is known that the computational expenses with physics-based simulations can be

very high. Even the reduced simulation requirements by surrogate models can become
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hard to obtain, especially when the number of input variables (dimensions) increases. A

promising avenue is the use of variable-fidelity (also known as multi-fidelity) surrogate

modeling. The general idea is to combine trends from low-fidelity data (e.g., coarser meshes,

less sophisticated models) with interpolations of high-fidelity data (e.g., finer meshes, better

models, experimental data). For example, low-fidelity data from Euler evaluations can

be combined with a smaller amount of high-fidelity data from Navier-Stokes evaluations.

This indeed offers a great potential for savings since, for example, Euler evaluations are

50–100 times cheaper to obtain compared to equivalent RANS evaluations [42]. The low-

fidelity trends are connected with high-fidelity data by using a bridge function (also known

as connection or scaling function) that can be multiplicative, additive or a hybrid (both

multiplicative and additive) [53].

Variable-fidelity kriging surrogate models have been introduced and have shown to pro-

vide a better computational efficiency compared to regular kriging surrogate models. The

reader is referred to Han et al. [53] and Yamazaki et al. [8, 55] for more mathematical

background on this subject.

2.2 Polynomial Chaos Expansions

Polynomial chaos refers to polynomial representation of uncertainty (chaos), where the

stochastic quantities of the random process (e.g. mean and variance) are represented as

spectral expansions of orthogonal polynomials. It can be classified into stochastic Galerkin

(intrusive) and stochastic collocation (non-intrusive) methods. A spectral expansion of the

solution f dependent on multidimensional random variable x takes the form,

f(x) =
∞∑

k=0

ukψk(x), (2.20)

where ψ(x) denotes the selected basis function.
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2.2.1 Original Polynomial Chaos

In the seminal work of Wiener [4], a spectral expansion of Hermite polynomials for

Gaussian random variables were used to represent certain stochastic processes, where a

second-order random process admits a chaos representation of the following form [24]:

f(x) = u0H0 +
M∑

i1=1

ui1H1(xi1) +
M∑

i1=1

i1∑

i2=1

ui1i2H2(xi1 , xi2)

+
M∑

i1=1

i1∑

i2=1

i2∑

i3=1

ui1i2i3H3(xi1 , xi2 , xi3) + . . . .

(2.21)

The basis is formed by Hermite polynomials Hp of order p and xij , j = 1, 2, . . . ,M is

the set of multidimensional Gaussian random variables. The Hermite chaos expansion has

been an effective tool for solving stochastic differential equations with Gaussian normal

inputs [5, 23, 59]. However, Cameron and Martin [60] showed that the original chaos ex-

pansion is applicable to any functional and will converge in a mean-square sense (or L2

sense). The original chaos expansion has also been used to solve inputs with a log-normal

distribution [61].

2.2.2 Generalized Polynomial Chaos

The Wiener-Askey scheme of polynomials [61,62] include various orthogonal polynomials

whose weighting functions are identical to the probability density function (PDF) of the

distributions of the random variable x. Each type of polynomial in the Wiener-Askey

scheme corresponds to a particular probability distribution as shown in Table 2.2 [63].

Hermite polynomials used in the original polynomial chaos is a subset of the Wiener-Askey

scheme of polynomials. The correct choice of random distribution polynomial as the basis

function ψ is shown to exhibit optimal convergence rates [59].
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Table 2.2: Wiener-Askey scheme polynomials with their corresponding weighing functions.

Distribution PDF Polynomial Weight Range

Normal
1√
2π
e

−x2

2 Hermite Hp(x) e
−x2

2 [−∞,∞]

Uniform
1

2
Legendre Pp(x) 1 [−1, 1]

Exponential e−x Laguerre Lp(x) e−x [0,∞]

Beta
(1− x)α(1 + x)β

2α+β+1 B(α+ 1, β + 1)
Jacobi Jp

α, β(x) (1− x)α(1 + x)β [−1, 1]

Gamma
xαe−x

Γ(α+ 1)
Generalized Laguerre Lαp (x) xαe−x [0,∞]

Xiu and Karniadakis [59] advanced the original (also called Hermite) polynomial chaos

into a generalized polynomial chaos or Wiener-Askey polynomial chaos, where the random

variable x can be associated with different measures. The generalized polynomial chaos

expansion (PCE) is given as follows,

f(x) = u0ψ0 +
M∑

i1=1

ui1ψ1(xi1) +
M∑

i1=1

i1∑

i2=1

ui1i2ψ2(xi1 , xi2)

+
M∑

i1=1

i1∑

i2=1

i2∑

i3=1

ui1i2i3ψ3(xi1 , xi2 , xi3) + . . . ,

(2.22)

where ψp is the polynomial basis of order p taken from the Wiener-Askey scheme depending

on the probability distribution of multidimensional random variables xij , j = 1, 2, . . . ,M .

Multidimensional Basis Functions

Multidimensional orthogonal polynomial bases can be easily obtained by tensorization of

the corresponding one-dimensional polynomial bases using a multi-index notation [23,24,64],

ψk(x) = ψk(x1, x2, . . . , xM ) =
M∏

i=1

ψαk
i
(xi), (2.23)
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where the multi-index αki denotes the order of the one-dimensional polynomial. As an

example, a two-variable chaos expansion is shown below:

f(x1, x2) = u0ψ0(x1)ψ0(x2)

+ u1ψ1(x1)ψ0(x2) + u2ψ0(x1)ψ1(x2)

+ u11ψ2(x1)ψ0(x2) + u21ψ1(x1)ψ1(x2) + u22ψ0(x1)ψ2(x2)

+ u111ψ3(x1)ψ0(x2) + u211ψ2(x1)ψ1(x2) + u221ψ1(x1)ψ2(x2) + u222ψ0(x1)ψ3(x2)

+ u1111ψ4(x1)ψ0(x2) + . . . ,

(2.24)

where u = {u0, u1, u2, u11, u22, . . .} is the vector of coefficients.

A Compact and Truncated Form

For simplicity of notation a compact form of the expansion in Eq. (2.22) given by:

f(x) =
∞∑

k=0

ukψk(x), (2.25)

will be used throughout, where ψk(x) is defined by Eq. 2.23. For computational purposes,

the infinite expansion in Eq. (2.25) can be truncated and represented as,

f̂(x) =

P∑

k=0

ukψk(x), (2.26)

where the total number of terms T is given by [59],

T = P + 1 =
(M + p)!

M !p!
. (2.27)

2.2.3 Intrusive and Non-intrusive forms of PCE

The computation of polynomial chaos coefficients (weights) u falls into two categories

as intrusive and non-intrusive methods [65]. This work is focused on non-intrusive methods

and the reader is referred to the literature for a more detailed review on intrusive methods

than given here [23, 24, 64].
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Intrusive Methods

Intrusive methods, also referred to as the stochastic Galerkin (SG) methods require the

formulation and solution of the stochastic version of the original model. The deterministic

code has to be altered through the substitution of polynomial chaos expansions. A Galerkin

projection in random space is applied to derive the equations in weak form, which generates

a system of coupled state equations. The expansion coefficients u can then be obtained by

solving the linear system of state equations [23, 64]. The requirement to modify existing

source code quite extensively can make the implementation of intrusive PCE difficult or

even impossible.

Non-intrusive Methods

Non-intrusive methods, also referred to as the stochastic collocation (SC), use inter-

polation methods and projections of a set of deterministic simulations onto a polynomial

basis [66]. In doing so, the residual of the governing equations are required to be zero at

discrete nodes in the domain which are called collocation points [23]. The weights u of the

multivariate spectral expansions in Eq. (2.25) are computed by practices that do not man-

date the modification of existing deterministic solvers and they can be used as a black-box.

Similar to SG methods, SC methods achieve fast convergence when the solutions possess

sufficient smoothness in the random space. Stochastic collocation can be further classified

as pseudo-spectral integration or response surface method (also known as point collocation,

linear regression methods) [23,67]. In the pseudo-spectral approach, the inputs x are chosen

deterministically at quadrature nodes [23, 24, 64] or sparse grids. In the response surface

approach, the inputs can be evaluated at random locations x and the coefficients u are

obtained by solving the linear system formed by Eq. (2.25). The non-intrusive approach
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(polynomial regression) developed by Roderick et al. [30] is adopted in this work and is

discussed in more detail in the following paragraphs. The random collocation points are

referred to as training points in this work.

2.2.4 Constructing Polynomial Chaos Response Surface

A regression procedure for obtaining the best polynomial approximation in the presence

of function, gradient, and Hessian information is discussed below.

1. Setting up the linear system: Polynomial fitting conditions are enforced at the

training points x(j), j = 1, 2, . . . , N , resulting in a linear system with N equations

and T unknowns. It is required that N ≥ T to be able to solve the linear system.

Legendre orthogonal polynomials are employed as the basis function in this work.




ψ0(x
(1)) ψ1(x

(1)) · · · ψP (x
(1))

ψ0(x
(2)) ψ1(x

(2)) · · · ψP (x
(2))

...
...

. . .
...

ψ0(x
(N)) ψ1(x

(N)) · · · ψP (x
(N))








u0
u1
...
uP





=





f(x(1))

f(x(2))
...

f(x(N))





(2.28)

2. Solving the linear system: The linear system given in Eq. (2.28) enforces poly-

nomial interpolation at the N training points, when the amount of available data is

equal to the number of coefficients to solve for (i.e., N = T ). To improve the con-

ditioning of the basis matrix, an oversampling factor of two (smallest integer greater

than one) is recommended in the literature [63] and is adopted in this work as well.

When oversampling (i.e., N > T ) is enforced, the linear system can only be solved in

a least-squares sense and the resulting response surface is a regression model.

3. Evaluating the response surface: Once the coefficients u are solved for, the PCE

response surface defined by Eq. (2.26) is successfully obtained. It can now be used to

get the approximated function value at any given location x, and the surrogate model
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is ready for its potential applications such as uncertainty quantification and opti-

mization. In addition, gradient ∇f̂ and Hessian approximations ∇2f̂ from the PCE

surrogate model at any location x are readily obtained by differentiating Eq. (2.26)

which can facilitate, for example, Newton-based optimization strategies. Mathemati-

cally,

∇f̂ =
P∑

k=0

uk
∂ψk(x)

∂x
(2.29)

and

∇
2f̂ =

P∑

k=0

uk
∂2ψk(x)

∂2x
, (2.30)

where ∂ψk(x)
∂x and ∂2ψk(x)

∂2x
involve again the multi-index notation given by Eq. 2.23.

Table 2.3: Selected orthogonal polynomials with their first and second derivatives and
recursive relation.

Order Hermite Legendre Hermite Legendre Hermite Legendre

Hp(x) Pp(x)
∂Hp(x)
∂x

∂Pp(x)
∂x

∂2Hp(x)
∂2x

∂2Pp(x)
∂2x

0 1 1 0 0 0 0
1 x x 1 1 0 0

2 x2 − 1 3x2−1
2 2x 3x 2 3

3 x3 − 3x 5x3−3x
2 3x2 − 3 15x2−3

2 6x 15x
...

...
...

...
...

...
...

p xHp−1(x)
(2p−1)xPp−1(x)

p pHp−1(x) − (p+1)xPp(x)
x2−1

p(p− 1)Hp−2
(p+1)[(p+2)x2+1]Pp(x)

(x2−1)2

−(p− 1)Hp−2(x) − (p−1)Pp−2(x)
p +

(p+1)Pp+1(x)
x2−1

− (p+1)(2p+5)xPp+1(x)

(x2−1)2

+
(p+1)(p+2)Pp+2(x)

(x2−1)2

2.2.5 Enhancing PCE with Derivative Information

The polynomial chaos has been enhanced to incorporate gradient information which has

shown promising results to reduce the curse of dimensionality (see Roderick et al. [30,68]).

The authors have named their approach polynomial regression with derivative information
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(PRD). As a straight-forward extension here, it will be enhanced with Hessian information

as well. The required first and second derivatives of the orthogonal polynomials ψ are shown

in Table 2.3.

2.2.5.1 Gradient-Enhanced Polynomial Chaos

When the linear system in Eq. (2.28) is augmented with gradient information, each row

of the basis matrix gives rise to M additional rows, where M is the number of components

in x. Thus, if there are N training points the size of the basis matrix becomes N ′ × T ,

where N ′ = N · (1 +M).






ψ0(x
(1)) ψ1(x

(1)) · · · ψP (x
(1))

∂ψ0(x(1))
∂x1

∂ψ1(x(1))
∂x1

· · · ∂ψP (x(1))
∂x1

...
...

. . .
...

∂ψ0(x(1))
∂xM

∂ψ1(x(1))
∂xM

· · · ∂ψP (x(1))
∂xM




...








u0
u1
...
uP





=








f(x(1))
∂f(x(1))
∂x1
...

∂f(x(1))
∂xM




...





2.2.5.2 Hessian-Enhanced Polynomial Chaos

When the linear system is augmented with Hessian information too, the size of the basis

matrix becomes N ′ × T , where N ′ = N · (1 +M + M(M+1)
2 )







ψ0(x
(1)) ψ1(x

(1)) · · · ψP (x
(1))

∂ψ0(x(1))
∂x1

∂ψ1(x(1))
∂x1

· · · ∂ψP (x(1))
∂x1

...
...

. . .
...

∂ψ0(x(1))
∂xM

∂ψ1(x(1))
∂xM

· · · ∂ψP (x(1))
∂xM

∂2ψ0(x(1))
∂2x1

∂2ψ1(x(1))
∂2x1

· · · ∂2ψP (x(1))
∂2x1

...
...

. . .
...

∂2ψ0(x(1))
∂x1∂xM

∂2ψ1(x(1))
∂x1∂xM

· · · ∂2ψP (x(1))
∂x1∂xM

...
...

. . .
...

∂2ψ0(x(1))
∂2xM

∂2ψ1(x(1))
∂2xM

· · · ∂2ψP (x(1))
∂2xM




...








u0
u1
...
uP





=








f(x(1))
∂f(x(1))
∂x1
...

∂f(x(1))
∂xM

∂2f(x(1))
∂2x1
...

∂2f(x(1))
∂x1∂xM

...
∂2f(x(1))
∂2xM




...





The approach (polynomial regression/interpolation) is non-intrusive as only the right hand

side of the equation needs function, gradient and Hessian evaluations, and a black box
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approach can be used to obtain them. When gradients and Hessian are included, the linear

system is generally over-determined (contains more data than needed) and it can be solved

only in a least-squares sense resulting in a regression model.

2.3 Multivariate Interpolation and Regression

2.3.1 Mathematical Formulation

Wang et al. [48,49] proposed a multivariate interpolation and regression (MIR) scheme

where each data point is represented as a Taylor series expansion, and the higher-order

derivatives in the Taylor series are treated as random variables. Mathematically, the exact

function, f , in an M -dimensional design space is approximated as [48, 49],

f̂(x) =

Nv∑

i=1

avi(x)f̃(xvi) +

Ng∑

i=1

agi(x)∇f̃(xgi), (2.31)

where Nv is the number of function data points and Ng is the number of gradient data

points (if used). The approximation coefficients avi and agi are then chosen by solving

an equality constrained least-squares problem such that
∑Nv

i=1 avi = 1. f̃ and ∇f̃ are the

function, f , and gradient values, ∇f , added with their corresponding measurement errors

σvi and σgi (if any). The scheme produces an interpolatory response surface when the data

points are exact, or a regression model when non-zero measurement errors are associated

with the data points.

2.3.2 Parameters of MIR

MIR comes with a few parameters that influence the approximation. They are discussed

in the following paragraphs.
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2.3.2.1 Magnitude Parameter

The magnitude parameter β affects the solution of the equality constrained least-squares

problem in determining the MIR coefficients, but only when measurement errors are present.

The magnitude of variation of the target function, β, can be estimated as the standard

deviation of available data values as shown below,

β =

√∑Nv

i=1(f(xvi)− f̄)2

Nv − 1
, where f̄ =

Nv∑

i=1

f(xvi)

Nv
. (2.32)

In the presence of measurement errors, f(xvi) are unknown, so it is recommended to use

the following equation instead,

β =

√∑Nv

i=1(f̃(xvi)−
¯̃
f)2

Nv − 1
, where

¯̃
f =

Nv∑

i=1

f̃(xvi)

Nv
. (2.33)

The value of β reflects the magnitude of variation of the exact function f(x) and determines

the sensitivity of the approximated function value to available data. When β is small the

response surface is less sensitive to available data and looks like a nonlinear regression

deviating from the data points by a larger threshold. When β is large the response surface

essentially goes through every data point. In this work, the measurement errors are assumed

to be absent leading to an interpolatory response surface.

2.3.2.2 Wave Number Parameter

The wave number γ determines the smoothness of the response surface. An optimum

wave number is attained when the magnitude of estimated approximation error |f(xvi) −

f̂(xvi)| (using a leave-one-out approach described in section 4.2.2.2) and the prediction

interval (computed by the scheme) are the same. The upper and lower bounds of gamma

are determined from the smallest and largest distance between the data points, that is,

γ ∈ [γmin, γmax]. A logarithmic bisection procedure is employed on this interval to find the
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actual γ that corresponds to the equality of approximation error and prediction interval. A

higher wave number tends to produce a smoother response surface almost like a piecewise

lower order polynomial. On the contrary, a lower wave number tends to produce overshoots

in the response surface.

2.3.2.3 Taylor Order Parameter

The Taylor order, n, defines the order of the Taylor series expansion employed in MIR.

The choice of an optimum Taylor order is difficult as it depends on the function to be

modeled as well as its dimensionality. Though it is expected that a higher Taylor order would

lead to an improved approximation, round-off errors originating from the solution of the

least-squares problem in determining the coefficients, tend to propagate to the approximated

function value via Eq. (2.31) and deteriorate its accuracy. Therefore, a higher Taylor order

does not always guarantee an improved approximation.

The first two parameters discussed in sections 2.3.2.2 and 2.3.2.1 are computed auto-

matically by the scheme whereas the Taylor order is user specified.

2.3.3 Summary

A brief overview of the MIR approximation scheme is provided as follows:

• Input of data and parameters: The training data (xvi, f̃(xvi)) and (xgi,∇f̃(xgi))

is gathered along with their corresponding user-specified measurement errors (if any).

• Computation of parameters: The user specifies the Taylor order parameter. The

remaining two parameters of the scheme, namely the magnitude and wave number,

are then determined by the scheme using the input data.
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• Prediction: For each location x at which the approximated function value is desired,

an equality constrained least-squares problem is solved to yield the coefficients avi

and agi. The approximated function value f̂(x) is then given by Eq. (2.31).

2.3.4 Computational Cost and Limitations

The total computational cost involved in building and evaluating the MIR response

surface form arbitrary points (locations where the function is to be predicted) is of the order

of O((K ·NV +m)(N2
V +M ·NG)

3)), where K is the number of required bisection iterations

for finding the optimum γ, M is the number of dimensions, and the other parameters

are the same as discussed in section 2.3.1. This operation count shows that MIR scheme is

computationally more expensive than most existing schemes. Nevertheless, they recommend

the scheme for applications requiring a higher accuracy rather than computational efficiency.

Wang et al. [48, 49] also emphasize the importance of preventing close spacing of training

points that can lead to possible linear dependence in matrix operations.

In this work, multivariate interpolation and regression is used only to construct local

approximations over the sub-domains of the global surrogate models (kriging and polynomial

chaos), and forms an integral part of the proposed framework for training point selection

and error estimation. The term “local” signifies the reduced surrogate domain (sub-domain)

and its associated training data (the use of closest existing training points). The pertaining

discussions on the framework are postponed to chapter V.
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CHAPTER III

DESIGN OF EXPERIMENTS

Design of experiments (DoE) are a set of strategies that choose or allocate training point

locations for a surrogate model. Training point selection is also being termed as sampling by

many investigators, but sampling should only refer to the process of probing the surrogate

model to obtain approximated function values. This unfortunate terminology has been

adopted by many investigators perhaps due to the use of many sampling techniques for

training point selection (e.g. Monte Carlo sampling for random training point selection,

latin hypercube sampling for pseudo-random training point selection and so on).

The location and number of training points used to construct the surrogate model is

known to have a significant effect on its accuracy. Training point selection approaches (or

DoE) can be broadly classified into domain-based and response-based approaches [11]. In

domain-based approaches, training points are chosen based on the information available

from the domain (e.g. distance between two training points), whereas in response-based

approaches, the training points are chosen based on the information provided by the sur-

rogate model (e.g. function values, expected improvement). Domain-based training point

selection is either random or based on space-filling concepts that try to fill the domain

evenly with training points. It is, in general, not possible for the user to select the number

of training points a priori to ensure a given accuracy of a surrogate due to the non-linearity
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of most functions of interest. Response-based approaches enhance the efficiency of the

training point selection process by using information from the existing metamodel. This is

because the user could monitor the progress of the model and choose to stop or extend the

training point selection process. The following is a brief outline of some important domain-

and response-based approaches used for training point selection found in the literature.

3.1 Domain-Based Approaches

3.1.1 Monte Carlo

Monte Carlo (MC) techniques [21, 69, 70] are perhaps the simplest of all DoE methods.

Here, a random number generator is used to select training point locations in the domain.

A major drawback of MC is that large areas of the domain may be left unexplored while

others may be sampled densely [26, 43, 58].

3.1.2 Latin Hypercube

Latin hypercube sampling (LHS) was introduced by McKay et al. [22] for designing

computer experiments as an alternative to MC sampling techniques. The basic idea is

to divide the range of each variable into N bins of equal probability, which yields NM

bins in the domain, where M is the dimension of the problem. Subsequently, N training

points are generated for each variable such that no two values lie in the same bin (as shown

in Figure 3.1). The LHS algorithm generates training points in a box-shaped domain as

follows [43],

x
(i)
j =

π
(i)
j + U

(i)
j

N
, ∀ 1 ≤ j ≤M, 1 ≤ i ≤ N, (3.1)

where x
(i)
j is the j−th component of the i−th training point, U ∈ [0, 1] is an uniform

random number, and π is an independent random permutation of the sequence of integers

0, 1, . . . , N−1. In Figure 3.2 persistent fluctuations in the accuracy (determined by the root
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mean square error (RMSE)) of a generic surrogate model built using LHS or MC as DoE

method can be noticed. In spite of increasing the number of training points, the RMSE does

not decrease, because all these points are picked at random. Thus, a superior strategy for

training point selection is required to ensure that the RMSE will reduce when the number

of training points increase, and this has been one of the major motivations for this research.
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Figure 3.1: An example of LHS in a two-
dimensional domain.
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Figure 3.2: Convergence history of a generic
surrogate model using LHS or MC.

3.1.3 Delaunay Triangulation

Delaunay triangulation is a geometrical method of training point selection, where the

domain is divided into hyper-triangles and the training points are chosen at geometrical

significant location such as the centers of the hyper-triangles and midpoints of the edges

as shown in Figure 3.3. A major drawback of Delaunay triangulation is that it does not

scale well to higher dimensions: the required minimum number of points become quickly

large [71] .
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Figure 3.3: A Delaunay triangulation
schematic is shown, where points numbered
1 to 5 are the initial training points and
12 points have been added subsequently by
splitting the domain into triangles.
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Figure 3.4: An illustration showing poor
LHS distribution of training points.

3.1.4 Quasi-random Sequences

Quasi-random sequences [70] also known as quasi-Monte Carlo or low discrepancy se-

quences produce a sequence of deterministic points that fill the multidimensional space

more uniformly than uncorrelated random points produced by pseudo-random number gen-

erators. They are primarily developed for the purpose of approximating multidimensional

integrals efficiently using a better space filling than random or pseudo-random approaches

such as LHS. Although pseudo-random numbers and quasi-random sequences both produce

space filling designs, there are significant differences between the two. For a pseudo-random

number generator such as LHS, it is possible for all N points to coincidentally be restricted

to a particular region in the domain, or a distribution such as the one shown in Figure 3.4
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(e) Sobol
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Figure 3.5: Training point distributions with quasi-random sequences using 50 points. A
typical LHS distribution is also shown for comparison.

can occur. These are indeed undesirable characteristics in a training point selection strat-

egy. It is not the case with quasi-random sequences where the points are constrained by a

low-discrepancy requirement and are generated in a highly correlated manner such that the

next point knows where the previous points are located.

Figures 3.5 and 3.6 show typical distributions using popular quasi-random sequences

such as Faure, Halton, Hammersley, Niederreiter, and Sobol [25, 26, 70]. It can be noticed

that these low discrepancy sequences fill the domain more uniformly, when compared to LHS

that features a poor distribution. Though quasi-random sequences serve well to approximate

multidimensional integrals by virtue of their nice space-filling properties, they can not be
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Figure 3.6: Training point distributions with quasi-random sequences using 250 points. A
typical LHS distribution is also shown for comparison.

expected to be a good candidate for training point selection, as they are insensitive to the

function to be modeled and do not consider the response values or any form of available

information from the metamodel.

3.1.5 Tensor Product and Sparse Grid Quadratures

Quadratures determine the nodes (training points) based on the underlying probability

distribution of the random variables i.e., at the roots of corresponding orthogonal poly-

nomials: Gauss-Hermite and Gauss-Legendre quadratures have their nodes distributed at

the roots of Hermite and Legendre polynomials, respectively. They are also originally de-

veloped to approximate multidimensional integrals more effectively. Figure 3.7 shows an
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Figure 3.7: Gauss-Legendre grid distribution in two dimensions.

example of Gauss-Legendre quadrature with increasing order in a two-dimensional space.

Multidimensional quadratures are easily obtained by tensor products of corresponding one-

dimensional quadratures. Though they are shown to provide optimal convergence [23, 24],

they become computationally intractable in higher dimensions, as they require (N + 1)M

function evaluations in M-dimensions.
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Figure 3.8: Gauss-Legendre sparse grid distribution in two dimensions.
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Figure 3.9: Gauss-Hermite sparse grid distribution in two dimensions.

Though efforts have lead to the development of sparse grid quadratures [72] (e.g. Smolyak

sparse grids), they still suffer from high cost requirements. Moreover, sparse grids require

smoother functions as they involve extrapolations. Figures 3.8 and 3.9 show some typical

sparse grid quadrature node distributions.

3.2 Response-Based Approaches

Response-based approaches for training the surrogate model allow the user to make use

of the information available from the existing surrogate model. A brief note on some of

these techniques are provided as follows.

3.2.1 Mean Squared Error & Expected Improvement

Mean Squared Error

The kriging surrogate model provides an uncertainty estimate in the form of the MSE

given by Eq. 2.16. This parameter can be used to guide the training point selection by

placing points in regions where the MSE is maximal. Figure 3.10 shows an example of the

distribution of kriging MSE using the two-dimensional Runge test function. It can be seen
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that the MSE is zero at training point locations and increases as the distance from training

points increase. Therefore MSE-based selection processes produce a space filling design

as MSE is a function of the distance between training points as discussed in chapter 2.1.

Placing training points in regions where MSE is maximal is equivalent to only focusing on

a global search and not considering chances for local improvements. This has led to the

development of a figure of merit called expected improvement (EI) [73] that balances local

and global search performances.
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Figure 3.10: An example of MSE estimate provided by kriging using two-dimensional Runge
function. The white circles refer to training point locations.

Expected Improvement

Jones et al. [73] suggested that training points can be selected in regions where the

expected improvement (EI) function defined by Eq. 2.17 is maximal, i.e. in regions where the

expectation of improvement in the objective function is maximal. During this process, the
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training point set is updated, the metamodel is reconstructed, and the process of choosing

additional training points is continued until the expected improvement from a potential new

training point has become sufficiently small.

The EI based training point selection approach has great potential for finding the global

optimum. However, this approach assumes MSE to be the actual error in the kriging

prediction, when it is indeed not, and regions near the current best point have a greater

EI value, causing the algorithm to cluster points near the current best point. Figure 3.11

shows the contours of the EI function over the domain of a two-dimensional Runge function.
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Figure 3.11: Expected improvement provided by kriging using two-dimensional Runge func-
tion. The white circles refer to training point locations.

Though MSE/EI can be a better option than random training point selection, the meth-

ods have some disadvantages that are summarized below:

• MSE formulation does not incorporate any information from the actual response values

f(x).
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• Not all surrogate modeling approaches provide MSE/EI estimates like kriging.

• Even though kriging has an MSE estimate, mathematically it is not an actual measure

of error in the kriging prediction.

• EI is much more suited for optimization rather than building a globally accurate

surrogate model as required for UQ.

3.2.2 Trust Region Method

The trust region method is associated with an approximation to the exact function which

is only “trusted” within a small region of the current optimization iterate. The size of the

trust region is modified during the search, based on how well the model agrees with actual

function evaluations. If the approximation is in good agreement the trust region is expanded

and it is contracted if the approximation is determined to be poor. Alexandrov et al. [29]

proposed a metamodel management framework using trust region method for updating the

metamodels (adding training data) according to improvements in the objective function

during an optimization procedure.
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CHAPTER IV

SURROGATE MODEL VALIDATION METHODS

Surrogate models are approximate mathematical representations of the exact function.

Thus, model assessment strategies are required to ensure the adequacy of a surrogate for its

applications. The “exact error” in a surrogate model can be quantified only by comparing

it with the exact function. But this is impractical due to the computational resources

required for exact function evaluations and perhaps can defeat the purpose of constructing

a surrogate model in the first place. Chapter III provided a review of training point selection

strategies, where some of them are shown to be driven by error-estimate-like quantities (e.g.

kriging MSE estimate). Historically, several methods have been employed by the researchers

for surrogate model validation, and a brief description of some of them are provided in this

chapter.

A classification of methods available for calculating surrogate model error can be pro-

vided based on the following:

• Limitation to a particular surrogate modeling approach,

• Providing global or local measure of error,

• Furnishing true errors or approximations to the true error.
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From a computational stand-point, they can also be categorized as:

1. Methods requiring additional exact function evaluations and

2. Methods without additional exact function evaluations.

The former methods are exact measures of surrogate model accuracy wheres the latter meth-

ods introduce quantities that tend to match the exact error or provide standalone quantities

that can be used as a measure of precision. Depending upon the desired application area of

surrogate models, either global (average) or local accuracy measures (pertaining to a given

location) may be necessary, and this distinction is also addressed wherever possible in the

following review of popular methods.

4.1 Methods with Additional Exact Function Evaluations

4.1.1 Root Mean Square Error

The root mean square error (RMSE) also known as L2-norm can be written as,

RMSE =

√√√√ 1

n

n∑

i=1

(f (i) − f̂ (i))2, (4.1)

where n is the number of test points that can either be nodes of a Cartesian mesh or

random points in theM -dimensional domain over which the surrogate model is built. RMSE

provides a global measure of surrogate accuracy.

4.1.2 R-Square Method

Jin et al. [74] introduced a quantity called R-Square (the coefficient of determination)

that provides a measure of how well the model is likely to predict the exact function value

at an arbitrary location x and is written as,

R2 = 1−
∑n

i=1(f
(i) − f̂ (i))2∑n

i=1(f
(i) − f̄)2

= 1− Mean Square Error (MSE)

Variance
. (4.2)
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R2 measures discrepancies in the model (modeled by MSE) as well as irregularity in the

problem (modeled by variance). Here, the mean is computed as f̄ = 1
n

∑n
i=1 f

(i). It is to be

noted that a common factor of n gets canceled out in the above equation. A higher value

of R-Square signifies a more accurate metamodel.

4.1.3 Relative Average Absolute Error

Jin et al. [74] also introduced a relative average absolute error (RAAE) defined as,

RAAE =

∑n
i=1 |f (i) − f̂ (i)|

n× σ
, (4.3)

where σ =
√

1
n

∑n
i=1(f

(i) − f̄)2 refers to the standard deviation. A smaller value of RAAE

corresponds to a more accurate surrogate model. This metric describes the overall accuracy

of the model in the domain.

4.1.4 Maximum Absolute Error

The maximum absolute error (MAE) (also known as L∞-norm) between the exact func-

tion f and approximated function values f̂ takes the mathematical representation,

MAE = max{|f (i) − f̂ (i)|} i = 1, . . . , n, (4.4)

n being the number of tested locations. MAE measures the greatest error occurring between

the surrogate and exact function.

4.1.5 Relative Maximum Absolute Error

Jin et al. [74] introduced a relative maximum absolute error (RMAE) defined as,

RMAE =
max{|f (i) − f̂ (i)|}

σ
i = 1, . . . , n, (4.5)

which is a quantity measuring localized error in a particular region of the domain.
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4.1.6 Split Sampling

Split sampling [33] also known as holdout method or subset validation divides the set

of available data into two disjoint sets: training and testing data as shown in Figure 4.1.

While the training data set is used for the surrogate construction, the resulting surrogate is

tested by assessing the difference between the predicted value f̂(x) and actual value f(x),

on the remaining set of testing points. The differences at each of the tested locations are

summed up to give a mean absolute test set error, which can be used to evaluate the model’s

accuracy. The error estimate highly depends on the partition of available data and is thus
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Figure 4.1: A demonstration of split sampling using a two-dimensional Rosenbrock function.

prone to produce varied or biased estimates. Also, the testing data set does not become

a part of the surrogate construction process: thus a lot of exact function evaluations are

not put to good use. Split sampling is considered belonging to methods requiring exact

function evaluations to calculate the surrogate model error, since a separate set of precise

observations are reserved for model validation and not used in surrogate building. Split

sampling is the forerunner of the cross validation strategy discussed in section 4.2.2 which
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addresses the inefficient use of exact function evaluations, by including all the available data

for surrogate model training.

4.2 Methods without Additional Exact Function Evaluations

4.2.1 Bootstrapping

Efron [75] introduced bootstrapping to measure uncertainties in surrogate model predic-

tions using three estimates: simulation, statistical, and specification errors. Bootstrapping

has numerous variants namely non-parametric bootstrapping, smoothed bootstrapping, and

0.632 bootstrapping [76, 77]. A typical and simplest bootstrapping procedure is outlined

below:

1. Generate a set of training data F (X) = {f (1), f (2), . . . , f (N)} from exact simulations,

2. Construct a surrogate model using the available data and evaluate the model to get

the desired output P (e.g. mean or variance of the exact function),

3. Generate simulated values f̂(x) from the surrogate model F̂ (X) = {f̂ (1), f̂ (2), . . . , f̂ (N)},

4. Use the simulated data as training data to construct the surrogate and re-estimate

the desired output P .

The above steps are repeated m number of times as determined by the user and the outputs

are compared to assess the model accuracy.

Bootstrapping is simple to implement and provides a measure for the stability of the

results. However, the bootstrapping procedure is time-consuming and is thus not applicable

for higher dimensional problems. For a detailed review on bootstrapping the reader is

referred to works in the literature [76–78].
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Figure 4.2: A sequence of steps involved in bootstrapping.

4.2.2 Cross Validation

Cross validation [78–80] is a popular method to estimate a surrogate model’s accuracy

which does not mandate any additional function evaluations.

4.2.2.1 k-fold Cross Validation

In k−fold cross validation the data setN is divided into k disjoint subsets with n training

points in each set, and the surrogate model is constructed using the union of k − 1 subsets

of data (or equivalently n(k − 1) data points) and the remaining points from the left-out

subset (n points) are used to find the cross validation error (CVE). The entire procedure

is repeated k times, each time with a different subset for validation. Thus, the whole data
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is used for training as well as validation, making it more attractive than split sampling.

CVE(j) =

√√√√ 1

n

n∑

i=1

(f (i) − f̂ (i))2 j = 1, . . . , k, (4.6)

where f (i) is already available and f̂ (i) is provided by the surrogate model. The average

error across all k trials is computed as mean cross validation error,

MCVE =

√√√√1

k

k∑

j=1

CVE(j). (4.7)

A variant of this method has been proposed by Efron [80] to randomly divide the data

into a test and training set m different times and repeat the above procedure to reduce the

dependency of CVE on partitioning.

4.2.2.2 Leave-one-out Cross Validation

If the number of subsets, k, is equal to the total number of training points, N , then the

approach is termed leave-one-out cross validation. In this case the surrogate model has to

be reconstructed N times using N−1 training points each time. The cross validation errors

can be calculated as,

CVE(j) = |f (i) − f̂ (i)| j = 1, . . . , k, (4.8)

and

MCVE =

√√√√1

k

k∑

j=1

CVE(j) =

√√√√ 1

N

N∑

j=1

CVE(j). (4.9)

The cross-validation estimate of prediction error is nearly unbiased but can be highly vari-

able. The disadvantage of this method is that the surrogate has to be constructed multiple

times which can be computationally intensive as the training data size (N) increases. How-

ever, having multiple approximations may improve the robustness of the whole surrogate

generation and validation approach, since all available data is used for both training and

testing purposes. For more details on cross validation the reader is referred to Efron et

al. [78, 80].
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4.2.3 Regional Error Estimation

Mehmani et al. [28] developed a methodology to quantify the surrogate error in different

regions of the domain, which is called the regional error estimation of surrogates (REES)

method. The REES method provides a model independent error measure that does not

require any additional function evaluations. After segregating the domain into sub-spaces

(or regions) variation of the error with sample density (VESD) regression models are con-

structed to predict the accuracy of the surrogate in each subspace. These regression models

are trained by the errors (the mean and maximum error) and evaluated for the interme-

diate surrogates in an iterative process. At each iteration, the intermediate surrogate is

constructed using different subsets of training points and tested over the remaining points.

Their results indicate that the REES measure is capable of evaluating the regional perfor-

mance of a surrogate with reasonable accuracy.

4.2.4 Surrogate Model Inbuilt Estimates

4.2.4.1 Kriging

The kriging prediction of a function value f̂(x) comes along with an estimate of uncer-

tainty in prediction, the mean square error which is shown in Figure 4.3a. More details on

this measure were provided in sections 2.1.1.4 and 3.2.1.

4.2.4.2 Gaussian Process Regression

Gaussian process regression (GPR) [43] is similar to kriging but differs by virtue of its

regression property. It also provides bounds on its prediction like kriging which is shown

in Figure 4.3b. For kriging and GPR, the approximation bounds are based on statistical

assumptions that errors are due to noise which follows a normal distribution with zero mean
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(a) Kriging (b) Gaussian process regression

Figure 4.3: An illustration for confidence bounds on surrogate model predictions of f(x) =
x sin(x).

and variance σ2. These measures are not an approximation to the actual error but rather

an uncertainty bound which is a function of distance from existing training points.

4.2.4.3 Multivariate Interpolation and Regression

Similarly, the multivariate interpolation and regression (MIR) model provides uncer-

tainty bounds on the approximated function value as [f̂(x) − cσ(x), f̂(x) + cσ(x)], where

the function prediction f̂(x) and its possible deviation σ(x) are calculated in an equality-

constrained least-squares problem [48,49].

In this chapter a review of several error estimation methods, used within the surrogate

modeling community to assess the accuracy of model predictions, has been provided. In

spite of the presence of these methods, the main drawback among these methods are as

follows:

• The error measurement methods discussed in section 4.1 require additional exact

function evaluations and can therefore be prohibitively expensive. These methods
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are generally only used for initial validation purposes on inexpensive analytical test

functions.

• Many parameters offer guidance on the accuracy level of the surrogate model, but

mathematically they are not an actual error measure (e.g. MSE, REES). Moreover,

many surrogate modeling approaches do not come with built-in uncertainty bounds

(e.g. polynomial chaos).

The lack of a good error estimator for surrogate models in spite of their numerous practical

applications has been a major motivation for this work. This has led to the development

of the proposed unified training point selection and error estimation framework requiring

no additional exact function evaluations and which is applicable to any surrogate modeling

approach. The details of the framework are elaborated in the following chapter.

A python based data mining and data analysis tool scikit-learn [81] was used to produce Figures 4.1
and 4.3.
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CHAPTER V

PROPOSED SURROGATE TRAINING AND VALIDATION

FRAMEWORK

The previous two chapters discussed the drawbacks associated with prevalent DoE and

error estimates for surrogate models. In this chapter a unified framework for training point

selection and error estimation for surrogate models is proposed. The fundamental driver

of the framework is the information available from local surrogate models built over sub-

domains of the main surrogate model. The local surrogate models refer to the ones that are

built over the sub-domains of the global surrogate, using only a portion of the available data.

A detailed account on the proposed dynamic training point selection and error estimation

framework is provided in the following paragraphs.

5.1 Discussion of Steps Involved

Figure 5.1 shows a schematic diagram of the algorithm. The steps involved in the process

are as follows.

I. Initialization

The exact function (also gradient and Hessian, if desired) is evaluated at the center

of the domain and a few other points picked by LHS, totaling Ninit training points. The

choice of Ninit is left to the user; however, it is recommended to start with a reasonably
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Figure 5.1: A schematic diagram of the proposed framework for training point selection
using a local surrogate (MIR).

small number depending on the dimensionality and size of the domain. In this work, for

two-dimensional test cases, Ninit has been set to five for kriging and twelve for PCE, where

the latter includes an oversampling factor of two and the required number of data points

to build a second-order PCE (setting p = 2 and M = 2 in Eq. 2.27). For five-dimensional

test cases, Ninit is set to fifty for kriging and forty-two for PCE.
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II. Evaluation of Surrogate Models

Numerous test candidates, ξ(j), j = 1, . . . , Ntest, are picked throughout the entire do-

main via LHS and the following is done with the two surrogates:

(a) Global surrogate: The global surrogate model, which is built using all available train-

ing data, is simply evaluated at all these test candidate locations yielding f̂
(j)
global(ξ), j =

1, . . . , Ntest and the values are stored.

(b) Local surrogate: During the first selection cycle, only one local surrogate is built

using all available Ninit training data points (making it a “second global surrogate”).

The local surrogate model is also simply evaluated yielding f̂
(j)
local(ξ), j = 1, . . . , Ntest.

During subsequent selection cycles, local surrogate models are rebuilt usingNlocal closest

existing training points for each test candidate ξ(j) to evaluate f̂
(j)
local(ξ).

In practical applications, it is intractable to evaluate the exact function to calculate the

root mean square error of the global (main) surrogate model. A discrepancy function δ(ξ)

is proposed as an approximation to the actual error ǫ(ξ) between the exact function and

surrogate model at any given location ξ, and is defined as the absolute difference in predic-

tions from global and local surrogate models: δ(ξ) = |f̂global(ξ)− f̂local(ξ)|. The underlying

assumption is that the local surrogate models provide a more accurate representation of

their corresponding sub-domain than the global surrogate model since piecewise approxi-

mations are generally considered to be more accurate for highly non-linear and non-smooth

functions [82, 83]. Though the local surrogate models can be inaccurate in some cases, for

example, due to scarcity of training data, extrapolations in unbounded space, improper

tuning of the parameters for the local models, etc., they can still serve as reference models
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for the global surrogate model. In the same context of discussion, multiple local approxi-

mations can also be constructed with yet another local surrogate model (e.g. radial basis

functions [84], neural networks [85]) in addition to the MIR local surrogate for added fidelity,

but this avenue is not explored in this work.

Proposed error measures: As discussed in chapter IV, actual surrogate model error

estimates such as RMSE and MAE are prohibitively expensive to obtain. A brief note on

RMSE and MAE has been provided in section 4.1. In order to validate the surrogate models

in applications of practical interest two error estimates are proposed:

(a) A root mean square discrepancy (RMSD) defined as:

RMSD =

√√√√ 1

Ntest

Ntest∑

j=1

(f̂
(j)
global − f̂

(j)
local)

2 =

√√√√ 1

Ntest

Ntest∑

j=1

(δ(j))2, (5.1)

can be used as an approximation to the actual root mean square error (RMSE or L2-

norm) of the surrogate model.

(b) Similarly, a maximum absolute discrepancy (MAD) defined as:

MAD = max{|f̂ (j)global − f̂
(j)
local|} j = 1, . . . , Ntest, (5.2)

measures the worst discrepancy between the local and global surrogate models and can

be used to emulate the actual maximum absolute error (MAE or L∞-norm).

Remark 1: The data used for building the local surrogate models is a subset of already

available data, f (i)(x), i = 1, 2 . . . , N . Thus, no additional exact function evaluations are

needed for constructing the local surrogates.

Remark 2: Although the number of training points used to build a local surrogate,

Nlocal, can be as high as the number of points used to build the global surrogate, N , it
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is recommended to only use a Nlocal that is sufficient to produce a reasonably accurate

local surrogate model. As a rule of thumb, studies similar to the ones shown in section 5.2

can be used to assess the accuracy of the local surrogate models. When it is not possible

to determine the accuracy of the local surrogate models a priori (as in most scenarios), a

certain percentage of the available training data (e.g. 25%) can be allocated for training the

local surrogate models. In this work, 5–50 closest existing data points (depending on the

dimension of the problem) are used to build the local surrogate models. Using more points

to increase the accuracy of the local surrogate model will also increase the computational

expenses in building and evaluating it.

Remark 3: The user should choose an appropriate number of test candidates, Ntest,

depending on the dimensionality of the surrogate. For example, heuristics used for Monte

Carlo [26] or inexpensive Monte Carlo simulations [55] (IMCS) can be adopted. In this work

1,000–25,000 test candidates are used. A larger Ntest facilitates a much wider exploration

of the domain but comes with a higher cost. Fortunately, building and evaluating the local

surrogates can be executed in parallel. As each test candidate is a potential training point

location during the next selection cycle, these terms will be used synonymously.

III. Selection of Training Points

Selection is the process that determines whether or not a test candidate becomes a

training point at which the exact function (gradient and Hessian) is to be evaluated. This

includes the following two steps:

(a) Sorting the discrepancies: Locations (test candidates) are prioritized based on calcu-

lated discrepancies between the global and local surrogate model predictions. A sorted
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discrepancy function vector contains values in the order of decreasing discrepancy and

is represented as δsort(ξ).

(b) Proximity check: The distance, ρ(j), between each test candidate, ξ(j), and its nearest

existing training point, x∗(j), is calculated. Mathematically,

ρ(j)(ξ(j),x∗(j)) = ||ξ(j) − x∗(j)||2, j = 1, . . . , Ntest. (5.3)

The mean value of all these distances measures the average proximity of a potential

training point (belonging to the set of test candidates) to an existing training point and

is written as,

ρ̄ =
1

Ntest

Ntest∑

j=1

ρ(j). (5.4)

Now, each test candidate from the ordered set, δsort(ξ), starting with the one with

the largest discrepancy is checked for proximity to already existing training points by

calculating whether ρ(j) > cρ̄, where c is a control parameter that can be specified by

the user to relax or strongly emphasize the constraint. If a particular test candidate

passes the check, it is added to the actual set of training points and the exact function

(gradient and Hessian) is evaluated. After every successful selection of a training point

the distances given by Eqns. (5.3) and (5.4) are updated.

The proximity check is repeated until Ncyc new training points have been selected at this

selection cycle. The newly available training data can now be used in subsequent selection

cycles of the framework to update the surrogate models.

Remark 4: The enforcement of a geometric constraint works under the assumption that

the global surrogate model is sufficiently accurate within cρ̄ distance from an existing train-

ing data point. In other words, the main surrogate does not warrant any additional training

59



data within this radius, and the exact function can rather be evaluated at a more unexplored

location. This criterion ensures that the training points are not clustered in one particular

region and are sparse in other regions of the domain. As already mentioned in chapter I

each function evaluation can be computationally very expensive, especially for high-fidelity

physics-based simulations, and it is essential to effectively choose each new training point.

Remark 5: The availability of gradient and Hessian information affects the local as well

as global surrogate model’s approximation. It influences the discrepancy function δ driving

the framework and helps the user in identifying the most viable locations to evaluate the

derivative information.

Remark 6: Due to the enforcement of the geometric constraint the framework may not

support fast optimizations as these constraints can prevent the placement of many training

points close to the optimum. Though the framework is recommended for building globally

accurate surrogate models, the geometric constraints do not severely restrict the applica-

bility to optimizations as they are controllable by means of the control parameter c.

IV. Termination

Steps (II) and (III) are repeated to iteratively update the global and local surrogate

models until any one of the following criteria is satisfied.

(a) Reach desired accuracy: The maximum absolute discrepancy (MAD) and/or root

mean square discrepancy (RMSD) can be used to monitor the estimated accuracy of

the current surrogate. A close agreement between MAD and MAE as well as RMSD

and RMSE will be shown in sections 6.2 and 7.2. The process of selecting additional

training data can be stopped when the desired accuracy is reached.
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(b) Exhaust computational budget: When a maximum number of exact function (gra-

dient and Hessian) evaluations is reached the user can stop the training point selection

process.

Remark 7: The framework can simply be used for surrogate model error estimation by

skipping the third step (Selection of Training Points).

5.2 Choice of Local Surrogate Model

This section provides guidelines on choosing a good local surrogate model that can

guide the framework effectively. The following discussions are directed on establishing the

suitability of multivariate interpolation and regression (MIR) in serving as local surrogate

model.

5.2.1 Ordinary Kriging and MIR

Figure 5.2 compares the original kriging and MIR on two-dimensional exponential,

Runge, and Rosenbrock test functions (see section 6.1 for their definitions), where all train-

ing points are selected through LHS. The general observation is that MIR approximates

all test functions except Runge better than kriging. The addition of gradient informa-

tion for surrogate training (labeled FG, continuous lines) yields better results than training

with function values alone (labeled F , dotted lines). The reader is referred to Wang et

al. [48, 49] for a detailed comparison of MIR with other surrogate modeling methods and

higher-dimensional test functions.

5.2.2 Effect of Taylor Order

Figure 5.3 shows the effect of different Taylor orders on the accuracy of the MIR ap-

proximated function value, f̂ . It can be seen that a lower Taylor order, n, such as one
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Figure 5.2: Plots of RMSE of the surrogate versus the number of training points using
kriging and MIR on two-dimensional test functions.
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Figure 5.3: Plots of MIR-RMSE versus the number of training points for different Taylor
orders, n, on two-dimensional test functions.

or two produces a less accurate approximation, whereas a higher n leads to an improved

approximation. For the Rosenbrock test function, after a certain number of points, the

MIR expansion accurately models the function (close to machine precision). The problem

with a higher Taylor order is that it increases the computational time in building the MIR

surrogate significantly and there is not an easy way to choose the appropriate Taylor order

a priori. It is recommended to use a Taylor order that is equal to the number of data points
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(i.e., n = N) when only function values are used for model training, or 3N if the data

points also contain gradient information [48, 49].

Building the MIR surrogate becomes computationally very expensive with increasing

number of training points. It can be seen from Figure 5.2 that MIR is able to produce

comparatively good surrogates with just a few training points and hence are cheaper to

build. It is generally acknowledged that, kriging has the capability to represent multi-modal

functions and can effectively capture non-smooth functions [8]. Moreover, kriging supports

the usage of both high- and low-fidelity training points i.e., a variable-fidelity kriging

surrogate [53,55,86–90] can be constructed. Due to these reasons kriging is preferred as the

global surrogate model, whereas MIR is used to guide the training point selection process

as well as to provide a metric for the accuracy of the global surrogate, using the framework

discussed in section 5.1.
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CHAPTER VI

IMPLEMENTATION RESULTS

This chapter presents the results obtained through the application of the proposed

training point selection and error estimation framework. The discussions can be grouped

as listed below:

• Validating the proposed error estimates for surrogate models (root mean square dis-

crepancy and maximum absolute discrepancy) by comparing them with the actual

error measures of the surrogate model (root mean square error and maximum abso-

lute error),

• Demonstrating the superiority of the proposed “dynamic” training point selection ver-

sus other popular training point selection approaches such as LHS, low-discrepancy

sequences and kriging MSE minimization in terms of model accuracy and monotonic-

ity. Another motive is addressing the question of training point selection under the

availability of gradient and Hessian information,

• Establishing the “non-intrusiveness” of the proposed framework by effective integra-

tion with two different surrogate models: the kriging and polynomial chaos expansions

(PCE),
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• Discussing results pertaining to Hessian-enhanced polynomial chaos which is one of

the new contributions of this work,

• Presenting guidelines to users for a better combination of training point selection with

higher-order derivative information, benchmarked based on equivalent computational

time and their corresponding accuracy,

• Comparing the performance of kriging and polynomial chaos with each other in terms

of accuracy, robustness, and computational time.

Data and results for the aforementioned discussions are shown for multi-dimensional ana-

lytical test functions which are defined next.

6.1 Analytical Test functions

Eqns. (6.1), (6.2) and (6.3) list the multidimensional exponential, Runge, and Rosen-

brock test functions, respectively, which are used for evaluation purposes on anM -dimensional

hypercube [−2, 2]M .

f1(x1, . . . , xM ) = e(x1+...+xM ) (6.1)

f2(x1, . . . , xM ) =
1

1 + x21 + . . .+ x2M
(6.2)

f3(x1, . . . , xM ) =

M−1∑

i=1

[
(1− xi)

2 + 100(xi+1 − x2i )
2
]

(6.3)

The choice of these three analytical test functions is due to the reasons outlined below.

The first test function f1 features an infinite Taylor’s series expansion and it can not be

captured “exactly” by any polynomial. The Runge function f2 being a rational polynomial

is known to pose difficulties for polynomial based response surfaces [91]. The Rosenbrock

function is a popular test problem for gradient based optimizations, and being a fourth

order polynomial it is captured exactly by any polynomial of order greater than or equal to
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four. A two-dimensional surface contour plot for each of the above test functions is shown

in Figure 6.1.
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Figure 6.1: Contour plots of analytical test functions in two dimensions where the contours
are colored by the function values.

The root mean square error (RMSE) between the exact f(x) and approximated function

values f̂(x) is calculated on an M -dimensional Cartesian mesh with Nt total nodes. Math-

ematically,

RMSE =

√√√√ 1

Nt

Nt∑

i=1

(f (i) − f̂ (i))2. (6.4)

The RMSE is calculated on a Cartesian mesh with 10, 201 and 100, 000 nodes for two- and

five-dimensional test cases, respectively.

6.2 Validation of Proposed Error Estimates

As discussed in section 5.1, the dynamic training point selection framework also provides

an error estimate for the global (main) surrogate model through the maximum absolute

discrepancy (MAD) and the root mean square discrepancy (RMSD).
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6.2.1 Comparison with Actual Errors and Cross Validation

In this section, comparisons of: (i) the actual maximum absolute error (MAE or L∞-

norm) and the maximum cross validation error (Max–CVE) with the proposed MAD, and

(ii) the actual root mean square error (RMSE or L2-norm) and mean cross validation

error (MCVE) with the proposed RMSD, are provided. Figures 6.2 and 6.3 show the

above mentioned comparisons for kriging and PCE, respectively. A leave-one-out cross

validation [79, 80] is employed in this study.
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Figure 6.2: A comparison of the proposed error measures (blue lines) with actual errors
(red lines) and leave-one-out cross validation (green lines) on two-dimensional test functions
using kriging.

The general observation is that both the proposed error measures (MAD and RMSD)

feature an excellent agreement with the actual errors (MAE and RMSE) for all tested

cases (exponential, Runge and Rosenbrock functions) and surrogate modeling approaches

(kriging and PCE), with only a few occasional minor differences. This presented behavior

shows great promise to validate the surrogate model without warranting exact function
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Figure 6.3: A comparison of the proposed error measures (blue lines) with actual errors
(red lines) and leave-one-out cross validation (green lines) on two-dimensional test functions
using PCE.

evaluations in applications of practical interest. Cross validation exhibits satisfactory ten-

dencies in matching the actual errors but its overall performance is more chaotic. For all

test cases a maximum of twenty-five nearest existing training points are used to build local

approximations with MIR.

6.2.2 Comparison with Error Distributions in the Domain

In Figures 6.2 and 6.3 quantitative metrics have been used to validate the proposed

error estimate for surrogate models. This section is intended to provide an insight into the

spatial distribution of the actual error, ǫ, and the proposed discrepancy, δ. Figures 6.4, 6.5

and 6.6 show contour plots of the distribution of: (i) the local surrogate model error,

ǫlocal = |f − f̂local|, (ii) the global kriging surrogate model error, ǫglobal = |f − f̂global|, and

(iii) the proposed discrepancy function, δ = |f̂local− f̂global|, for the exponential, Runge and

Rosenbrock test functions, respectively.

The main assumption of the framework has been that the local surrogate models provide

a more accurate representation of their corresponding sub-domain than the global surrogate
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model. The local and global surrogate model errors shown in the leftmost and middle

contour plots of Figures 6.4, 6.5 and 6.6 reveal that the local surrogate models are more

accurate than the global surrogate model. For all the cases the local surrogate models

use the closest 25 data points to predict the function value at a test location. For the

Rosenbrock test function (see Figure 6.6) the local surrogate is indeed a “second global

surrogate model” as all the available data (25 points) is used for its predictions.
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Figure 6.4: Contour plots for the exponential test function showing the distribution of: the
local surrogate model error (left), the global kriging surrogate model error (middle) and
the proposed discrepancy function (right). The global and local surrogate models are built
with 50 and 25 training points (white circles), respectively.

The differences between the function predictions of the two surrogate models (local and

global) is proposed as an approximation to the actual error in the global surrogate model

as discussed in section 5.1. From Figures 6.4, 6.5 and 6.6 a close agreement can be noticed

between the global surrogate model’s actual error distribution (middle) and the proposed

discrepancy function (right), which explains the excellent trends shown in Figures 6.2 and

6.3. Only for the Runge function (see Figure 6.5) can differences be visually seen between

the actual error and the proposed discrepancy function. Similar plots for PCE are not

shown here, but the behavior is clearly evident from the presented trends.
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Figure 6.5: Contour plots for the Runge test function showing the distribution of: the
local surrogate model error (left), the global kriging surrogate model error (middle) and
the proposed discrepancy function (right). The global and local surrogate models are built
with 75 and 25 training points (white circles), respectively.

x

y

­2 ­1.5 ­1 ­0.5 0 0.5 1 1.5 2
­2

­1.5

­1

­0.5

0

0.5

1

1.5

2

0.60

0.50

0.40

0.30

0.20

0.10

x

y

­2 ­1.5 ­1 ­0.5 0 0.5 1 1.5 2
­2

­1.5

­1

­0.5

0

0.5

1

1.5

2

40

35

30

25

20

15

10

5

x

y

­2 ­1.5 ­1 ­0.5 0 0.5 1 1.5 2
­2

­1.5

­1

­0.5

0

0.5

1

1.5

2

40

35

30

25

20

15

10

5

Figure 6.6: Contour plots for the Rosenbrock test function showing the distribution of: the
local surrogate model error (left), the global kriging surrogate model error (middle) and the
proposed discrepancy function (right). The global and local surrogate model(s) are both
built with 25 training points (white circles).

Generally, it is possible for the local surrogate models to provide less accurate represen-

tation of the domain, especially when only a few training points are available. Therefore, it

is advisable to use all the available training data to build local surrogate model(s) during

the first few selection cycles. For example, in this work the local surrogate models for the

two-dimensional cases use all the available training data until the size of the training data

set increases beyond 25, after which it is fixed at 25 for computational efficiency purposes.

70



Nevertheless, the accuracy of the local surrogate models is not a strict requirement, as they

can still be used as reference models to build and validate the global surrogate.

As a final remark, if the training point selection process is desired to be continued, the

framework would choose points where the discrepancies shown in the rightmost contour

plots of Figures 6.4, 6.5 and 6.6 are large (distance-constraint will also be checked before

evaluating the expensive exact function).

6.3 Kriging Results

6.3.1 Number of Training Points per Cycle

The proposed dynamic training point selection features a progressive evolution of the

training data set for the global surrogate model. The user specifies the number of training

points (Ncyc) to be added at each iteration to the training data set - a factor that determines

the rate at which the final training data set is evolved. In the case of PCE, the surrogate

is built in steps of one polynomial order per selection cycle and the required number of

additional points can be determined from Eq. (2.27) and the chosen oversampling factor

which is two. In the case of kriging, the choice of Ncyc is left to the user as kriging does not

mandate any requirements on the minimum number of points needed to build the surrogate.

It is recommended to add a moderate number of training points per iteration to facilitate

a better evolution of the training data set. Adding only a few points per cycle implies

more computational burden since the kriging (also PCE or any response surface) has to be

constructed more often to reach a fixed number of training points.

Figure 6.7 shows the effect of the number of training points added per iteration on the

accuracy of the global surrogate for all three analytical test functions in two dimensions.

The training can be done by choosing more points per cycle, to reduce the number of times
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Figure 6.7: The effect of the number of training points selected per cycle on the accuracy
for two-dimensional test functions using kriging.

the surrogate model needs to be built, as the general monotonic behavior is preserved for

all the tested cases (two, five and ten) and also because the trade-off with accuracy is found

to be small. For the two-dimensional Rosenbrock test function, the kriging surrogate model

does not present a monotone behavior after reaching about 40 training points, due to failed

tuning of kriging hyper-parameters. A similar chaotic convergence behavior was observed

for other polynomial test functions such as the quadratic and cubic ones (results are not

shown here). It will be shown later (see section 6.3.3.2) that kriging exhibits the same

behavior with all the tested training point selection approaches.

6.3.2 Training Point Distribution

Figure 6.8 shows typical training point distributions for all three test functions using

LHS as well as the proposed dynamic method using kriging. In this example, five points

were selected per iteration until reaching the final training data set with 25 points. It can be

observed that the dynamic training strategy concentrates training points in regions where

the curvature is high, near the peaks and bounds, and in regions where the points are sparse.
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Figure 6.8: Training point distributions (N = 25) for two-dimensional test functions using
LHS (top) and the dynamic method (bottom).

For example, the top row of Figure 6.8 (corresponding to latin hypercube sampling) has

larger unsampled regions in the domain than the bottom row (dynamic training), where

the training points are more spread throughout the domain. Such a strategy can save a lot

of computational time when applied to high-fidelity simulations by reducing the number of

required function evaluations to produce a globally accurate surrogate model. On the other

hand, LHS tends to miss important locations as well as affects the matrix conditioning

through too closely spaced points.

73



6.3.3 Accuracy of Dynamically Enhanced Kriging Surrogate Model

A quantitative comparison of the accuracy of the dynamically trained (and thereby

enhanced) kriging surrogate model will be provided in the following paragraphs by means

of RMSE comparisons.

6.3.3.1 Comparison with Low-discrepancy Sequences using Kriging
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Figure 6.9: A comparison of the dynamic training point selection with some quasi-Monte
Carlo sequences and LHS on two-dimensional test functions using kriging.

The dynamic training point selection is compared with some quasi-Monte Carlo se-

quences such as Sobol, Faure, and Halton. LHS is also included in the comparisons to show

its performance compared to other strategies. From Figure 6.9, it can be seen that the

dynamic training point selection is better at producing accurate surrogate models than the

other approaches. As discussed above, for the Rosenbrock test function all training point

selection strategies suffer from chaotic convergence with kriging due to the choice of spatial

correlation function.
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6.3.3.2 Comparison with Kriging MSE Minimization

The kriging surrogate model provides an error estimate through the expected mean

squared error (MSE) as described earlier. The MSE can be used to guide the training point

selection process by adding training points at locations where the MSE is large. Figure 6.10

shows a comparison of kriging surrogate models built with LHS, minimizing MSE and the

proposed framework for training point selection. For all three test functions, the proposed

framework produces more accurate surrogate models.
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Figure 6.10: A comparison of the dynamic training point selection with minimizing the
MSE method on two-dimensional test functions using kriging. LHS is also included to show
its relative performance.

For the Rosenbrock function f3, the MSE method features a poor convergence after

about 40 training points and is even outperformed by LHS. In order to alleviate the non-

smooth convergence behavior of kriging for the Rosenbrock test function (using LHS, Sobol,

Faure, Halton, MSE, and the proposed framework) other spatial correlation functions have

been employed and the results are displayed in Figure 6.11. By comparing the rightmost

Figure 6.10 (using Wendland C4) with Figure 6.11 (using Gaussian and spline) it can be
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Figure 6.11: A comparison of accuracies of the kriging model built with Gaussian (left) and
spline (right) spatial correlation functions for two-dimensional Rosenbrock test function.

noted that spline spatial correlation functions feature a much smoother convergence when

compared to Wendland C4 and Gaussian spatial correlation functions. However, since a

derivative-enhanced kriging model is employed in this work, Wendland C4 spatial correlation

function [92] is used as default for the remainder of this article to ensure differentiability.

Also, for further comparisons only LHS will be considered to reduce the complexity in

presenting the results.

6.3.4 Dynamic versus LHS in 2D

In order to account for the inherent randomness in LHS all two-dimensional results are

averaged over ten separate runs and the mean results are presented with bounds referring

to the best and worst case.

From Figure 6.12 it can be inferred that the dynamic method (shown with continuous

lines) performs better than LHS (shown with dashed lines), both in terms of monotonicity

and accuracy. The dynamic training point selection improves the accuracy of the surrogate

by roughly an order of magnitude when compared to LHS, for the first two test functions.
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Figure 6.12: Plots comparing training point selections using LHS and the dynamic method
on two-dimensional test functions (with function values only) with kriging. Five training
points are selected per cycle.
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Figure 6.13: Plots comparing training point selections using LHS and the dynamic method
on two-dimensional test functions (with derivative information) with kriging. Five training
points are selected per cycle.

For the Rosenbrock test function (f3), though not as distinct as for the other test functions,

the lower bounds show that the dynamic method is still more accurate than LHS.

The training point selection in the presence of derivative information is shown separately

in Figure 6.13. It can be noted that the addition of gradient and Hessian information helps

to improve the accuracy of the response surface for both LHS and the dynamic training
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point selection. The dynamic training point selection improves the accuracy even more by

placing the higher-order derivative information in the most viable locations. This behavior

can be observed across all test functions in Figure 6.13. Also, it can be seen that the LHS

Hessian cases (FGH) of f1 and f3 (Figure 6.13 left and right, respectively), are not more

accurate than the gradient cases (FG) as expected. But with the dynamic method, auxiliary

information always improves the accuracy of the surrogate model, as it ably chooses the

locations that would contain derivative information.

The smaller bounds on the RMSE for the dynamic method in the figures indicate that it

is less random than LHS implying that only one run is sufficient whereas most random train-

ing point selection methods require multiple runs to ensure that “bad luck” does not impede

the results. In most instances, the upper bounds of the dynamic method (corresponding to

its worst approximation) are still better than the lower bounds of LHS (corresponding to its

best approximation). Hence it can be expected that the dynamic training point selection

method to produce more accurate surrogates for a fixed computational budget. The supe-

riority of the dynamic method over other quasi-Monte Carlo sequences has already been

demonstrated in Figure 6.9.

6.3.5 Dynamic versus LHS in 5D

Figure 6.14 shows the results for five-dimensional test functions. Due to the computa-

tional resources needed to build five-dimensional surrogate models, error bounds are not

included. It can be seen that the dynamic method (shown as continuous lines) helps to

improve the accuracy of the kriging surrogate compared to LHS (shown as dashed lines).

The advantage of including derivative information is also more evident for these higher-

dimensional test cases.
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Figure 6.14: Plots comparing training point selections using LHS and the dynamic method
on five-dimensional test functions with kriging. Fifty training points are selected per cycle.

As a general remark, if the proposed dynamic training point selection (or any response-

based method) is used, the surrogate is built progressively starting from an initial (small)

number of training points, to achieve better accuracy for a fixed computational budget.

The cost of building the surrogate model multiple times can generally be neglected in

comparison with the computational cost of high-fidelity physics-based simulations. If the

surrogate construction should become too expensive, it can be accelerated by selecting a

larger number of additional training points per cycle for a minimal trade-off with accuracy

as demonstrated in Figure 6.7.

6.4 Polynomial Chaos Results

Results pertaining to the polynomial chaos expansions are discussed in this section.

An oversampling factor of two is enforced to improve the matrix conditioning (prevents

accidental rank deficiency). The dynamic training point selection is initiated by building a

second-order accurate PCE including a training point at the center of the domain. As the
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order of expansion increases, the required number of collocation points (training points) are

picked dynamically.

6.4.1 Dynamic versus LHS in 2D

Figure 6.15 compares PCE with LHS (shown as dashed lines) with that of PCE with

dynamic training point selection (shown as continuous lines) for all three test functions,

along with error bounds similar to the results presented for kriging. As it can be seen,

the convergence behavior of PCE with LHS is chaotic compared to that of the dynamic

strategy which is monotonic instead. Although the rational Runge function (f2) is known

to pose difficulties for PCE [91], the dynamic method shows good convergence whereas

LHS shows very poor results. Note that recently a rational polynomial chaos expansion

scheme has been developed by Sheshadri et al. [91] to address the difficulty of PCE with

such functions. The fourth-order polynomial Rosenbrock function (f3) is captured exactly

after the order of expansion reaches four; however, it suffers from polynomial over-fitting

(using a model that is more sophisticated than needed) [93] as the order of expansion

increases further. Overall, the dynamic training point selection consistently produces more

accurate surrogates compared to LHS. Figure 6.16 shows the improved performance of

the dynamic method for choosing training points that contain gradient (labeled FG) and

Hessian information (labeled FGH). In particular, for the Runge function, the advantage of

the proposed framework is very pronounced.

6.4.2 Dynamic versus LHS in 5D

Figure 6.17 the shows five-dimensional results. It is again evident that the dynamic

method is more consistent in producing a good PCE surrogate compared to LHS which

tends to show random fluctuations. When the function values alone are used, about 6000
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Figure 6.15: Plots comparing training point selections using LHS and the dynamic method
on two-dimensional test functions (function values only) with PCE. The order of expansion,
p, ranges from 2 to 11.
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Figure 6.16: Plots comparing training point selections using LHS and the dynamic method
on two-dimensional test functions (with higher-order derivative information) with PCE. The
order of expansion, p, ranges from 2 to 12.

training points are needed for a tenth order polynomial. If gradients are used, only about

1000 points are needed and only about 200 points are required with function, gradient and

Hessian information to roughly obtain the same level of accuracy. This is because of the

availability of additional training information as discussed in section 1.1.2.3.
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Figure 6.17: Plots comparing training point selections using LHS and the dynamic method
on five-dimensional test functions. The order of expansion, p, ranges from 2 to 10.

6.4.3 Validation of Gradients and Hessian from Surrogate

Figures 6.18 and 6.19 show the RMSE between the approximated function (shown as

blue lines), gradients (shown as green lines) and Hessian (shown as red lines) with that

of the exact values in two and five dimensions, respectively. It can be seen that the PCE

produces good approximations of gradient and Hessian information that can be used for

many applications including optimization and uncertainty quantification.
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Figure 6.18: RMSE in the approximated function, gradient and Hessian values from PCE
for two-dimensional test functions.
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Figure 6.19: RMSE in the approximated function, gradient and Hessian values from PCE
for five-dimensional test functions.

6.4.4 Choice of Orthogonal Polynomials

All the results shown above for PCE use Legendre orthogonal basis. Results in Fig-

ure 6.20 show the effect of using different orthogonal polynomials to construct the basis

matrix ψ. For a reasonable comparison, the same set of training points (chosen via LHS)

that were used with Legendre orthogonal basis were also used with Hermite orthogonal

basis. Though the PCE coefficients u are found to be different when using Hermite poly-

nomials as basis, it did not show any impact on the overall accuracy of the PCE surrogate

model, as polynomial interpolation is unique. For f3 small deviations can be seen only after

reaching machine precision (not due to the choice of basis).

6.5 Comparison of Kriging and Polynomial Chaos

The purpose of this section is to compare the kriging and PCE surrogates, both of

which are enhanced with the dynamic training point selection method on analytical test

functions. In Figure 6.21 for the exponential function f1, PCE exhibits a smoother as well

as better convergence rate for all the three subcases F, FG and FGH, than kriging. Whereas
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Figure 6.20: A comparison between Legendre and Hermite basis functions for PCE in two
dimensions.
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Figure 6.21: A comparison between kriging and PCE on two-dimensional test functions.

for the rational Runge function f2, the kriging is producing a better surrogate than PCE.

The Rosenbrock function f3 is captured exactly by PCE as expected, whereas kriging is

converging much slower (as it is not a polynomial based surrogate). For all the kriging test

cases five training points were added per cycle. Figure 6.22 compares kriging with PCE for

the five-dimensional test cases. For f1, PCE performs slightly better than kriging. However,

for f2, PCE produces poor results and f3 is captured exactly as expected. In building the
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kriging surrogate 600, 100, and 20 training points were selected per cycle for F , FG, and

FGH test cases, respectively.
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Figure 6.22: A comparison between kriging and PCE on five-dimensional test functions.

6.5.1 On using Higher-order Derivative Information

The following discussion is aimed at providing guidelines for choosing an appropriate

combination of training point selection method and incorporation of higher-order deriva-

tive information. Generally, the use of derivative information provides improved surrogate

models for both kriging and polynomial chaos, irrespective of whether the training points

are chosen dynamically or at random (occasionally LHS shows a deviant behavior). As

discussed in section I, efficient gradient and Hessian calculation methods are available for

high-fidelity physics-based simulations and they provide the means to reduce the effects of

the “curse of dimensionality”.

Figures 6.23 and 6.24 take into account the computational time for calculating the

gradient and Hessian, and plot the model accuracy versus the number of equivalent exact
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Figure 6.23: RMSE versus the number of equivalent function evaluations for two-
dimensional test functions using kriging and PCE with dynamic training point selection.
Reference LHS results with function values only are shown with dashed and continuous gray
lines corresponding to kriging and PCE, respectively.

function evaluations for two- and five-dimensional test functions, respectively. For exam-

ple, the computational time for evaluating N data points with function values only (F), is

the same as evaluating N
2 points with function and gradient values (FG), which in turn is

the same as N
M+2 points with function, gradient and Hessian information (FGH), using the

adjoint method as discussed in section 1.1.2.3, where M is the number of dimensions. From

these figures it can be inferred that the gradient enhanced surrogates (FG) are computa-

tionally more efficient than the others (F or FGH). The Hessian enhancement does not yield

convincing results as expected; however, it can be expected that the Hessian information in

specific locations (such as where data points are sparsely distributed) can be advantageous

than to add Hessian information to all training points as done here.

In summary, LHS and some low-discrepancy sequences have been shown to produce

less accurate results than the proposed dynamic method. Additionally, the computational

advantage of building gradient enhanced surrogate models is shown in Figures 6.23 and 6.24.
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Figure 6.24: RMSE versus the number of equivalent function evaluations for five-
dimensional test functions using kriging and PCE with dynamic training point selection.
Reference LHS results with function values only are shown with dashed and continuous gray
lines corresponding to kriging and PCE, respectively.

Hence, based on these observations, the dynamic training point selection in conjunction with

the use of gradient information for the construction of surrogate models offers the best value.

6.5.2 Key Observations for Kriging and PCE

The following discussion summarizes the performances of kriging and PCE in terms of

accuracy, robustness and computational time.

Accuracy: A definite conclusion could not be made on this aspect, as these surrogate

models (kriging and PCE) perform differently for different classes of test functions. PCE fea-

tures higher convergence rates for smooth and continuously differentiable functions (e.g., f1)

and polynomials (e.g., f3). However, kriging is well suited for non-smooth, non-polynomial

functions (f2). A similar comparison for an aerodynamic test case featuring discontinuities

will be shown in chapter VII.

Robustness: The general applicability of both kriging and PCE are compared below.
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• PCE mandates a specific number of points for a particular order of expansion (due

to its mathematical setup). It can be disadvantageous when working with a fixed

computational budget or already existing data (e.g. experimental data).

• As the order of expansion increases for PCE, “wiggles” tend to appear in the PCE

surrogate which is a typical behavior of higher-order polynomials which can affect the

overall accuracy of the surrogate. The kriging surrogate model does not suffer from

this major drawback as it is not a polynomial.

• PCE basis matrix is known to suffer from ill-conditioning (more pronounced in the

regression approach). Though an oversampling factor of two or more is suggested, it

does not guarantee the well-posedness of the problem.

• PCE produces good results for smooth and polynomial functions, but most physics-

based simulations are neither smooth nor polynomials.

• Kriging supports the usage of both high- and low-fidelity training points [53,55,86–90]

whereas PCE does not have this advantage yet.

Computational Time: PCE is cheaper to build and evaluate than kriging. This is due

to comparatively intensive mathematical operations required for the construction of kriging

as discussed in section 2.1. On the other hand, for PCE the most time-intensive operation

is finding the inverse of the basis matrix ψ for a given set of training data.
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CHAPTER VII

AERODYNAMIC DATABASE CREATION

In this chapter the benefits of the proposed training and validation framework are

demonstrated for an aerodynamic problem. Finally, the kriging and polynomial chaos are

applied to construct aerodynamic databases of drag and lift coefficients.

7.1 Flow Problem

The steady inviscid flow around a NACA 0012 airfoil governed by the Euler equations is

solved by using a second-order accurate finite-volume approach [94,95]. The computational

mesh is shown in Figure 7.1.

The variations of the drag and lift coefficients with changes in Mach number (0.5 ≤M∞ ≤

1.5) and angle of attack (0◦ ≤ α ≤ 5◦) are studied. An “exact” database is obtained from

Euler flow solves on a Cartesian mesh of Nt = 51× 51 = 2601 equispaced nodes and is used

to validate both the kriging and PCE surrogate models.

Figure 7.2 shows the gradients obtained using a discrete-adjoint approach (demonstrated

to be accurate to machine precision [94,95]) for two typical angles of attack, α = 1◦ and 4◦.

It can be seen that the gradients are quite noisy (due to the transonic behavior of the

flux limiters) and are hence counterproductive in the construction of the surrogate models.
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Thus, gradients and Hessian are not used for surrogate training in this aerodynamic test

case.

Figure 7.1: Computational mesh for NACA 0012 airfoil with 19,548 triangular elements.
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Figure 7.2: Noisy gradients for α = 1◦ (left) and α = 4◦ (right).
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7.2 Validation of Proposed Error Estimates

7.2.1 Comparison with Actual Errors and Cross Validation
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Figure 7.3: A comparison of proposed error measures (blue lines) with actual errors (red
lines) and leave-one-out cross validation (green lines) for drag (left) and lift coefficients
(right) using kriging.

In Figures 7.3 and 7.4, the proposed error estimates (MAD and RMSD) are compared

with the actual errors (MAE and RMSE) as well as leave-one-out cross validations for

kriging and PCE, respectively. The excellent agreement observed for analytical test func-

tions can not be seen here. This is due to the reason that the kriging is better than MIR

in approximating the non-smooth drag and lift functionals, thereby making the initial as-

sumption of a more accurate local surrogate model invalid. This opens up the avenue for

exploring other candidates for building local surrogate models (e.g. radial basis function,

neural networks) that can approximate non-smooth functions as good as kriging (or better).

Although not as accurate as kriging, the MIR produces reasonably accurate reference local

surrogate models (see Figures 7.5 and 7.6). As a result, the proposed error measures are

91



Number of Training Points

E
r
r
o
r

0 15 30 45 60 75 90
10

­3

10
­2

10
­1

10
0

10
1

Actual MAE

Max CVE

Proposed MAD

Actual RMSE

Mean CVE

Proposed RMSD

Number of Training Points

E
r
r
o
r

0 15 30 45 60 75 90
10

­2

10
­1

10
0

10
1

10
2

Actual MAE

Max CVE

Proposed MAD

Actual RMSE

Mean CVE

Proposed RMSD

Figure 7.4: A comparison of proposed error measures (blue lines) with actual errors (red
lines) and leave-one-out cross validation (green lines) for drag (left) and lift coefficients
(right) using PCE.

much better in capturing the tendencies seen in global surrogate model convergence, when

compared to the often used cross validation which shows misleading tendencies.

7.2.2 Comparison with Error Distributions in the Domain
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Figure 7.5: Contour plots for the drag coefficient showing the distribution of: the local
surrogate model error (left), the global kriging surrogate model error (middle) and the
proposed discrepancy function (right). The global and local surrogate models are built
with 75 and 25 training points (white circles), respectively.
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Figure 7.6: Contour plots for the lift coefficient showing the distribution of: the local
surrogate model error (left), the global kriging surrogate model error (middle) and the
proposed discrepancy function (right). The global and local surrogate models are built
with 75 and 25 training points (white circles), respectively.

Figures 7.5 and 7.6 show the distribution of local (left) and global surrogate model error

(middle), along with the proposed discrepancy function (right), for drag and lift coefficients,

respectively, using kriging as the global surrogate model. The regions where the actual errors

are high in the global kriging model (i.e., the transonic regime) are predicted reasonably well

by the discrepancy function, though the magnitudes are quite different (due to inadequate

local models as mentioned above). By comparing the contour values of error, it can also be

seen that the MIR local surrogate models are less accurate than the global kriging model

for both the drag and lift coefficient. Another observation that can be made is that the

dynamic training point selection method is adding a majority of the training points in the

transonic region as expected. The kriging MSE minimization approach would not exhibit

this behavior since MSE is a measure of space filling. If a better spread of training points

is also preferred, the control parameter described in chapter V can be set to a higher value

such as 1.1 or 1.2, that will enforce a more strict geometric constraint, or the vice versa

when using the framework for optimizations (not studied here).
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7.3 Construction of Aerodynamic Database

7.3.1 Comparing Training Point Selection Methods

Figure 7.7 compares the performance of the proposed dynamic training point selection

with other DoE methods for kriging (left) and polynomial chaos (right), respectively. Here,

ten separate runs are averaged and the mean, best and worst trends are shown. It can be

seen that the dynamic training point selection performs better than LHS for both surro-

gate models and for both functionals. In Figure 7.7 (left), which corresponds to kriging,
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Figure 7.7: Plot of RMSE versus the number of training points for kriging (left) and PCE
(right).

minimization of MSE is also compared with the other two methods. Though not as dis-

tinct as seen with analytical test functions, it can be observed that the dynamic method is

consistently more monotonic and accurate than other compared methods. From Figure 7.7

(right), it can be noticed that the accuracy of PCE tends to deteriorate with increasing
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order of the expansion when LHS is used. However, the dynamic training point selection

prevents the early onset of such a behavior.

7.3.2 Drag and Lift Coefficient Hyper-surfaces

Figure 7.8 shows the exact and surrogate based contours for both the drag and lift

coefficients. It can be inferred that the kriging model (shown in the middle column) is in

good agreement with the exact model (shown in the left column) when compared to PCE

(shown in the right column) which features high over- and undershoots in the domain. In

addition, the kriging is able to capture the transonic behavior very well, demonstrating its

ability to model non-smooth functions. Thus, for this test case the kriging proves to be a

much better surrogate model than PCE.
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Figure 7.8: Contours of exact database (left), kriging (middle) and PCE (right) for drag
(top) and lift coefficients (bottom) with 30 training points chosen with dynamic training
point selection.
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7.3.3 Variable-Fidelity Kriging Results

As mentioned in previous chapters, kriging supports the usage of both high- and low-

fidelity training points [53,55,86–90]. The general idea is to combine trends from low-fidelity

data (e.g., coarser meshes, less sophisticated models) with interpolations of high-fidelity data

(e.g., finer meshes, better models, experimental data). This approach can help to reduce the

time taken to build an accurate surrogate model, since the low-fidelity data can be obtained

much faster. In this work a simple cokriging with cross-covariances between the low- and

high-fidelity data is used [55, 89]. The low-fidelity data is calculated on a mesh with only

4,433 triangular elements (not shown), which is roughly four times cheaper to solve than

the mesh shown in Figure 7.1 on which the high-fidelity data is calculated.
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Figure 7.9: Kriging contour plots demonstrating the use of variable-fidelity data for drag
(left) and lift (right) coefficients.

Figure 7.9 shows the variable-fidelity kriging contours for the drag and lift databases.

Here, 15 high-fidelity and 60 low-fidelity training points were used in the construction of

the kriging surrogate and the training point locations are shown as spheres, where the dark
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spheres are high-fidelity training points picked dynamically and the smaller gray spheres

are low-fidelity training points picked via LHS. The overall computational cost is roughly

equivalent to the construction of the kriging surrogate model using 30 high-fidelity training

points. An improvement in the accuracy of the model can be noticed when using the

variable-fidelity data by comparing Figures 7.8 and 7.9 as well as from Table 7.1, for roughly

the same computational cost.

Table 7.1: RMSE comparisons for different kriging models.

RMSE High-fidelity Variable-fidelity
(30 high-fidelity points) (15 high-fidelity and 60 low-fidelity points)

Drag Coefficient CD 0.39× 10−2 0.31× 10−2

Lift Coefficient CL 0.35× 10−1 0.18× 10−1
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CHAPTER VIII

DESIGN IN THE PRESENCE OF UNCERTAINTY

“A product should be designed in such a way that
makes its performance insensitive to variation in
variables beyond the control of the designer” [43]

—Genichi Taguchi

When a system is designed allowances must be made to accommodate likely variations

that can disrupt the nominal performance, such as inaccuracies in modeling, uncertainties

in manufacturing processes, operating environment and boundary conditions. When such

variations or uncertainties are not accounted for in the design process, as in the case of

a deterministic optimization practice, a degraded performance of the optimized design is

inevitable.

In a heavily optimized design, the optimum solution tends to lie either at the extremum

of the objective function or at the constraint boundary [43]. Thus, a deterministic optimum

is a vulnerable solution with a greater likelihood of violating the design requirements: even

small perturbations in the input can lead to a poor performance or failure of the design.

To alleviate this, a factor of safety is traditionally incorporated into the constraints. For

instance, in a structural design problem a stress constraint originally of the form g(d) =

σ
σmax

− 1 ≤ 0 is treated as g(d) = Fs · σ
σmax

− 1 ≤ 0, where d is the vector of design variables

and Fs is the factor of safety. The factor of safety serves to move the optimum away from
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Figure 8.1: An illustration for the sensitivity of optimum designs to input variations.

the constraint boundary by a considerable distance, thereby preventing the design from

an imminent failure. However, the reality is that the designer assigning a factor of safety

is seldom aware of the real effects of uncertainty and predominantly produces an over- or

under-conservative design leading to weight penalty or vulnerable products, respectively.

With the continuous evolution of radically new types of design, it is increasingly difficult

for a designer to assign an adequate factor of safety [43].

Due to these reasons, uncertainty quantification (UQ) has evolved as a field of interest,

where the goal is to account for the effect of uncertainties through a modified optimization

process known as optimization under uncertainty (OUU). OUU can be subdivided into

two fields as robust design optimization (RDO) and reliability based design optimization

(RBDO) [11–13]. Though these two fields share many common attributes, they differ in

their objectives: RDO techniques are used to produce a design that is more robust (less

sensitive) to design parameter anomalies, whereas the goal of RBDO is to minimize the

probability of failure of the system. This work focuses on methods to produce robust designs
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which involves finding an optimum that is less sensitive to input variability as opposed to a

deterministic optimum that can exhibit a sharp change in the objective function value for

minor perturbations in the inputs (see Figure 8.1). Usually, a robust solution is obtained

at the expense of an increased cost function [43] (also illustrated in Figure 8.1).

Stages in OUU: There are three stages in design optimization under uncertainty [43]:

(i) Identification, modeling and representation of uncertainties to translate the available

data into mathematical models that are either probabilistic or non-probabilistic in

nature,

(ii) Propagation of uncertainties through computer models to quantify their impact on

system performance,

(iii) Formulation and solution of an optimization problem with appropriate objective and

constraint functions ensuring that the optimum solution is robust against uncertain-

ties.

Brief overviews of these stages are provided in the remainder of this chapter. For an in-depth

discussion on the subject, the reader is referred to works in the literature [14–18].

8.1 Uncertainty Modeling

The modeling of uncertainties begins with the treatment of inputs as random variables.

Uncertainties can be classified as aleatory and epistemic uncertainties [14,43]. Aleatory un-

certainties are the inherent randomness or variation in physical system, input parameters

and variables, or operating environment [14]. For example, operating conditions are pre-

dominantly dissimilar to the ones used in design calculations and typically fluctuate around

some mean value. Epistemic uncertainties arise due to the lack of knowledge or information
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in any phase or activity of the modeling process. It is not an inherent property of the

system and thus can be eliminated (or converted to aleatory form) when sufficient data

becomes available. As an example, situations can arise where only the bounds or intervals

of the uncertain random variables are known (e.g. manufacturing tolerances) whereas the

underlying probability distribution or other statistical parameters within the interval are

unknown (unlike aleatory random variables).

8.1.1 Probabilistic Modeling

Figure 8.2: An illustration for the use of probabilistic methods. A histogram of the available
angle of attack data (left) is shown with the fitted Gaussian probability density function
(right) whose parameters (µ and σ) are estimated from the available data.

The use of probabilistic methods to model uncertainties is possible when sufficient data

is available. When field data is available a probability density function can be fit to the

available data. Alternatively, a distribution function (Gaussian, log-normal, exponential,

etc.) can be assumed and its parameters can be estimated from the available data. Fig-

ure 8.2 shows an example of fitting the available angle of attack information to a normal

distribution function. The mean and standard deviation are estimated from the data and
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Figure 8.3: An illustration for bounds on input variables.

can be used to define the probability density function (PDF) of the random variable as

p(ξ) = 1√
2πσ2

e−
(ξ−µ)2

2σ2 (Gaussian PDF). The angle of attack (and similarly any other vari-

ables) can now be treated as random variable in optimization formulations.

Distributions should be assumed with caution when only limited data is available to

the designer for assessment [43]. For example, a normal distribution can not be assumed

for Young’s modulus, as a Gaussian distribution supports [−∞,+∞] and a zero probability

would mean a negative Young’s modulus which is unrealistic. In reliability calculations, the

probability of failure is estimated near the tail end of the distribution, which can be very

erroneous if a wrong distribution structure is assumed.

8.1.2 Non-Probabilistic Modeling

The use of probability theory to model the distribution of input uncertainties is question-

able when not enough information is available. This naturally leads into non-probabilistic
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approaches such as possibility theory, interval analysis, convex modeling and evidence the-

ory [43]. The simplest non-probabilistic approach is perhaps the interval representation of

input uncertainties. The input random variable is represented by the interval [η−, η+] where

η− and η+ denote the lower and upper bounds on the input random variable, respectively.

This scenario is illustrated with a two-variable example in Figure 8.3. The random process

can take any value within the specified interval but the underlying probability distribution

is unknown. The input bounds are processed into the analysis model to construct bounds

on the output quantity of interest [43].

In summary, probabilistic approaches are apt for modeling aleatory uncertainties fea-

turing an abundance of data and non-probabilistic approaches are suitable for epistemic

uncertainties suffering a data scarcity.

8.2 Uncertainty Propagation

In this section, approaches for the propagation of input uncertainties are discussed.

The goal is to quantify the uncertainties and model the input–output relationship through

numerical methods. The aleatory variables are denoted as ξ and realizations of aleatory

variables from their probability distribution are represented as α. The epistemic variables

are denoted as η and their realizations within the specified bounds are denoted as β.

8.2.1 Propagation of Aleatory Uncertainties

Sufficient input data is generally available for the analysis of aleatory uncertainties.

Thus, probabilistic methods which mandate multitude of realizations are commonly used

for computing the statistics based on the input probability distribution. In other words, the

distribution type of the input random variables (e.g. α ∼ N (ξ̄,σ2
ξ)) are known, whereas
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the functional dependence f(ξ) on these random variables is not known, and are modeled

using numerical simulations.

Monte Carlo Simulation: The simplest approach to achieve uncertainty propagation is

the Monte Carlo simulation (MCS). When information such as the input mean, standard

deviation and PDF of design variables and other parameters (collectively known as inputs)

are available, the statistics of the output function can be computed using MCS. In this

method, numerous samples (realizations) α(j) are generated from the distribution p(ξ) of

the input random variables and the response function or simulation code is evaluated. This

leads to the following estimates for the mean:

f̄ = µf =
1

Ñ

Ñ∑

j=1

f(α(j)), (8.1)

and variance of the output quantity:

σ2f = ϑf =
1

Ñ

Ñ∑

j=1

(f(α(j))− f̄)2, (8.2)

where Ñ is the number of Monte Carlo samples. MCS can be used on any output function

f(ξ) and is hence non-intrusive in nature.

Inexpensive Monte Carlo Simulation: It is known that repeated evaluations of the ex-

act function, f(ξ), is prohibitively expensive or impractical most of the times. To overcome

this problem, surrogate models can be built and inexpensively probed to yield approximated

output function values f̂(ξ) for the calculation of approximate means and variances. The

required number of function values (training points) for building an accurate surrogate is

usually way less than the number required for statistically converged Monte Carlo simu-

lation. In this work, the domain over which the surrogate model is built is taken to be

three standard deviations in all aleatory input dimensions from the specified mean value
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(a) Set of input variables with distributions (b) Distribution of the output function

Figure 8.4: An illustration for modeling the input-output relationship of uncertainties.

i.e., the surrogate domain is: [ξ̄± 3 ·σξ]. This implies that for normally distributed input

variables more than 99 % of all samples (aleatory realizations) fall within the surrogate

domain and the less accurate extrapolation capabilities of the surrogate model only need

to be employed for a small fraction of the samples. A larger domain can be specified for

the surrogate (e.g. 6σ from mean) to account for even remote possibilities, but is not used

in this work (recommended for reliability calculations). In this work, polynomial chaos and

kriging surrogate models described in chapter II and trained using the dynamic framework

described in chapter V are employed for aleatory uncertainty propagation. Both surrogate

models have the capability to incorporate higher-order derivative information (gradients

and Hessian), however, the surrogates are built using function values only to reduce the

complexity in presenting the results.

8.2.2 Propagation of Epistemic Uncertainties

Epistemic uncertainties represent the lack of knowledge about the appropriate value to

use [16]. For instance, manufacturers typically provide intervals in terms of tolerances (e.g.
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± 0.5 mm for length of a bolt), but the exact values are not known or cannot be guaranteed

whatsoever. Here, the goal is to have bounds on the output quantity of interest or to

determine worst case scenarios (e.g. maximum possible constraint violation, least possible

lift), in order to minimize the sensitivity or variation of the design with respect to these

uncertainties. In a situation where only the input interval I(η) = [η−,η+] = [η̄− τ , η̄+ τ ]

is known, the above assessment can be accomplished in most straightforward manner by

either one of the two methods discussed below.

Sampling: An extensively sampling of the interval I(η) can be done and the analysis of

the resulting outputs f(η) is carried out to determine the extreme values (worst and best

cases). However, the computational burden can be prohibitive in the case of high-fidelity

physics-based simulations and for higher-dimensional spaces. As a remedy, a surrogate

model over the domain I(η) can be constructed (similar to aleatory uncertainties), which

can then be sampled using inexpensive Monte Carlo simulations (IMCS). However, with

increasing number of variables, building an accurate surrogate model requires thousands

of simulation outputs (referred to as the curse of dimensionality) and quickly becomes

prohibitively expensive as well.

Bound-Constrained Optimization: A bound- or box-constrained optimization (BCO) [96–

98] can be employed to find the worst and best behavior of the constraint/objective function

within the specified interval I(η). A gradient-based BCO scales mildly with the number of

input variables, making it computationally more attractive than MCS for quantifying the

effect of epistemic uncertainties, particularly for larger problems. In BCO, the problem of

finding the extreme value of the function, f∗, (and the constraints, g∗i ) within the interval

106



I(η) can be cast as follows:

minimize/maximize
β

f = f(η),

subject to β ∈ I(η) = [η̄ − τ , η̄ + τ ].

(8.3)

In most cases the extremum occurs at either the upper or lower bound of the interval due to

the quasi-linearity of the typically small space described by I(η). Thus, BCO typically takes

only about five to ten simulation output and gradient evaluations to reach f∗ and is used

throughout this work to propagate epistemic uncertainties. An L-BFGS [99,100] algorithm

which utilizes function and gradient information is used to solve the BCO problem given

by Eq. (8.3).

8.2.3 Propagation of Mixed Uncertainties

Table 8.1 summarizes the four typical methods that can be employed for the propa-

gation of mixed epistemic and aleatory uncertainties along with their corresponding ap-

proximate simulation requirements. The computational requirements can be interpreted

assuming an approximate range of values for: (i) the number of Monte Carlo sample

points (Ñ = 105 − 108), (ii) the number of surrogate training points (N = 50 − 5000),

and (iii) the number of simulation output evaluations (with gradients) for a BCO (n =

10−100). The most straightforward way to propagate mixed uncertainties is to carry out a

Table 8.1: Methods for optimization under mixed uncertainties along with their simulation
requirements per iteration.

Method Propagation Method No. of Evaluations Total per iteration
Aleatory Epistemic Aleatory Epistemic

1 MCS MCS Ñ1 Ñ2 Ñ1Ñ2

2 MCS BCO Ñ n Ñ · n
3 IMCS IMCS N1 N2 N1 ·N2

4 IMCS BCO N n N · n
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nested-sampling approach (Method 1), where for each aleatory random variable realization,

α(i), i = 1, 2, . . . , Ñ , drawn from its probability distribution p(ξ), a Monte Carlo sampling

(or LHS for a better search performance) has to be performed over the epistemic variable

realizations β(j), j = 1, 2, . . . , Ñ , to determine the extreme behavior. Method 2 uses BCO

for epistemic uncertainties and is less expensive than Method 1, but can still represent an

enormous computational endeavor for the aleatory uncertainties, and is hence impractical

for high-fidelity simulations. It can be seen that the last two methods employing surrogate

models for uncertainty propagation are several orders of magnitude cheaper. Method 3

turns out to be the cheapest for smaller problems (M =Mξ +Mη ≈ 1− 6), but can easily

suffer from the curse of dimensionality and thus lacks robustness, whereas it can be inferred

that Method 4 is still computationally manageable for bigger problem sizes. Thus, this work

preferably employs the IMCS-BCO approach (Method 4) for the propagation of mixed un-

certainties in a robust optimization problem. The employed IMCS-BCO framework has

been developed by Lockwood et al. [96–98] and Rumpfkeil [101]. A detailed discussion of

steps involved is given in section 8.3.3.

The computational requirements in Table 8.1 are given for just one iteration of the nu-

merical solution for the robust optimization problem. If the optimizer requires K iterations

to converge, the number in the last column has to be multiplied with K to obtain an approx-

imation for the number of simulation evaluations needed. As a last remark, a deterministic

gradient-based optimization requires only on the order of 2K (one function and one gradient

evaluation per iteration) simulation output evaluations to reach the optimum.

In the mixed uncertainty problem, the trial design variable vector d is comprised of both

aleatory and epistemic components i.e., d = [ξ̄, η̄], where ξ̄ represents the mean of aleatory

uncertainties and η̄ refers to the midpoint of the epistemic uncertainty bounds. In this
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work the aleatory uncertainties are assumed to be statistically independent and normally

distributed with α ∼ N (ξ̄,σ2
ξ). Equations for correlated and/or non-normally distributed

aleatory variables can also be derived; however, the analysis and resulting equations become

more complex [102] and are beyond the scope of this work. In addition, the assumed

input standard deviation σ for aleatory variables as well as the upper and lower bounds

for epistemic variables defined by τ are treated as fixed throughout the optimization for

simplicity (could be easily changed).

8.3 Optimization Problem Formulation

8.3.1 Deterministic Optimization

A conventional constrained optimization problem for an objective function, J , that

is a function of input variables, d, state variables, q(d), and simulation outputs, f(d) =

F (q(d),d), can be written as:

minimize
d

J = J(f, q,d),

subject to R(q,d) = 0,

g(f, q,d) ≤ 0.

(8.4)

Here, the state equation residuals, R, are expressed as an equality constraint, and other

system constraints, g, are represented as general inequality constraints. In the case where

the input variables are precisely known all functions dependent on d are deterministic.

However, due to input uncertainties all functions in Eq. (8.4) can no longer be treated

deterministically.

8.3.2 Robust Optimization

The setup of a robust optimization problem under mixed uncertainties is discussed

below.
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Objective Function: A robust objective function can be written in terms of the mean

values of the functional outputs µf∗ and variance σ2f∗. The robust optimization problem is

minimizing the weighted sum of mean extremum and variance of the function. Mathemat-

ically, the objective function assumes the form:

J = w1µf∗ + w2 σ
2
f∗, (8.5)

where w1 and w2 are some user specified weights. In this work, the weights w1 and w2 are

set to one. The asterisk (∗) refers to the extremum of the BCO problem.

Constraint Functions: The state equation residual equality constraint, R, is deemed

satisfied for all values of α and β. The inequality constraints can be cast into a probabilistic

statement such that the probability that the constraints are satisfied is greater than or equal

to a desired or specified probability Pk. The constraints are written as a function of mean

values and their standard deviations [103,104]:

gr = g(µf∗, q, ξ,η) + kσf∗ ≤ 0, (8.6)

where k is the number of standard deviations σg∗ that the constraint g must be displaced

in order to achieve the required Pk.

Problem Formulation: Lastly, the deterministic optimization problem given by Eq. (8.4)

can be recast into a robust design optimization problem [102,105] as follows:

minimize
ξ,η

J = J (µf∗, σ
2
f∗, q, ξ,η),

subject to R(q, ξ,η) = 0,

gr = g(µf∗, q, ξ,η) + kσf∗ ≤ 0.

(8.7)
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Optimization Software: The software package IPOPT (Interior Point OPTimizer) [106]

for large-scale nonlinear constrained optimization is used for the solution of the robust

optimization problem given by Eq. (8.7). IPOPT allows users to impose bound or box

constraints on the design variables, which can be very helpful in ensuring the stability of

the simulation output analysis by preventing the exploration of too extreme regions of the

design space.

8.3.3 Robust Optimization Framework

The steps involved in robust optimization under mixed uncertainties [96–98, 101] are

detailed here (see Figure 8.5). Surrogate models are built to propagate aleatory uncertainties

and bound-constrained optimizations are used to propagate epistemic uncertainties.

1. Initialize: The main optimizer IPOPT (for the robust optimization problem discussed

in section 8.3.2) provides a trial design variable vector d = [ξ̄, η̄] at each iteration, based

on which the surrogate domain is determined as: [ξ̄± 3 ·σξ], from which surrogate training

point locations α(i), i = 1, . . . , N, are selected (using the dynamic training point selection

framework [107, 108]). The interval for the bound-constrained optimization for epistemic

random variables is represented as I(η) = [η−,η+] = [η̄ − τ , η̄ + τ ].

2. Propagate epistemic effects: For each surrogate training point α(i), i = 1, . . . , N , a

BCO problem is solved for determining the worst or best epistemic realization β∗(i) within

the interval I(η). Mathematically, this refers to the determination of the extremum f∗ of

the output function within the interval I(η):

minimize/maximize
β

, f = f(α(i),β)

subject to β ∈ I(η).

(8.8)

111



The aleatory variables remain fixed during the BCO process, while the epistemic variables

are allowed to change within the specified bounds. This completes the propagation of

epistemic uncertainties. The BCO problem needs only a few exact function and gradient

evaluations to reach the extremum.

3. Obtain surrogate training data: The exact function f(ξ,η) is evaluated at (α(i),β∗(i)),

i = 1, . . . , N, and the data is used to train the surrogate model. Note that, if the number of

aleatory variables is large, the surrogate suffers from the curse of dimensionality, i.e., tens

of thousands of BCO results may be required as input training data to the surrogate.

4. Propagate aleatory effects: Once the surrogate model is built using the training

data, it can be probed inexpensively to yield the output statistics (e.g. mean µf∗ and

variance σ2f∗).

5. Update objective/constraints: The aleatory statistics are used to update the ob-

jective function and constraints defined in section 8.3.2.

Steps (1) to (5) are continued until meeting user-specified stopping criteria for the robust

optimization loop.

8.3.4 Gradient Evaluation

8.3.4.1 Aleatory Gradients

The gradient of the objective function with respect to design variables associated with

aleatory uncertainties (random variables) is given by [101]:

dJ
dξ

=
∂J
∂µf∗

dµf∗
dξ

+
∂J
∂ϑf∗

dϑf∗
dξ

= w1
dµf∗
dξ

+ w2
dϑf∗
dξ

, (8.9)
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where the mean µf∗ and variance ϑf∗ are computed using the surrogate model (kriging or

polynomial chaos). The mean extremum of the simulation output is approximated as:

µf∗ ≈
1

Ñ

Ñ∑

k=1

f̂∗(αk). (8.10)

The derivative of the mean extremum with respect to aleatory variables can be calculated

as:

dµf∗
dξ

≈ 1

Ñ

Ñ∑

k=1

df̂∗(αk)

dαk
dαk

dξ
=

1

Ñ

Ñ∑

k=1

df̂∗(αk)

dαk
, (8.11)

where df̂∗(αk)
dαk is obtained from the surrogate models. Likewise, the variance and its deriva-

tive can be approximated as follows:

ϑf∗ ≈


 1

Ñ

Ñ∑

k=1

f̂∗
2
(αk)


− µ2f∗ (8.12)

dϑf∗
dξ

≈


 2

Ñ

Ñ∑

k=1

f̂∗(αk)
df̂∗(αk)

dαk


− 2µf∗

dµf∗
dξ

. (8.13)

8.3.4.2 Epistemic Gradients

The gradient of the objective function with respect to design variables associated with

epistemic uncertainties (random variables) is given by:

dJ
dη

=
∂J
∂µf∗

dµf∗
dη

+
∂J
∂ϑf∗

dϑf∗
dη

= w1
dµf∗
dη

+ w2
dϑf∗
dη

. (8.14)

In this case, the calculation of
dµf∗
dη and

dϑf∗
dη is not simple because moving the midpoint

of the epistemic intervals will lead in general to different extrema for the training points

and thus to a different surrogate model, which when sampled provides different values for

µf∗ and ϑf∗. In comparison, the aleatory gradient was easy to obtain because the same

surrogate model is used and only the change in sample points (random realizations) has to

be accounted. In this work the following approximations are used [101]:

dµf∗
dη

≈ df

dη

∣∣∣∣
(ξ=ξ̄,η=η̄)

and
dϑf∗
dη

≈ 0, (8.15)
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i.e., the derivative of the mean extremum µf∗ with respect to the epistemic variables η, is

approximated by the derivative of the function f with respect to η, evaluated at the mean

values of the aleatory variables and midpoints of the interval for the epistemic variables.

Generally, this derivative is non-zero since for the epistemic optimizations via BCO, the

extreme value is typically encountered at the interval bound. Since the variances are small

in comparison with the mean values, their sensitivities are neglected:
dϑf∗
dη ≈ 0.
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Figure 8.5: Framework for robust optimization under mixed epistemic and aleatory uncer-
tainties.
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CHAPTER IX

ROBUST OPTIMIZATION RESULTS

This chapter presents the results pertaining to the robust optimization of structural and

aerodynamic designs.

9.1 Three-bar Truss Design

In this section the robust optimization of a three-bar truss is discussed.
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Figure 9.1: A schematic diagram of the three-bar truss structure.
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9.1.1 Deterministic Problem

The truss shown in Figure 9.1 is subjected to a load inclined at an angle θ from the

horizontal, which puts bars 1 and 2 under tension and bar 3 under compression. The nodes

are represented with numbers 1 through 4. The goal is to minimize the total weight W of

the structure. The mathematical formulation of the problem is given below in Eq (9.1).

minimize
d

W =
A1γH

sin(φ1)
+
A2γH

sin(φ2)
+
A3γH

sin(φ3)
,

subject to g1 =
σ1

σ1max

− 1 ≤ 0,

g2 =
σ2

σ2max

− 1 ≤ 0,

g3 =
σ3

σ3max

− 1 ≤ 0,

g4 = − σ1
σ1max

− 1 ≤ 0,

g5 = − σ2
σ2max

− 1 ≤ 0,

g6 = − σ3
σ3max

− 1 ≤ 0,

g7 =
Q4x

Q4xmax

− 1 ≤ 0,

g8 =
Q4y

Q4ymax

− 1 ≤ 0,

bounds 0.25 in2 ≤ A1, A2, A3 ≤ 5.0 in2,

30◦ ≤ φ1 ≤ 60◦,

60◦ ≤ φ2 ≤ 120◦,

120◦ ≤ φ3 ≤ 150◦.

(9.1)

The problem has a total of six design variables d = [A1, A2, A3, φ1, φ2, φ3], i.e., the areas

(A1, A2 and A3) and the orientations (φ1, φ2 and φ3) of the bars with respect to the

horizontal. The structure has to be designed to withstand a total of 8 constraints gi(d).

It is to be noted that the constraints are normalized with respect to their allowable values

(denoted with subscript max). The first three, the next three, and the last two constraints
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impose tensile stress, compressive stress and displacement requirements, respectively. The

axial stresses and nodal displacements used in Eq. (9.1) are calculated using a finite element

procedure described in Appendix A. The other parameters used for this problem are listed

in Table 9.1.

Table 9.1: Design data for three-bar truss.

Quantity Description Value Unit

P Load 30000 lb
θ Loading angle 50 deg
E Young’s modulus 107 psi
γ Weight density 0.1 lb/in3

H Reference length 10 in
(projection on y−axis)

σ1max Allowable axial stress on bar 1 5000 psi
σ2max Allowable axial stress on bar 2 10000 psi
σ3max Allowable axial stress on bar 3 5000 psi
u4xmax Allowable x-displacement at 4 0.005 in
u4ymax Allowable y-displacement at 4 0.005 in
ǫ1 Constraint violation tolerance 10−3 -
ǫ2 Norm of design change ‖∆d‖ 10−3 -

9.1.2 Robust Optimization Problem

The robust optimization problem involves minimizing the following objective function:

minimize
ξ,η

J = µW + σ2W ,

subject to gri = µgi + kσgi ≤ 0, for i = 1, . . . , 8,

(9.2)

i.e. the minimization of an equally weighted sum of the mean and variance of the weight

subject to eight constraints. The area design variables Ai are assumed to have epistemic

uncertainties with bounds τi = ±0.1 in2 and the orientations φi are assumed to have aleatory

uncertainties with standard deviation σi = 1◦. The input aleatory uncertainties are modeled
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as α(j) ∼ N (µφi , σ
2
φi
) and the epistemic uncertainties are represented as an interval β(j) ∈

[Ai − τi, Ai + τi]. All other input parameters are kept fixed throughout the optimization.

Surrogate Models: The kriging surrogate model is built with seventy training points.

The polynomial chaos surrogate is a fourth order polynomial with an oversampling factor

of two which also requires seventy training points. The training points are chosen via the

dynamic training point selection framework [107, 108]. Note that each training data f∗

comes from solving a BCO problem as discussed in section 8.2.2.

9.1.3 Optimization Results

9.1.3.1 Deterministic and Robust Designs

Table 9.2 compares the robust design optima with the deterministic optimum. From

the optimum weights, it can be inferred that the deterministic design is the best in terms

of lightness of the structure, but lacks robustness. A deterministic design with no assumed

factor of safety is 15% lighter than a highly robust design specified by k = 4. However,

a deterministic design with a small factor of safety of 1.3 is 29% heavier than a highly

robust design specified by k = 4. The designers can capitalize such a behavior for over-

conservative designs that are in use today or the ones that need to be built in the future.

A design corresponding to k = 0 with a weight of 14.65± 0.24 has 50% chances of violating

the constraints and is not so robust compared to a design corresponding to k = 3 with a

weight of 16.54±0.25 that has less than one percent probability of violating the constraints.

As the desired robustness specified with k increases, an increase in the objective function

value can be seen, meaning that robustness is obtained at the expense of additional weight

to the structure. The designer can carry out a trade-off study between the weight of the
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structure and the required robustness specified with k or Pk. It can be seen that the kriging

and polynomial chaos based results agree very closely for all the tested cases.

Table 9.2: Optimization results for three-bar truss problem.

Type k Pk A1 A2 A3 φ1 φ2 φ3 µW σW Cv No. of F/FG Evals.
in2 in2 in2 deg deg deg lb lb - & Iterations

Initial design - - 2.0 2.0 2.0 45.0 90.0 135.0 7.66 - - -

Det Fs = 1.0 - - 5.00 1.42 2.30 37.6 60.0 150.0 14.45 - - 108/108-12
Det Fs = 1.3 - - 5.00 4.95 5.00 39.5 60.0 143.6 22.00 - - 126/126-14

Robust-KR 0 0.5000 5.00 1.45 2.37 37.7 60.0 150.0 14.65 0.24 0.0162 17559/17559-12
Robust-PC 0 0.5000 5.00 1.45 2.37 37.7 60.0 150.0 14.65 0.24 0.0162 17615/17615-12

Robust-KR 1 0.8413 5.00 1.66 2.66 37.5 60.0 149.3 15.41 0.24 0.0159 21963/21963-14
Robust-PC 1 0.8413 5.00 1.66 2.66 37.5 60.0 149.3 15.41 0.24 0.0159 20555/20555-13

Robust-KR 2 0.9772 5.00 1.84 2.92 37.5 60.0 148.6 16.02 0.25 0.0155 23594/23594-13
Robust-PC 2 0.9772 5.00 1.84 2.92 37.5 60.0 148.6 16.02 0.25 0.0155 33555/33555-18

Robust-KR 3 0.9986 5.00 1.99 3.15 37.5 60.0 148.2 16.54 0.25 0.0153 20771/20771-12
Robust-PC 3 0.9986 5.00 1.99 3.15 37.5 60.0 148.2 16.54 0.25 0.0153 17938/17938-12

Robust-KR 4 0.9999 5.00 2.13 3.36 37.6 60.0 147.9 17.00 0.26 0.0151 31178/31178-17
Robust-PC 4 0.9999 5.00 2.13 3.36 37.6 60.0 147.9 17.00 0.26 0.0151 19500/19500-12

It can also be noted that area A1 is pushed to its upper limit for all designs, while

the other two areas (A2 and A3) and orientations generally govern the robustness of the

structure.

Since the standard deviation is always associated with a mean it is advantageous to use

a dimensionless number, the coefficient of variation Cv (also known as relative standard

deviation or relative amount of uncertainty) [11] that measures the extent of variability

in relation to the mean of the output. It can be used as a metric of comparison with

different data sets or designs that involve different units, or different assumed input mean

and standard deviations. A decrease in the coefficient of variation can be observed across

the robust designs.
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Figure 9.2: Change in the objective function with the number of optimizer iterations.

9.1.3.2 Simulation Requirements

Table 9.2 also presents the number of exact function and gradient evaluations needed to

reach the final design. Here, each constraint evaluation is counted towards the total number

of simulations. The box-constrained optimization takes 2 − 3 exact function and gradient

evaluations for this test case. On average, the kriging and polynomial chaos took roughly

the same number of function and gradient evaluations to reach the optimum. Figure 9.2

plots the change in the objective function with the number of optimizer iterations.
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Table 9.3: Constraint status for three-bar truss problem.

Type k gr1 gr2 gr3 gr4 gr5 gr6 gr7 gr8
Initial design - 0.12 · 101 −0.43 · 100 −0.21 · 101 −0.32 · 101 −0.16 · 101 0.69 · 10−1 0.14 · 100 0.23 · 101
Det Fs = 1.0 - −0.14 · 100 −0.41 · 100 −0.12 · 101 −0.19 · 101 −0.16 · 101 0.82 · 100 −0.48 · 10−8 −0.17 · 10−8

Det Fs = 1.3 - −0.29 · 100 −0.58 · 100 −0.13 · 101 −0.17 · 101 −0.14 · 101 0.71 · 100 −0.46 · 100 −0.34 · 10−7

Robust-KR 0 −0.15 · 100 −0.41 · 100 −0.12 · 101 −0.18 · 101 −0.16 · 101 −0.82 · 100 −0.56 · 10−6 −0.87 · 10−5

Robust-PC 0 −0.15 · 100 −0.41 · 100 −0.12 · 101 −0.18 · 101 −0.16 · 101 −0.82 · 100 −0.84 · 10−5 −0.78 · 10−5

Robust-KR 1 −0.17 · 100 −0.42 · 100 −0.11 · 101 −0.18 · 101 −0.15 · 101 −0.79 · 100 0.90 · 10−4 0.49 · 10−4

Robust-PC 1 −0.17 · 100 −0.42 · 100 −0.11 · 101 −0.18 · 101 −0.15 · 101 −0.79 · 100 −0.12 · 10−4 0.38 · 10−4

Robust-KR 2 −0.19 · 100 −0.43 · 100 −0.11 · 101 −0.18 · 101 −0.15 · 101 0.77 · 100 −0.73 · 10−4 0.13 · 10−3

Robust-PC 2 −0.19 · 100 −0.43 · 100 −0.11 · 101 −0.18 · 101 −0.15 · 101 0.77 · 100 −0.16 · 10−4 −0.12 · 10−3

Robust-KR 3 −0.20 · 100 −0.43 · 100 −0.11 · 101 −0.17 · 101 −0.15 · 101 0.76 · 100 0.28 · 10−3 −0.12 · 10−3

Robust-PC 3 −0.20 · 100 −0.43 · 100 −0.11 · 101 −0.17 · 101 −0.15 · 101 0.76 · 100 0.16 · 10−3 −0.76 · 10−4

Robust-KR 4 −0.21 · 100 −0.43 · 100 −0.11 · 101 −0.17 · 101 −0.14 · 101 −0.74 · 10−3 0.90 · 10−4 0.20 · 10−3

Robust-PC 4 −0.21 · 100 −0.43 · 100 −0.11 · 101 −0.17 · 101 −0.14 · 101 −0.74 · 10−3 0.75 · 10−3 −0.36 · 10−3

9.1.3.3 Constraint Status

Table 9.3 displays the status of all eight constraints at the initial design, deterministic op-

timum, and robust optimum. Here, a positive value for g represents a constraint-violation,

whereas a negative value means that the constraint is satisfied. It can be inferred that

constraints 1, 7 and 8 are the ones that significantly affect the design throughout the opti-

mization (tight or ǫ-active constraints). The kriging and polynomial chaos based values are

a little different for these tight constraints, yet within the specified tolerance to ensure that

the constraints are not violated. All other constraints are inactive and both the surrogate

models provide same values to these constraints.

9.1.3.4 Output PDF and CDF

Figures 9.3 and 9.4 show the probability density function (PDF) and cumulative distri-

bution function (CDF) of the objective function (weight) as well as the constraints (nor-

malized) at their optimum designs. As the desired robustness specified with k increases, an

increase in the objective function value by means of a shift to the right can be seen. The

robust optimization problem formulation serves to move the constraint values k standard
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deviations away from a potential violation which is evident from the PDF and CDF of the

constraints. It can be seen that a design corresponding to k = 4 has less than 1% chances

of constraint violation, whereas k = 0 features 50% chances of constraint violation due to

the effect of input uncertainties.
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Figure 9.3: Probability density function of objective and constraint functions at robust
optimum designs.

123



It can also be seen that the spread of values is reduced as the robustness increases

(compare PDFs of k = 0 and k = 4 cases), which shows that the design is less sensitive to

uncertainties/variations in the input. Overall both surrogate models produce comparable

distributions apart from occasional differences.
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Figure 9.4: Cumulative distribution function of objective and constraint functions at robust
optimum designs.
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9.2 Cantilever Beam Design

This section describes the robust optimization of a cantilever beam.

9.2.1 Problem Description

A cantilever beam of rectangular cross-section is subjected to a bending moment M (N ·

mm) and shear force V (N). The bending stress in the beam is calculated as σ =

6M/bd2 (N/mm2) and the average shear stress is calculated as τ = 3V/2bd (N/mm2),

where b is the width and d is the depth of the beam. The maximum allowable stress in

the form of bending, σallow, is 10 N/mm2 and the maximum allowable shear, τallow, is

2 N/mm2. The goal is to minimize the cross-sectional area A (mm2) of the beam. The

mathematical formulation of the problem is given below:

minimize
b,d

A(b, d) = bd,

subject to g1(b, d,M) =
6M

bd2σallow
− 1 ≤ 0,

g2(b, d,V) =
3V

2bdτallow
− 1 ≤ 0,

g3(b, d) =
d

2b
− 1 ≤ 0,

bounds 100 mm ≤ b, d ≤ 600 mm,

(9.3)

where the constraints g1 and g2 enforce bending and shear stress requirements, respectively,

while g3 imposes an aspect-ratio requirement for the rectangular cross-section. All the

constraints are represented in standard normalized form. The design variables are the

width and depth of the beam.

9.2.2 Robust Optimization Problem

The two allowable stresses (σallow and τallow) in Eq. (9.3) are assumed to be precise

(hence kept fixed) whereas the remaining parameters are assumed to have uncertainties

and are therefor treated as random variables as listed in Table 9.4. The bending moment
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Table 9.4: Data and assumed uncertain parameters for cantilever beam design problem.

Random Description Uncertainty τmin τmax Mean Standard Unit
Variable Type Deviation

b Breadth Epistemic -10 10 - - mm
d Width Epistemic -10 10 - - mm

M Bending Moment Aleatory - - 40 · 106 40000 N ·mm
V Shear Force Aleatory - - 150 · 103 1500 N

and shear force are assumed to have normally distributed aleatory uncertainties with spec-

ified mean and standard deviations as shown in Table 9.4. Only the constraints g1 and g2

which are functions of the bending moment and shear force are influenced by these aleatory

variables. Unlike the three-bar truss problem where all random variables were also consid-

ered as design variables, the cantilever beam problem involves random variables which are

not design variables, but their effects will be considered in the optimization procedure. The

robust optimization problem can be written as:

minimize
b,d

A(b, d) = µA + σ2A,

subject to gr1(b, d,M) = µg1 + kσg1 ≤ 0,

gr2(b, d,V) = µg2 + kσg2 ≤ 0,

gr3(b, d) = µg3 + kσg3 ≤ 0.

(9.4)

In this problem only the epistemic random variables (width and depth) govern the cost

function and the aspect-ratio constraint and therefore the output standard deviations are

unavailable for these functions: σA and σg3 = 0.

Surrogate Models: The robust optimization results will be compared using both kriging

and polynomial chaos. The kriging surrogate model is built with 20 training points and the

polynomial chaos metamodel is a third order polynomial which is also built with 20 training

points.
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9.2.3 Optimization Results

Table 9.5 presents the optimization results. It can be seen that the objective function

value increases with the desired robustness, for example, the cross-sectional area increases

by roughly 17% for a design corresponding to k = 4 compared to a deterministic design

with no factor of safety. However, the robust design (k = 4) has 29% less cross-sectional

area (hence lighter) than a deterministic design with a factor of safety of 1.5.

Table 9.5: Optimization results for cantilever beam design problem.

Type k Pk Width b Depth d Area A No. of F/FG Evals.
mm mm ·103 mm2 & Iterations

Initial Design - - 300 300 90.0 -

Det (Fs = 1.0) - - 335.5 335.4 112.5 33/33-7
Det (Fs = 1.5) - - 595.5 283.4 168.7 45/45-8

Robust-KR 0 0.5000 347.4 343.4 126.3 7046/3523-7
Robust-PC 0 0.5000 347.4 343.4 126.3 7917/7917-8

Robust-KR 1 0.8413 349.7 344.5 127.5 7146/3573-7
Robust-PC 1 0.8413 349.7 344.5 127.5 8037/8037-8

Robust-KR 2 0.9772 398.5 305.4 128.8 7686/3843-7
Robust-PC 2 0.9772 398.5 305.4 128.8 9661/9661-9

Robust-KR 3 0.9986 386.5 317.8 130.0 8694/4347-8
Robust-PC 3 0.9986 386.5 317.8 130.0 11669/11669-10

Robust-KR 4 0.9999 356.6 347.5 131.1 7286/3643-7
Robust-PC 4 0.9999 356.6 347.5 131.1 8196/8196-8

Figure 9.5 shows all three constraints plotted along with the objective function contours.

The objective function is parallel to the constraint g2, therefore, any point on the cure A–B

is a feasible deterministic optimum. At point A, the constraints g2 and g3 are active; at

point B, the constraints g1 and g2 are active; while any point on the curve A–B has the

constraint g2 active. Through robust optimization, the optimum solution is moved by a

distance of k standard deviations away from the deterministic solution, which is shown by
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Figure 9.5: Graphical solution to the minimum area beam design problem.

an increment in the objective function values in Table 9.5. However, the robust optimization

accounts for the exact amount of uncertainty in the problem and achieves a reduced cost

function compared to deterministic designs employing an arbitrary factor of safety which

could easily be over-conservative or under-conservative.

9.2.3.1 Simulation Requirements

The box-constrained optimizations took only 2 to 3 function and gradient evaluations

to reach the extremum. On average the robust optimization takes about 7500 function and

gradient evaluations (includes the constraint evaluations), when compared to the determin-

istic optimization whose simulation needs are many folds lesser. Simulation requirements

for the polynomial chaos method is roughly 20% higher than that of kriging.
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Figure 9.6: Optimization history for the beam design problem.

Figure 9.6 plots the change in the objective function with the number of optimization

iterations for different tested cases (deterministic and robust).

9.2.3.2 Output PDF and CDF

Figure 9.7 shows the probability density and cumulative distribution functions of con-

straints g1 and g2. The PDFs show the spread of possible values taken by the constraints

corresponding to different robust designs, whereas the CDFs show the probability of obtain-

ing a specified value or less. Knowing the spread of values helps a designer to make informed

decisions about the performance of the design. For example, a robust design corresponding
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to k = 4 (red lines) features negligible occurrence of gi > 0 (signifies a constraint violation).

It can also be observed that the constraint values are normally distributed.
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Figure 9.7: Output PDF (left) and CDF (right) of constraint g1 and g2.
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9.3 Airfoil Design

In this section the robust optimization of an airfoil is discussed.

9.3.1 Aerodynamic Analysis

The steady inviscid flow around an airfoil governed by the Euler equations is solved by

using a second-order accurate finite-volume approach [94, 95]. The computational mesh is

shown in Figure 9.8. Hicks-Henne sine bump functions [109] are used to control the shape of

the airfoil resulting from perturbations of shape design variables. The resulting deformation

of the mesh is calculated via a linear tension spring analogy [36, 110].
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Figure 9.8: Computational mesh for NACA 0012 airfoil with 19, 548 elements (left), pressure
distribution at α = 2.0◦ and M=0.65 (right).

9.3.2 Robust Optimization Problem

Seven shape design variables are placed on the upper surface and seven on the lower

surface of the airfoil (at 20%, 30%, 40%, 50%, 60%, 80%, and 90% chord). The bounds on
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the flow variables, angle of attack and Mach number, are taken as 0◦ ≤ α ≤ 4◦ and 0.6 ≤

M ≤ 0.78. All fourteen shape design variables are assumed to have epistemic uncertainties
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Figure 9.9: The NACA 0012 airfoil (in black) and airfoils resulting from perturbations of
±0.0025 (in red and blue).

and the two flow variables are assumed to have aleatory uncertainties.

Table 9.6: Data for robust optimization of airfoil.

Random Description Uncertainty τmin τmax Standard
Variable Type Deviation

η1,2,13,14 Shape design variables Epistemic -0.00125 0.00125 -
η3−12 Shape design variables Epistemic -0.01 0.01 -

ξα Angle of attack Aleatory - - 0.1◦

ξM Mach number Aleatory - - 0.01

Figure 9.9 shows the baseline NACA 0012 airfoil used as the initial (starting) design and

the airfoils resulting from perturbations of the fourteen shape design variables within the

bounds specified in Table 9.6. The initial value of the angle of attack is 2◦ and the Mach

number is 0.65. The mathematical formulation of the problem is given as follows,

minimize
ξ,η

J = µCdmax
+ σ2Cdmax

,

subject to g = (µClmin
+ kσClmin

)− Cl
+ ≥ 0,

(9.5)
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where C+
l refers to a target lift coefficient of 0.6, and Clmin

and Cdmax
are the least possible

lift and highest possible drag within the specified set of epistemic variables, respectively.

Surrogate models: The kriging surrogate model is built with 11 training points. The

polynomial chaos surrogate is a second-order polynomial with an over sampling factor of

two forming a regression surface which requires 12 training points. The surrogate models

are built only over the assumed aleatory variables: the angle of attack and Mach number.

The domain of the surrogate model is three standard deviations wide from the mean values

ξ̄ provided by the main optimizer (IPOPT) at every iteration.

9.3.3 Optimization Results

Table 9.7: Optimization results for airfoil design problem.

Type k Pk µcdmax
σ2cdmax

µclmin
σclmin

α M No. of F/FG Evals.

& Iterations

Initial - - 4.72 · 10−4 - 0.335 - 2.000◦ 0.650

Deterministic - - 1.17 · 10−3 - 0.600 - 2.510◦ 0.600 49/49-24

Robust-KR 0 0.5000 2.72 · 10−3 2.03 · 10−7 0.600 1.84 · 10−2 2.013◦ 0.600 844/844-23
Robust-PC 0 0.5000 2.62 · 10−3 5.80 · 10−8 0.600 1.82 · 10−2 2.389◦ 0.600 675/6751-16

Robust-KR 1 0.8413 2.93 · 10−3 3.07 · 10−7 0.619 1.86 · 10−2 2.065◦ 0.600 434/434-13
Robust-PC 1 0.8413 2.73 · 10−3 2.50 · 10−7 0.618 1.84 · 10−2 3.058◦ 0.600 434/434-15

Robust-KR 2 0.9772 3.10 · 10−3 4.46 · 10−7 0.637 1.88 · 10−2 2.179◦ 0.600 831/831-19
Robust-PC 2 0.9772 3.20 · 10−3 8.58 · 10−7 0.637 1.89 · 10−2 2.193◦ 0.600 710/710-22

Robust-KR 3 0.9986 3.28 · 10−3 6.23 · 10−7 0.657 1.90 · 10−2 2.301◦ 0.600 650/650-21
Robust-PC 3 0.9986 3.25 · 10−3 9.83 · 10−7 0.658 1.92 · 10−2 2.352◦ 0.600 1145/1145-21

Robust-KR 4 0.9999 3.56 · 10−3 9.50 · 10−7 0.677 1.93 · 10−2 2.421◦ 0.600 620/620-15
Robust-PC 4 0.9999 3.65 · 10−3 1.25 · 10−6 0.677 1.93 · 10−2 2.427◦ 0.600 2104/2104-36

Table 9.7 compares the robust design optima with the deterministic optimum. The

average drag and mean angle of attack increase as the desired probability of achieving the

target lift C+
l is increased. The optimum solution is sought from the optimizer at a distance

of k-standard deviations away from the lift-constraint hyperplane. As a result, the amount
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of lift produced is higher as more robustness is expected from the design i.e., the additional

lift produced defines the robustness of the design and the design will be less prone to failure

(violation of the lift-constraint). On the contrary, during a deterministic optimization an

optimum design is sought at the constraint boundary, that can very well violate design

requirements when the underlying variables are not representative of the ones considered

during optimization. Another inference is that robustness is achieved at the expense of the

objective function (drag penalty). Also by observing the optimum aleatory variables on the

right, it can be seen that the Mach number remains the same for all designs (at its lower

bound), whereas the angle of attack varies.

9.3.3.1 Airfoil shape

Figure 9.10 shows the original, deterministic and robustly optimized (k = 4, with poly-

nomial chaos) airfoils. It can be inferred that the deterministically optimized airfoil (shown

in blue) looks very thin compared to the robustly optimized airfoil (shown in red).
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Figure 9.10: Original NACA 0012 (gray), deterministic (blue) and robust with k = 4 (red)
airfoils produced using polynomial chaos. The kriging produced very similar airfoils (hence
not shown).
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(c) Robust Airfoils k = 2
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(d) Robust Airfoils k = 3
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(e) Robust Airfoils k = 4

Figure 9.11: Plots showing the shape (also angle of attack) of different robust airfoils. Red
and blue lines correspond to polynomial chaos and kriging, respectively.
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The robust airfoils corresponding to increasing k are shown in Figure 9.11. Except for

the first two cases (k = 0 and k = 1), the epistemic shape design variables attain similar

values for both models. For k = 1 case, the kriging based robust airfoil is thicker and has

a lower angle of attack, whereas the polynomial chaos based airfoil is thinner and attains

the target lift with an increased angle of attack.

Overall, the kriging surrogate based robust designs (shown as blue lines) tend to have

a lower angle of attack than its polynomial chaos counterpart (shown as red line). This

behavior can be observed across all five robust designs. In general, it may be advantageous

for an airplane to fly faster rather than having an increased angle of attack for generating

more lift. The solution to the Euler equations ignores important viscous effects, such as

boundary layers, wakes and flow separation. If a Navier-Stokes solver is used, it can be

expected that the optimizer places a greater emphasis on the shape optimization rather

than the flow parameter optimization.

9.3.3.2 Simulation Requirements

The last column of Table 9.7 presents the number of function and gradient evaluations

needed as well as the number of iterations taken by the optimizer to converge. Here a

single flow solve provides the lift (constraint) and drag (objective) values. For this airfoil

optimization test case, the robust optimization needs on average roughly 1000 flow and

adjoint solutions, compared to close to 50 evaluations needed for the deterministic opti-

mization, placing a roughly 20 times higher simulation requirement on the designer. The

box-constrained optimizations took 2 to 3 flow and adjoint solutions to determine the worst

possible lift and the highest possible drag within the specified epistemic uncertainty bounds.

For the aleatory uncertainty propagation, though kriging and polynomial chaos involve the

same amount of training information (eleven and twelve points respectively), at the end of
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the main optimization, the latter’s simulation requirements are 50% higher than that of the

kriging (on average). This shows that kriging is more effective for non-smooth functions

such as this aerodynamic test case.
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Figure 9.12: Optimizer iteration history for airfoil design problem.

Figure 9.12 plots the change in the objective function with the number of optimizer

iterations.
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Figure 9.13: PDF and CDF of the drag coefficient at optimum designs.

9.3.3.3 Output PDF and CDF at the Optimum

Figures 9.13 and 9.14 show the PDF as well as CDF of the drag and lift coefficients,

respectively, at several robust designs using kriging and polynomial chaos. The PDFs shown

in the left shows the distribution of possible drag and lift coefficient values due to the effect

of uncertainties, whereas the CDFs show the probability of obtaining a specified value or

less. For example, the distribution of drag (see the left of Figure 9.13) helps the designer

to construct confidence bounds on possible drag values. Similarly, the probability that the

target lift coefficient (C+
L = 0.6) is not attained is 50% for the k = 0 case and is less than 1%

for the k = 4 case. As the required robustness increases, the distributions shift to the right,

which signifies a higher lift generation as well as drag penalty. A Gaussian distribution

is seen for the lift coefficient, whereas the distribution of drag coefficient resembles a log-

normal one.
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Figure 9.14: PDF and CDF of the lift coefficient at optimum designs.

9.3.3.4 Pressure Contours at the Optimum

Figures 9.15 and 9.16 show the pressure distribution around deterministically and ro-

bustly optimized airfoils using kriging and polynomial chaos, respectively. It can be seen

that the pressure distributions are very similar among the robust airfoils, whereas a distinct

difference can be noticed between the robust and deterministic ones.

9.3.4 Validation with Exact Monte Carlo Simulation

Here, validations for the IMCS-BCO approach are provided by a selective comparison

of the k = 1 case with exact Monte Carlo simulation (MCS) and BCO i.e., the surrogate

models are replaced with exact function evaluations (Euler flow solutions). Due to the

expense of the Euler flow solutions, only 3000 Monte Carlo samples are used for this test.

For each Monte Carlo sample, a BCO problem is solved and statistics obtained are presented

in Tables 9.8 and 9.9.
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Figure 9.15: Contour plots of pressure coefficients Cp at different optimum designs using
kriging.

Table 9.8: Validations for k = 1 robust case at the initial design (NACA 0012, α = 2◦ and
M∞ = 0.65) for kriging and polynomial chaos.

Type µcdmax
σ2cdmax

µclmin
σclmin

No. of Function/

Gradient Evals.

IMCS-BCO (Kriging) 8.85 · 10−4 4.32 · 10−9 0.186 1.72 · 10−2 38/38
IMCS-BCO (PC) 9.27 · 10−4 3.97 · 10−8 0.186 1.72 · 10−2 36/36

MCS-BCO 8.98 · 10−4 2.98 · 10−8 0.186 1.72 · 10−2 6153/6153

Overall, it can be noticed that the surrogate models produce reasonably accurate statis-

tics for a fraction of the computational cost compared to MCS. Also, kriging is more accurate

than polynomial chaos in predicting the statistics.
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Figure 9.16: Contour plots of pressure coefficients Cp at different optimum designs using
PCE.

Table 9.9: Validations for k = 1 robust case at the final design for kriging (robust shape,
α = 2.065◦ andM∞ = 0.6) and polynomial chaos (robust shape, α = 3.058◦ andM∞ = 0.6).

Type µcdmax
σ2cdmax

µclmin
σclmin

No. of Function /

Gradient Evals.

IMCS-BCO (Kriging) 2.93 · 10−3 3.07 · 10−7 0.619 1.86 · 10−2 23/23
MCS-BCO 2.73 · 10−3 2.50 · 10−7 0.618 1.84 · 10−2 23/23

IMCS-BCO (PC) 2.96 · 10−3 2.86 · 10−7 0.619 1.86 · 10−2 6153/6153
MCS-BCO 2.65 · 10−3 2.90 · 10−8 0.620 1.81 · 10−2 6152/6152
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CHAPTER X

CONCLUSIONS

10.1 Summary of Results

A dynamic training point selection framework has been proposed and applied to two dif-

ferent surrogate models: the kriging and polynomial chaos expansions. It provides a better

choice of training point locations for both surrogate models since it inherits the characteris-

tics of both domain- and response-based training point selection methods, i.e., a geometric

criterion is used to spread out the points and the points are chosen based on discrepancies

between local and global surrogate approximated response values. Comparisons with latin

hypercube sampling and other domain-based training point selection approaches show that

more monotone convergence behavior and better accuracies are achieved.

The framework also addresses the question of training point selection in the presence of

higher-order derivative information: the local surrogate models use the available derivative

information in approximating the function values and influence the training point selection

via the discrepancy function. As a result, it is shown that the dynamic method ably chooses

better locations to evaluate the gradient and Hessian information than LHS. In this process,
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polynomial chaos has been newly enhanced to incorporate Hessian information. The com-

putational advantage of using higher-order derivative information for the construction of

surrogate models in conjunction with the proposed training point selection is also discussed.

The framework also introduces a local as well as global measure of surrogate model

accuracy, where the global error measure (RMSD) is the mean of all local error measures,

δ. The proposed MAD and RMSD show great promise for measuring surrogate model error

in applications of practical interest where it is intractable to calculate the actual errors

(MAE or RMSE). This is demonstrated by an excellent agreement between the proposed

measures and actual errors for a variety of analytical test functions for both surrogate

models. However, for the aerodynamic test function, the proposed error measures are not

as accurate as they are for analytical test functions, due to the difficulties of the MIR local

surrogate in approximating non-smooth functions. The error estimate does not require

additional exact function evaluations and the extra computational overhead of building and

evaluating local surrogate models is negligible compared to most high-fidelity physics-based

function evaluations.

This work also compares the performances of kriging and polynomial chaos surrogate

models on analytical and aerodynamic test problems in terms of model accuracy. The per-

formances of both surrogate models are also assessed when applied to uncertainty quantifi-

cation and robust optimization under uncertainty (mixed epistemic/aleatory) on structural

and aerodynamic test problems.

10.2 Novel Contributions

1. Training Point Selection: A new framework for surrogate model training point

selection is the main contribution of this work. The dynamic method is shown to
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perform better than commonly used methods for DoE. Many methods exist in the

literature for training point selection in the absence of derivative information. This

work also allows better choices of locations where to evaluate the gradients as well as

Hessian.

2. Error Estimation: This work proposes an error estimate to the surrogate models in

the form of a discrepancy function. This function is shown to exhibit close agreement

with the actual distribution of error.

3. Hessian Enhancement of PCE: The polynomial chaos (regression procedure) is

newly enhanced to incorporate Hessian information as additional fitting conditions.

10.3 Recommendations for Future Work

In summary, the presented framework has shown promise to improve training point

selection as well as estimate the error of the resulting surrogate model. The following is

recommended as future research avenues.

10.3.1 On the Proposed Framework

• The suitability of the training point selection method for building globally accurate

surrogate models has been explored in this work, however, its suitability pertaining to

surrogate-based optimization needs investigation. The framework currently ensures

at least one mean distance (see Eq. (5.4)) between a new and existing training point.

The proposed framework can be adapted for optimizations, for example, by means of

tuning the control parameter discussed in section 5.1 which controls the placement of

training points closer to an existing training point (if needed by the optimizer). On

the other hand, the proposed error estimate driven by the discrepancy function (δ =
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|f̂global− f̂local|) can readily be used for optimizations, but this is also not investigated

in this work. A straightforward investigation of the suitability of the error estimation

framework for validating the statistics (e.g. mean and variance) produced by the

global surrogate model is also recommended as a research avenue.

• The assumption that a local surrogate model is more accurate than a global one

becomes less reasonable in some test cases such as the aerodynamic problem studied in

section VII. It is recommended to study other potential candidates for local surrogate

models (e.g. neural networks [85], radial basis function [84]), particularly for non-

smooth functions. Also, considerable efforts have gone into tuning the MIR local

surrogate model in terms of the parameters which influence the approximation [48,49].

A surrogate model that is relatively insensitive to the function to be modeled and

without any tunable parameters will be an attractive candidate to serve as a local

surrogate model. Along the same line of discussion, the use of two or more local

surrogate models for added fidelity is also a recommended topic of investigation.

• The training point selection and error estimation framework has been applied to krig-

ing and polynomial chaos. The application of the framework to other existing surro-

gate modeling methods can also be considered.

10.3.2 On Optimization Under Uncertainty

This work identifies the following as potential research areas in applying the surrogate

models to uncertainty quantification and optimization under uncertainty.

• The gradient approximation for epistemic variables discussed in section 8.3.4.2 needs

further refinement.
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• In this work the random variables are assumed to be uncorrelated as well as normally

distributed. This naturally leads into the investigation of correlated random variables

and other input distributions.

• The OUU framework (IMCS-BCO), can be applied to complex problems of interest,

for example, structural optimization of a wing, by coupling the OUU framework with

specialized finite-element solvers.
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[24] Mâıtre, O. P. L. and Knio, O. M., Spectral Methods for Uncertainty Quantification,

Scientific Computation, Springer. 7, 22, 23, 24, 25, 39

[25] Wong, T. T., Luk, W. S., and Heng, P. A., “Sampling with Hammersley and Halton

points,” J. Graph. Tools, Vol. 2, No. 2, Nov. 1997, pp. 9–24. 7, 37

[26] Sobol, I., A primer for the Monte Carlo Method , CRC Press, 1994. 7, 34, 37, 58

[27] Rosenbaum, B. and Schulz, V., “Comparing sampling strategies for aerodynamic Krig-

ing surrogate models,” Journal of Applied Mathematics and Mechanics, Vol. 92, 2012,

pp. 852–868. 7, 13

[28] Mehmani, A., Chowdhury, S., Zhang, J., and Messac, A., “Regional Error Estimation

of Surrogates (REES),” AIAA Paper, 2012-5707, 2012. 7, 8, 51

[29] Alexandrov, N. M., Dennis, J. E., Lewis, R. M., and Torczon, V., “A Trust-Region

Framework for Managing the Use of Approximation Models in Optimization,” Struc-

tural Optimization, Vol. 15, 1998, pp. 16–23. 7, 43

[30] Roderick, O., Anitescu, M., and Fischer, P., “Polynomial Regression Approaches

Using Derivative Information for Uncertainty Quantification,” J. of Nuclear Science

and Engineering , Vol. 164, No.2, 2010, pp. 122–139. 7, 26, 27

[31] Cheng, H. and Sandu, A., “Collocation least-squares polynomial chaos method.”

SCS/ACM, 2010. 7

[32] Bozdogan, H., “Akaike’s Information Criterion and Recent Developments in Informa-

tion Complexity,” J. Math. Psychol., Vol. 44, No. 1, March 2000, pp. 62–91. 8

[33] Queipo, N., Haftka, R., Shyy, W., Goel, T., Vaidhyanathan, R., and Tucker,

P., “Surrogate-based Analysis and Optimization,” Progress in Aerospace Sciences,

Vol. 41, No. 1, 2005, pp. 1–28. 8, 47

[34] Chung, H. S. and Alonso, J. J., “Using Gradients to Construct Cokriging Approxi-

mation Models for High-Dimensional Design Optimization Problems,” AIAA Paper,

2002-0317, 2002. 9, 13

[35] Laurenceau, J. and Sagaut, P., “Building Efficient Response Surfaces of Aerodynamic

Functions with Kriging and Cokriging,” AIAA Journal , Vol. 46, No. 2, 2008, pp. 498–

507. 9, 13

[36] Mani, K. and Mavriplis, D. J., “Unsteady Discrete Adjoint Formulation for Two-

Dimensional Flow Problems with Deforming Meshes,” AIAA Journal , Vol. 46 No. 6,

2008, pp. 1351–1364. 9, 131

[37] Sherman, L. L., Taylor III, A. C., Green, L. L., and Newman, P. A., “First- and

second-order aerodynamic sensitivity derivatives via automatic differentiation with

incremental iterative methods,” Journal of Computational Physics, Vol. 129, 1996,

pp. 307 – 331. 9, 10

149



[38] Taylor III, A. C., Green, L. L., Newman, P. A., and Putko, M., “Some Advanced

Concepts in Discrete Aerodynamic Sensitivity Analysis,” AIAA Journal , Vol. 41 No.

7, 2003, pp. 1224–1229. 9

[39] Chalot, F., Dinh, Q., Herbin, E., Martin, L., Ravachol, M., and Roge, G., “Estimation

of the impact of geometrical uncertainties on aerodynamic coefficients using CFD,”

AIAA Paper, 2068-2008, April, 2008. 9

[40] Rumpfkeil, M. P. and Mavriplis, D. J., “Efficient Hessian Calculations using Auto-

matic Differentiation and the Adjoint Method,” AIAA Paper, 2010-1268, January,

2010. 9

[41] Rumpfkeil, M. P. and Mavriplis, D. J., “Efficient Hessian Calculations using Auto-

matic Differentiation and the Adjoint Method with Applications,” AIAA Journal ,

Vol. 48, No. 10, 2010, pp. 2406–2417. 9, 10

[42] Mavripilis, D. J., “Aerodynamic Drag Prediction Using Unstructured Mesh Solvers,

VKI Lecture Notes, CFD-Based Aircraft Drag Prediction and Reduction, Von Karman

Institute for Fluid Dynamics, Rhode-Saint-Genese, Belgium,” 2003. 10, 21

[43] Keane, A. and Nair, P., Computational Approaches for Aerospace Design, John Wiley

& Sons, 2005. 12, 13, 34, 51, 98, 99, 100, 102, 103

[44] Gallatly, R. A., Berke, L., and Gibson, W., “The Use of Optimality Criteria in Auto-

mated Structural Design,” 3rd Conference on Matrix Methods in Structural Mechan-

ics, WPAFB, Ohio, 1971. 12

[45] Schmit, L. A. and Farshi, B., “Some Approximation Concepts for Structural Synthe-

sis,” AIAA Journal , Vol. 12, 1974, pp. 692–699. 12

[46] Schmit, L. A., “Structural Synthesis – Its Genesis and Development,” AIAA Journal ,

Vol. 19, No. 10, 1981, pp. 1249–1263. 13

[47] Yamazaki, W., Mouton, S., and Carrier, G., “Efficient Design Optimization by

Physics-Based Direct Manipulation Free-Form Deformation,” AIAA Paper, 2008-

5953, 2008. 13, 19

[48] Wang, Q., Moin, P., and Iaccarino, G., “A rational interpolation scheme with super-

polynomial rate of convergence,” SIAM Journal of Numerical Analysis, Vol. 47, No.

6, 2010, pp. 4073–4097. 13, 29, 32, 52, 61, 63, 145

[49] Wang, Q., Moin, P., and Iaccarino, G., “A High-Order Multi-Variate Approximation

Scheme for Arbitrary Data Sets,” Journal of Computational Physics, Vol. 229, No.

18, 2010, pp. 6343–6361. 13, 29, 32, 52, 61, 63, 145

[50] Sacks, J., Welch, W. J., Mitchell, T. J., and Wynn, H. P., “Design and Analysis of

Computer Experiments,” Statistical Science, Vol. (4), 1989, pp. 409–423. 13

150



[51] Jeong, S., Murayama, M., and Yamamoto, K., “Efficient Optimization Design Method

Using Kriging Model,” Journal of Aircraft , Vol. 42, No. 2, 2005, pp. 413–420. 13

[52] Martin, J. D. and Simpson, T. W., “Use of Kriging Models to Approximate Deter-

ministic Computer Models,” AIAA Journal , Vol. 43, No.4, 2005, pp. 853–863,. 13

[53] Han, Z. H., Goertz, S., and Zimmermann, R., “Improving variable-fidelity surrogate

modeling via gradient-enhanced kriging and a generalized hybrid bridge function,”

Aerospace Science and Technology , doi:10.1016/j.ast.2012.01.006, 2012. 13, 21, 63,

88, 96

[54] Rosenbaum, B. and Schulz, V., “Efficient response surface methods based on generic

surrogate models,” SIAM Journal of Scientific Computing , Vol. 35, No. 2, 2013,

pp. B529–B550. 13, 19

[55] Yamazaki, W., “Uncertainty Quantification via Variable Fidelity Kriging Model,”

Japan Society of Aeronautical Space Sciences, Vol. 60, 2012, pp. 80–88. 13, 21, 58,

63, 88, 96

[56] Rumpfkeil, M. P., Yamazaki, W., and Mavriplis, D. J., “Uncertainty Analysis Utilizing

Gradient and Hessian Information,” Sixth International Conference on Computational

Fluid Dynamics, ICCFD6, St. Petersburg, Russia, July 12-16, 2010. 13, 19

[57] Jones, D. R., “A taxonomy of global optimization methods based on response sur-

faces,” Journal of Global Optimizations, Vol. 21, 2001, pp. 345–383. 13

[58] Forrester, A., Sobester, A., and Keane, A., Engineering Design via Surrogate Mod-

elling: A Practical Guide, John Wiley & Sons, 2008. 16, 34

[59] Xiu, D. and Karniadakis, G. E., “The Wiener-Askey Polynomial Chaos for Stochastic

Differential Equations,” SIAM Journal of Scientific Computing , Vol. 24, No. 2, 2002,

pp. 619–644. 22, 24

[60] Cameron, R. and Martin, W., “The orthogonal development of nonlinear functionals

in series of Fourier-Hermite functionals,” Ann. Math., Vol. 48, 1947, pp. 385. 22

[61] Ghanem, R. and Spanos, P. D., Stochastic Finite Elements: A Spectral Approach,

New York: Springer, 1991. 22

[62] Walters, R. W., “Towards Stochastic Fluid Mechanics via Polynomial Chaos,” AIAA

Paper, 2003-0413, 2003. 22

[63] Elred, M. S., Webster, C. G., and Constantine, P. G., “Evaluation of Non-Intrusive

Approaches for Wiener-Askey Generalized Polynomial Chaos,” AIAA Paper, 2008-

1892, 2008. 22, 26

[64] Ghanem, R. and Spanos, P. D., Stochastic Finite Elements: A Spectral Approach (2nd

edition), New York: Springer, 1991. 23, 24, 25

151



[65] Jones, B. A., Doostan, A., and Born, G. H., “Nonlinear Propagation of Orbit Uncer-

tainty Using Non-Intrusive Polynomial Chaos,” AIAA Journal of Guidance, Control,

and Dynamics, Vol. 36, No.2, 2013, pp. 415–425. 24

[66] Tatang, M. A., Pan, W., Prinn, R. G., and McRae, G., “An efficient method for

parametric uncertainty analysis of numerical geophysical models,” J. of Geophysical

Research, Vol. 102, No.D18, doi:10.1029/97JD01654, 1997, pp. 21925–21932. 25

[67] Elred, M. S., “Recent Advances in Non-Intrusive Polynomial Chaos and Stochastic

Collocation Methods for Uncertainty Analysis and Design,” AIAA Paper, 2009-2274,

2009. 25

[68] Li, Y., Anitescu, M., Roderick, O., and Hickernell, F., “Orthogonal Bases for Poly-

nomial Regression with Derivative Information in Uncertainty Quantification,” In-

ternational Journal for Uncertainty Quantification, Vol. 1, No.4, 2011, pp. 297–320.

27

[69] Fishman, G., Monte-Carlo: Concepts, Algorithms, and Applications, New York:

Springer-Verlag, 1996. 34

[70] Ecuyer, D. L., Monte Carlo and Quasi-Monte Carlo Methods, Springer, Berlin, Hei-

delberg. 34, 36, 37

[71] Rumpfkeil, M. P., Yamazaki, W., and Mavriplis, D. J., “A Dynamic Sampling Method

for Kriging and Cokriging Surrogate Models,” AIAA Paper, 2011-883, 2011. 35

[72] Holtz, M., Sparse Grid Quadrature in High Dimensions with Applications in Finance

and Insurance, Springer, New York, 2011. 40

[73] Jones, D. R., Schonlau, M., and Welch, W. J., “Efficient Global Optimization of Ex-

pensive Black-Box Functions,” Journal of Global Optimization, Vol. 13, 1998, pp. 455–

492. 41

[74] Jin, R., Chen, W., and Simpson, T. W., “Comparative Studies of Metamodeling

Techniques under Multiple Modeling Criteria,” Structural and Multidisciplinary Op-

timization, Vol. 23, 2001, pp. 1–13. 45, 46

[75] Efron, B., “Bootstrap Methods: Another Look at the jackknife,” Annals of Statistics,

Vol. 7, 1979, pp. 1–26. 48

[76] Efron, B., An introduction to the bootstrap, New York: Chapman & Hall, 1993. 48

[77] Chernick, M. R., Bootstrap methods: A guide for practitioners and Researchers (2nd

ed.), NJ: John Wiley & Sons, Inc, 2008. 48

[78] Efron, B. and Tibshirani, R., “Improvements on cross-validation: The .632+ boot-

strap method,” Journal of the American Statistical Association, Vol. 92 No.438, 1997,

pp. 548–560. 48, 49, 50

152



[79] Lachenbruch, P. A. and Mickey, M. R., “Estimation of error rates in discriminant

analysis,” Technometrics, Vol. 10, 1968, pp. 1–11. 49, 67

[80] Efron, B., “Estimating the error rate of a prediction rule: Some improvements on

cross-validation,” Journal of the American Statistical Association, Vol. 78, 1983,

pp. 316–331. 49, 50, 67

[81] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,

Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A.,

Cournapeau, D., Brucher, M., Perrot, M., and Duchesnay, E., “Scikit-learn: Machine

Learning in Python,” Journal of Machine Learning Research, Vol. 12, 2011, pp. 2825–

2830. 53

[82] Dyn, N., Light, W., and Cheney, E., “Interpolation by piecewise-linear radial basis

functions, I,” Journal of Approximation Theory , Vol. 59, No. 2, 1989, pp. 202 – 223.

56

[83] Desai, A., Witteveen, J. A. S., and Sarkar, S., “Uncertainty Quantification of a Non-

linear Aeroelastic System Using Polynomial Chaos Expansion With Constant Phase

Interpolation,” Journal of Vibration and Acoustics, Vol. 135, No. 5. 56

[84] Buhmann, M., Radial Basis Functions (1st edn), Cambridge University Press: Cam-

bridge, 2005. 57, 145

[85] Cochocki, A. and Unbehauen, R., Neural Networks for Optimization and Signal Pro-

cessing , John Wiley & Sons, Inc., New York, NY, USA, 1st ed., 1993. 57, 145

[86] Han, Z. H., Zimmermann, R., and Goertz, S., “Alternative Cokriging Method for

Variable-Fidelity Surrogate Modeling,” AIAA Journal , Vol. 50, No. 5, 2012, pp. 1205–

1210. 63, 88, 96

[87] Han, Z. H., Zimmermann, R., and Goertz, S., “On Improving Efficiency and Accuracy

of Variable-Fidelity Surrogate Modeling in Aero-data for Loads Context,” CEAS 2009

European Air and Space Conference, 2009. 63, 88, 96

[88] Han, Z. H., Zimmermann, R., and Goertz, S., “A New Cokriging Method for Variable-

Fidelity Surrogate Modeling of Aerodynamic Data,” AIAA Paper, 2010-1225, 2010.

63, 88, 96

[89] Yamazaki, W. and Mavripilis, D. J., “Derivative-Enhanced Variable Fidelity Surro-

gate Modeling for Aerodynamic Functions,” AIAA Journal , Vol. 51, No. 1, 2013,

pp. 126–137. 63, 88, 96

[90] Yamazaki, W. and Mavriplis, D. J., “Derivative-Enhanced Variable Fidelity Surrogate

Modeling for Aerodynamic Functions,” AIAA Paper, 2011-1172, 2011. 63, 88, 96

153



[91] Sheshadri, P., Constantine, P., Gonnet, P., and Parks, G. T., “Sparse Robust Rational

Interpolation for Parameter-dependent Aerospace Models,” AIAA Paper, 2013-1680,

2013. 65, 80

[92] Wendland, H., Scattered Data Approximation (1st edn), Cambridge University Press:

Cambridge, 2005. 76

[93] Hawkins, D. M., “The Problem of Overfitting,” J. Chem. Inf. Comput. Sci., Vol. 44,

2004, pp. 1–12. 80

[94] Mani, K. and Mavriplis, D. J., “An Unsteady Discrete Adjoint Formulation for Two-

Dimensional Flow Problems with Deforming Meshes,” AIAA Paper, 2007-60, 2007.

89, 131

[95] Mani, K. and Mavriplis, D. J., “Discrete Adjoint Based Time-Step Adaptation and

Error Reduction in Unsteady Flow Problems,” AIAA Paper, 2007-3944, 2007. 89, 131

[96] Lockwood, B. A. and Anitescu, M., “Gradient-Enhanced Universal Kriging for Uncer-

tainty Propagation in Nuclear Engineering,” Preprint ANL/MCS-P1833-0111, 2011.

106, 108, 111

[97] Lockwood, B., Anitescu, M., and Mavriplis, D. J., “ Mixed Aleatory/Epistemic Un-

certainty Quantification for Hypersonic Flows via Gradient-Based Optimization and

Surrogate Models,” AIAA Paper, 2012-1254, 2012. 106, 108, 111

[98] Lockwood, B., Rumpfkeil, M. P., Yamazaki, W., and Mavriplis, D. J., “Uncertainty

Quantification in Viscous Hypersonic Flows using Gradient Information,” AIAA Pa-

per, 2011-885, 2011. 106, 108, 111

[99] Byrd, R. H., Lu, P., Nocedal, J., and Zhu, C., “A Limited Memory Algorithm

for Bound Constrained Optimization,” SIAM Journal on Scientific Computing ,

Vol. 16(5), 1995, pp. 1190–1208. 107

[100] Zhu, C., Byrd, R. H., Lu, P., and Nocedal, J., “L-BFGS-B: A Limited Memory

FORTRAN Code for Solving Bound Constrained Optimization Problems,” Tech. Rep.

NAM-11, Department of Electrical Engineering and Computer Science, Northwestern

University, Evanston, Illinois, USA, 1994. 107

[101] Rumpfkeil, M. P., “Optimizations Under Uncertainty Using Gradients, Hessians, and

Surrogate Models,” AIAA Journal , Vol. 51, No. 2, 2013, pp. 444–451. 108, 111, 112,

113

[102] Putko, M. M., Newmann, P. A., Taylor III, A. C., and Green, L. L., “Approach

for uncertainty propagation and robust design in CFD using sensitivity derivatives,”

AIAA Paper, 2001-2528, June, 2001. 109, 110

[103] Du, X. and Chen, W., “Methodology for Managing the Effect of Uncertainty in

Simulation-Based Design,” AIAA Journal , Vol. 38(8), 2000, pp. 1471–1478. 110

154



[104] Parkinson, A., Sorensen, C., and Pourhassan, N., “A general approach for robust

optimal design,” Trans. ASME , Vol. 115, 1993, pp. 74–80. 110

[105] Putko, M. M., Taylor III, A. C., Newmann, P. A., and Green, L. L., “Approach for

Input Uncertainty Propagation and Robust Design in CFD Using Sensitivity Deriva-

tives,” Journal of Fluids Engineering , Vol. 124(1), 2002, pp. 60–69. 110

[106] Waechter, A. and Biegler, L. T., “On the implementation of a primal-dual interior

point filter line search algorithm for large-scale nonlinear programming,” Mathemat-

ical Programming , Vol. 106(1), 2006, pp. 25–57. 111

[107] Boopathy, K. and Rumpfkeil, M. P., “A Unified Framework for Training Point Selec-

tion and Error Estimation for Surrogate Models,” AIAA Journal , Vol. In Revision.,

2013. 111, 119

[108] Boopathy, K. and Rumpfkeil, M. P., “A Multivariate Interpolation and Regression

Enhanced Kriging Surrogate Model,” AIAA Paper, 2013-2964. 111, 119

[109] Hicks, R. and Henne, P., “Wing Design by Numerical Optimization,” Journal of

Aircraft , Vol. 15 No. 7, 1978, pp. 407 – 412. 131

[110] Batina, J. T., “Unsteady Euler Airfoil Solutions Using Unstructured Dynamic

Meshes,” AIAA Journal , Vol. 28, No. 8, 1990, pp. 1381 – 1388. 131

155



APPENDIX A

FINITE ELEMENT PROCEDURE FOR THREE-BAR TRUSS

ANALYSIS

The finite element procedure adopted for obtaining the nodal displacements (ux and

uy) as well as the elemental stresses (σ1, σ2, and σ3) for the three-bar truss problem (see

section 9.1) is discussed here. The structure is assumed to have three elements with two

degrees of freedom at each node (i.e., a two-dimensional truss analysis). The element

connectivity information is given in Table A.1.

Table A.1: Connectivity of elements.

Element Node Element length λe = cos(φe) µe = sin(φe)
i j le

1 1 4 L1 = H/sin(φ1) cos(φ1) sin(φ1)
2 2 4 L2 = H/sin(φ2) cos(φ2) sin(φ2)
3 3 4 L3 = H/sin(φ3) cos(φ3) sin(φ3)

The stiffness matrix of the e-th element in global coordinate system is given by,

[k]e =
EeAe
Le




λe
2 λeµe −λe2 −λeµe

λeµe µe
2 −λeµe −µe2

−λe2 −λeµe λe
2 λeµe

−λeµe −µe2 λeµe µe
2


 . (1.1)

The individual stiffness matrices of each element: [k]1, [k]2, and [k]3 are obtained using
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Eq. (1.1) and Table A.1. The elemental stiffness matrices are assembled to form the global

stiffness matrix K of size 8× 8 (not shown here). After applying the boundary conditions

(i.e. x- and y-displacements at nodes 1, 2 and 3 are zero) and performing elimination, a

simplified linear system is obtained: KQ = F , where Q =

{
Q4x

Q4y

}
, F =

{
F4x

F4y

}
and

K =

[
E1A1
L1

λ1
2 + E2A2

L2
λ2

2 + E3A3
L3

λ3
2 E1A1

L1
λ1µ1 +

E2A2
L2

λ2µ2 +
E3A3
L3

λ3µ3
E1A1
L1

λ1µ1 +
E2A2
L2

λ2µ2 +
E3A3
L3

λ3µ3
E1A1
L1

µ1
2 + E2A2

L2
µ2

2 + E3A3
L3

µ3
2

]
.

The x- and y-displacements at node 4 are given by, Q = K−1F . Once the nodal dis-

placements are found, the stresses in element i− j can be calculated using:

σe =
Ee
Le

{
−λe −µe λe µe

}




Qix
Qiy
Qjx
Qjy




. (1.2)

Using Eq. (1.2) and Table A.1, expressions for the stresses acting on each element can be

obtained:

σ1 =
E1

L1

{
−λ1 −µ1 λ1 µ1

}




0
0

Q4x

Q4y





=
E1

L1
(Q4xλ1 +Q4yµ1) ,

σ2 =
E2

L2

{
−λ2 −µ2 λ2 µ2

}




0
0

Q4x

Q4y





=
E2

L2
(Q4xλ2 +Q4yµ2) ,

σ3 =
E3

L3

{
−λ3 −µ3 λ3 µ3

}




0
0

Q4x

Q4y





=
E3

L3
(Q4xλ3 +Q4yµ3) .

(1.3)

The constraints (for the optimization problem) can be evaluated by substituting Eq (1.3)

into Eq. (9.1). The gradients of the constraints and objective function with respect to the

design variables are obtained via differentiation with Maple.
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