A Multivariate Interpolation and Regression Enhanced Kriging Surrogate Model

Komahan Boopathy Markus P. Rumpfkeil

21st AIAA Computational Fluid Dynamics Conference, San Diego, California

University of Dayton
Department of Mechanical and Aerospace Engineering

Outline

- Introduction and Motivation
- 2 Construction of Surrogate Model
 - Training Point Selection
 - Kriging Surrogate
 - MIR Response Surface
 - Adaptive Training Point Selection
- Summary

Table of Contents

- Introduction and Motivation
- Construction of Surrogate Model
 - Training Point Selection
 - Kriging Surrogate
 - MIR Response Surface
 - Adaptive Training Point Selection
- Summary

Introduction and Motivation I

Analysis:

- Theoretical
- Experimental
- Computational

Advancements:

- Hardware (processor speed, multi-core systems)
- Software (parallel programming)
- Algorithms and other tools (sophisticated methods)

Introduction and Motivation II

Introduction and Motivation III

Optimization:

- Many design iterations can be very expensive
- Highly coupled with several disciplines
- Time consuming to do physical testing and infeasibility

Introduction and Motivation IV

- ► How to alleviate computational burden?
 - Surrogate models / Meta models/ Response surfaces

Surrogate Model

Approximation of the exact function using interpolation and/or extrapolation

Introduction and Motivation V

Active Research

- Enhance the existing surrogates
 - Training point selection
 - Higher order information (gradients & Hessian)
 - Variable-fidelity (multi-fidelity)

Introduction and Motivation V

Active Research

- Enhance the existing surrogates
 - Training point selection
 - Higher order information (gradients & Hessian)
 - Variable-fidelity (multi-fidelity)
- Develop new surrogates
 - Robust & versatile

Table of Contents

- Introduction and Motivation
- 2 Construction of Surrogate Model
 - Training Point Selection
 - Kriging Surrogate
 - MIR Response Surface
 - Adaptive Training Point Selection
- Summary

Training Point Selection Kriging Surrogate MIR Response Surface Analytic Test Functions Adaptive Training Point Selection

Training Point Selection

Domain based sampling

- ► Monte-Carlo
- Latin Hypercube
- Delaunay Triangulation

Training Point Selection

Domain based sampling

- Monte-Carlo
- Latin Hypercube
- Delaunay Triangulation

Response based (adaptive)

Distance / Function values / Gradients / Physics

Training Point Selection Kriging Surrogate VIIR Response Surface Analytic Test Functions Adaptive Training Point Selection

Monte-Carlo Sampling

Monte-Carlo

- Random number generator
- Very simple to program
- No control over locations

Latin Hypercube Sampling

Latin Hypercube

- McKay while designing computer experiments
- Equal probability
- N^M bins in the design space
- No two points lie in the same bin

Latin Hypercube Sampling

Typical convergence history

- Random fluctuations
- Each data point is expensive to obtain
- Waste of computational time
- Need for monotonicity

Delaunay Triangulation

Delaunay Triangulation

- Geometrical method
- ► Split into hyper triangles
- Poor scaling to higher dimensions

Training Point Selection Kriging Surrogate MIR Response Surface Analytic Test Functions Adaptive Training Point Selection

Kriging Surrogate

- Originated in geological statistics
- Predicts the function by stochastic processes
- Highly non-linear and multi-modal functions
- The basic formulation of Kriging is given as,

$$\tilde{f}(x) = \mu + Z(x)$$

- $ightarrow \mu$ models the mean behavior
- $\rightarrow Z(x)$ models the local variations using a Gaussian process
- Variants:
 - Direct: Gradient/Hessian terms are included in the formulation (correlation between func-grad, func-Hess, grad-grad, etc.)
 - Indirect: Same formulation as original Kriging but additional samples are created by using gradient/Hessian information

Multivariate Interpolation and Regression

- Based on Taylor series expansion
- Mathematically,

$$\tilde{f} = \sum_{i=1}^{N_v} a_{vi}(x) f(x_{vi}) + \sum_{i=1}^{N_g} a_{gi}(x) \nabla f(x_{gi})$$

- \bullet N_{v} , N_{g} is the number of function and func-grad data points
- a_{vi} and a_{gi} are the basis functions
- f and ∇f are the function f and gradient values
- ► Tunable parameters: Taylor order *n* and others

Analytic Test Functions

Analytic test functions on hypercube $[-2,2]^M$

1 Cosine:
$$f_1(x_1,...,x_M) = \cos(x_1 + ... + x_M)$$

② Runge:
$$f_2(x_1,...,x_M) = \frac{1}{1+x_1^2+...+x_M^2}$$

3 Exponential:
$$f_3(x_1,...,x_M) = e^{(x_1+...+x_M)}$$

Effect of Taylor order (2D)

Remarks:

- ▶ Higher *n* can corrupt the solution as well
- ▶ Higher *n* mandates more computational time
- Choice of an optimum Taylor order: tedious task

Original Kriging vs. MIR in two dimensions

Remarks:

- ► Advantage: Accuracy, convergence rate
- ▶ **Disadvantage:** Computationally intensive, tunable params.

Kriging	MIR

	Kriging	MIR
Computational time	Less	Very high

	Kriging	MIR
Computational time	Less	Very high
Hessian capability	Yes	No (research area)
'		'

	Kriging	MIR
Computational time	Less	Very high
Hessian capability	Yes	No (research area)
Variable fidelity support	Yes	No (research area)
		'

	Kriging	MIR
Computational time	Less	Very high
Hessian capability	Yes	No (research area)
Variable fidelity support	Yes	No (research area)
Convergence rate	Low	High
	ı	

	Kriging	MIR
Computational time	Less	Very high
Hessian capability	Yes	No (research area)
Variable fidelity support	Yes	No (research area)
Convergence rate	Low	High
Tunable parameters	Absent	Present

	Kriging	MIR
Computational time	Less	Very high
Hessian capability	Yes	No (research area)
Variable fidelity support	Yes	No (research area)
Convergence rate	Low	High
Tunable parameters	Absent	Present

Our theme: Use MIR to guide global Kriging

Adaptive Training Point Selection

Table of Contents

- Introduction and Motivation
- Construction of Surrogate Model
 - Training Point Selection
 - Kriging Surrogate
 - MIR Response Surface
 - Adaptive Training Point Selection
- Summary

Conclusion

Summary:

- Made use of local surrogate for training point selection
- Applied to multi-dimensional test functions
- Showed improvement for monotonic convergence behavior
- Showed Variable-fidelity results

Future Work:

- Where to use gradient information?
- How to use variable-fidelity data efficiently?

Potential Applications:

- Aerospace design & optimization
- Uncertainty quantification
- Aerodynamic databases

Acknowledgments

- Wataru Yamazaki Kriging surrogate
- Qiqi Wang MIR source code

Selected Bibliography

Kriging Drag Database - High Fidelity Model

Kriging Drag Database

- ▶ 25 Euler evaluations
- Fine mesh 19,548 elements
- Adaptive sampling strategy
- Not computationally expensive
- Nicely captures transonic behavior

Kriging Drag Database - Variable Fidelity Model

Variable Fidelity

- 9 High fid. training points adaptively
- ► Fine mesh 19,548 elements
- ► 64 Low fid. training points via LHS
- Coarse mesh 4, 433 elements

Drag Database

Direct Kriging

- Gradient/Hessian terms are included in the formulation
 - Function value estimated using a linear combination of function, gradient and Hessian values
 - Minimize mean-squared-error (MSE) between exact and estimated function value
 - Final form of the gradient/Hessian enhanced direct Cokriging:

$$\hat{\mathcal{J}}(D) = \mu + r^{\mathsf{T}}(D)R^{-1}(Y - \mu I)$$

where

$$\mu = (I^TR^{-1}I)^{-1}(I^TR^{-1}Y) \qquad \qquad \text{constant mean term}$$

$$R \qquad \qquad \text{correlation matrix between samples}$$

$$Y = \left(\left. \mathcal{J}(D_1), \ldots, \left. \frac{d\mathcal{J}}{dD} \right|_{D_1}, \ldots, \left. \frac{d^2\mathcal{J}}{dD^2} \right|_{D_1}, \ldots \right) \qquad \text{vector of sample point information}$$

$$r(D) \qquad \qquad \text{correlation between D and samples}$$

• Determine required derivatives of correlation function (up to fourth order) with automatic differentiation

Indirect Kriging

 Additional samples are created by using gradient and Hessian information

- Major parameters: distance between real and additional points ΔD and number of additional points per real sample point
- Worse R matrix conditioning with smaller distances and larger number of additional points
 - \rightarrow Severe trade-offs for these parameters

Test Case

Problem Setup

- NACA0012 airfoil
- Eulerian flow solver
- Cell-centered second-order accurate finite-volume approach
- ightharpoonup 0.5 < M < 1.5 and 0° < lpha < 5°
- ► Fine mesh 19,548 elements
- ► Coarse mesh 4,433 elements

Convergence History

10° г RMSE 10-1 10⁻² 30 40 50 Number of Training Points Lift

Exact Drag Database

Exact Drag Database

- Solves Euler Equations (Inviscid)
- ightharpoonup Cartesian mesh α vs. M
- ▶ 2601 nodes
- Computationally expensive

Exact Lift Database

Exact Lift Database

- Solves Euler Equations (Inviscid)
- ightharpoonup Cartesian mesh α vs. M
- ▶ 2601 nodes
- Computationally expensive

Kriging Lift Database - High Fidelity Model

Kriging Lift Database

- 25 Euler evaluations
- ► Fine mesh 19,548 elements
- Adaptive sampling strategy
- Not computationally expensive
- Nicely captures transonic behavior

Kriging Lift Database - Variable Fidelity Model

Variable Fidelity

- ► 15 High fid. training points adaptively
- ► Fine mesh 19,548 elements
- ► 40 Low fid. training points via LHS
- Coarse mesh 4, 433 elements

Lift Database

Observations

RMSE comparisons for Kriging models

RMSE	High-fidelity	Variable-fidelity

Observations

RMSE comparisons for Kriging models

RMSE	High-fidelity	Variable-fidelity
Drag Coefficient	0.45868×10^{-2}	0.38118×10^{-2}

Observations

RMSE comparisons for Kriging models

RMSE	High-fidelity	Variable-fidelity
Drag Coefficient	0.45868×10^{-2}	0.38118×10^{-2}
Lift Coefficient	0.32746×10^{-1}	0.27735×10^{-1}