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We present a Kriging surrogate model that is enhanced with a Multivariate Interpolation
and Regression (MIR) through a dynamic training point selection. We propose an adaptive
training point selection strategy where MIR is used as a local surrogate model that guides
the construction of the global Kriging surrogate model. The quality of the resulting MIR
enhanced Kriging surrogate model is demonstrated for two-, five- and nine-dimensional
analytic test functions. The results indicate that the model performs better than currently
available Kriging surrogates as well as a previously enhanced Kriging surrogate that uses
Dutch Intrapolation as a local surrogate model. Preliminary results of using variable-
fidelity data in the construction of the MIR enhanced Kriging surrogate model are also
presented and show promise.

Nomenclature

avi, agi Basis functions for MIR

β Wave number

f Objective function

f̃ Approximated function value

∇f Gradient of objective function

γ Magnitude of weights

M Number of design variables

N Number of training points

x Design variable

Nloc Number of training points for local

model

Nt Number of nodes in M -dimensional

Cartesian mesh

n Taylor order (order of accuracy)

ne Order of extrapolation

ni Order of interpolation

P Polynomial exactness parameter

Rdcok Correlation matrix

I. Introduction and Motivation

Non-availability of analytic solutions to many engineering problems and the potential difficulty as well as
high expenses in performing laboratory experiments have forced many researchers to increasingly rely upon
computational simulations. Consequently, computational methods are extensively used in engineering re-
search, also owing to the increasing computational power and sophistication of numerical algorithms. Despite
the advancements made in computer hardware and the deployment of high performance computing (HPC),
there exists an acute imbalance between the requirements and availability of computational power, espe-
cially when dealing with high-fidelity physics-based simulations. For example, a relatively straightforward
gradient-based airfoil shape optimization requires many optimization iterations and hence flow solutions:
the entire flow field needs to be solved for at each design iteration and the gradient also needs to be com-
puted either through finite-difference or adjoint techniques,1–3 which in total can require hundreds of flow
solutions, potentially demanding enormous computational time and storage. With the relatively meager
computational power at hand, the research community has to trade-off accuracy versus computational time
or limit their design spaces in scope and freedom, which either way may lead to inefficient designs. In
order to curb the predicaments involved in high-fidelity simulations through their computational burden,
the idea of a surrogate model was introduced, that is to replace expensive function evaluations with an

∗Graduate Student, Dept. of Mechanical and Aerospace Eng., boopathyk1@udayton.edu, Student Member AIAA
†Assistant Professor, Dept. of Mechanical and Aerospace Eng., Markus.Rumpfkeil@udayton.edu, Senior Member AIAA

1 of 18

American Institute of Aeronautics and Astronautics



approximate but inexpensive functional representation. Thus, when a surrogate model for an optimization
problem is constructed with given training data, the most promising locations in the model can be explored
with lesser computational cost. The accuracy of surrogate models can be increased efficiently by adding the
exact function information in the most promising locations. This approach can save a lot of computational
cost and enables the exploration of wider design spaces efficiently. A surrogate model being an approximate
representation of the exact function space, has some error associated with it. A lot of today’s surrogate
model research is directed on improving the accuracy of existing models as well as developing versatile and
robust new surrogates.4–8

A surrogate model and its corresponding functional approximation can be enhanced using various ap-
proaches such as,

1. determining training point locations adaptively rather than randomly,

2. finding multiple approximations for same quantity of interest and judicially deciding the best approx-
imation (global multiple surrogate),

3. incorporating higher-order information in the construction of the surrogate such as gradients and
Hessians,

4. using variable-fidelity data.

In this paper, we retain the usage of higher order information (gradients) and compare the effect of the
distribution of the training points with that of Latin hypercube sampling.9 We also demonstrate the usage
of variable fidelity data on the accuracy of the surrogate.

I.A. Overview of Surrogate Models

In Peter and Marcelet10 the performances of major surrogate models such as least square polynomials,
multi-layer perceptron, radial basis function (RBF), and Kriging are compared for a two-dimensional turbo-
machinery problem, where the Kriging and RBF models show the best performance. Yet another comparative
study11 of Kriging, Datascape, and Second Order Regression (SOR) show that Kriging performs the best
in terms of accuracy. Kriging yields accurate results especially when the training data used to build the
models is sparse; when larger training sets are used Datascape produces more accurate models, but the
latter is computationally more expensive than the other two methods. Besides the Kriging being better than
many other current models available, the model predicts the function value by using stochastic processes,
and has the flexibility to represent multi-modal functions. Thus, the Kriging model, originally developed in
the field of geological statistics, has gained a lot of popularity.6,7, 12–19 In Zhao and Xui20 a comparison of
four surrogate modeling techniques (multivariate polynomial method, RBF, Kriging, and Bayesian neural
networks) is carried out. The models are ranked based on accuracy, confidence, robustness, and efficiency.
The results indicate that multivariate polynomial methods perform best among the four models tested.
In Wang et al.21,22 a Multivariate Interpolation and Regression (MIR) scheme is developed. It features
remarkably high order of convergence, and is robust for a variety of node distributions. But in terms of
computational time MIR is very expensive.21,22 The existence of a polynomial based method (MIR) and
a stochastic method (Kriging) which both show great promises (accuracy and versatility, respectively), and
their respective weaknesses (computational cost and accuracy, respectively) have influenced us to try to
exploit their respective advantages and mitigate their disadvantages by combining the two methods to build
a better surrogate model.

Two popular strategies that one can adopted in the context of multiple surrogate methods are as follows:

• Calculate a mean function prediction using the predictions of two or more surrogates.

• Build local surrogate models and exploit the available information to guide the construction of a global
surrogate.

Studies in Zhao et al.20,23 show that when compared with the traditional approach of global meta-modeling
using only a single metamodel, employing a local surrogate can improve the modeling accuracy considerably.
Since there are several surrogate modeling techniques available, each having their own merits and demerits,
the selection of the “best surrogate” to perform each of the two tasks, can be a difficult one.
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In this paper, we do not calculate multiple “global” approximations since we are aiming to keep the
computational cost in building the surrogate low, however, we do calculate multiple “local” approximations
and use the gained information to aid in the selection of additional surrogate training points.

I.B. Higher-Order Information

An efficient gradient evaluation method based on adjoint formulations1,3 is available, and has been adopted
by the computational community for data-assimilation and design optimization problems over the last several
decades. Thus, the introduction of gradient information within surrogate models as additional training data
has attracted a lot of attention as well. For example, gradient enhanced Kriging models have been developed
and have shown very beneficial results.8,14,17,18 While adjoint methods provide an effective approach for
computing first-order sensitivity derivatives, the ability to compute second-order sensitivity derivatives is also
highly desirable for many science and engineering simulation problems.24–28 For example, the availability
of Hessian information allows the use of much stronger Newton optimization strategies, which holds the
potential for greatly reducing the expense of solving difficult optimization problems. Since an efficient
Hessian evaluation method has been developed by one of the authors,29,30 it is also very promising to
utilize the Hessian information within surrogate models in addition to the gradient information.8,31 The
observation is that for high-fidelity applications targeting a single output objective, the effort for computing
the full gradient is comparable to the effort of computing the objective function itself; thanks to the adjoint
formulation. Therefore, as the number of inputs, M , increases, using the output function and its derivative
information is appealing, because it provides M + 1 pieces of information for roughly the cost of two function
evaluations. Similarly, the Hessian provides M · (M + 1)/2 pieces of information for roughly the cost of M
function evaluations, since, in general, the most efficient full Hessian constructions require the solution of M
forward linear problems (one corresponding to each input parameter).24,27 Thus, one can reasonably expect
to have to compute the output function overall far fewer times to obtain a good surrogate model when using
gradient and Hessian information and this should also scale more reasonably to higher dimensions. However,
we restrict ourselves to gradient enhancement only in this paper for simplicity.

Outline of the paper

The remainder of this paper is organized as follows. In Section II, we review some important concepts re-
lated to Kriging, Dutch Intrapolation and Multivariate Interpolation and Regression, and also some popular
training point selection methods available in the literature. Section III, discusses our adaptive training point
selection strategy that we propose in this work. Section IV demonstrates the quality of our improved surro-
gate model for two-, five- and nine-dimensional analytic test functions by comparing it to the performance of
a standard Kriging model as well as a previously enhanced version32 of Kriging that uses Dutch Intrapolation
as local surrogate. We also extend our discussion to the advantage of variable-fidelity data in the building
of the MIR enhanced Kriging surrogate model. Section V concludes this paper and outlines future research
directions.

II. Literature Review

In this section, we provide a short overview of training point selection and surrogate models - Kriging,
Dutch Intrapolation as well as MIR.

II.A. Training Point Selection

The location and number of training points used to construct any surrogate model has a significant effect
on its accuracy. Thus, we briefly review some training point selection strategies and outline the merits and
demerits associated with them. Training point selection approaches can be broadly classified into domain-
based and response-based approaches.33 In domain-based approaches, training points are chosen based on the
information available from the design space (e.g. distance between two training points), whereas in response-
based approaches, the training points are chosen based on the information provided by the surrogate model
(e.g. mean squared error approach). The latter was developed to enhance the efficiency of the sampling
process by using information from the existing metamodel. For example, in the response-based approach the
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user could monitor the progress of the model and choose to stop or extend the sampling process. Domain-
based sampling is based on space-filling concepts that try to fill the design space evenly with training points.
It is, in general, not possible for the user to select the number of training points apriori to ensure a given
accuracy, due to the non-linearity of most functions of interest. We now review some important domain-
and response-based approaches from the literature.

Domain-based Approaches

Monte Carlo: Monte Carlo (MC) techniques34 are the simplest of all sampling methods. Here, a random
number generator is used to select training point locations in the design space. A major drawback of MC
is the fact that for a small amount of training points large areas of the design space may be left unexplored
while others may be sampled densely.35–37

Latin Hypercube: Latin hypercube sampling (LHS) was proposed by McKay et al.9 for designing com-
puter experiments as an alternative to MC sampling techniques. The basic idea is to divide the range of each
design variable into N bins of equal probability, which yields NM bins in the design space, where M is the
dimension of the problem. Subsequently, N training points are generated for each design variable such that
no two values lie in the same bin (as shown in the left of Figure 1). The LHS algorithm generates training
points in a box-shaped domain as follows,36

x
(i)
j =

π
(i)
j + U

(i)
j

N
, ∀ 1 ≤ j ≤M, 1 ≤ i ≤ N (1)

where x
(i)
j is the jth-component of the ith-training point, U ∈ [0, 1] is an uniform random number, and π is

an independent random permutation of the sequence of integers 0, 1, . . . , N − 1.
In the right of Figure 1, one can notice the random fluctuations in root mean square error (RMSE) of

a generic surrogate model based on LHS. In spite of increasing the number of training points, the RMSE
does not necessarily decrease, because all these points are picked at random. Thus, a superior strategy for
training point selection is required to ensure that the RMSE will reduce when one increases the number of
training points.
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Figure 1: Left: An example of LHS for a two-dimensional design space. Right: A typical convergence history
of a generic surrogate model using LHS or MC.

Delaunay Triangulation: Delaunay triangulation is a geometrical method of training point selection,
where the design space is divided into hyper-triangles and the training points are chosen at some geometrical
significant location such as the centers of the hyper-triangles and midpoints of the edges as shown in Figure 2.
A major drawback of the Delaunay triangulation is that it does not scale well to higher dimensions.32
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Figure 2: A Delaunay triangulation schematic is shown here. Points numbered 1 to 5 are the initial training
points and 12 points have been added subsequently by splitting the design space into triangles.

Response-based Approaches

A brief overview of some response-based approaches is given in the following.

• Jones and Schonlau12 proposed a sequential response surface methodology which starts with a smaller
number of training points and adds additional training points at locations where the standard error
is high. During this process, the training point set is updated, the metamodel is reconstructed, and
the process of choosing new additional training points continued until the expected improvement from
new training points has become sufficiently small.

• Alexandrov38 proposed a metamodel management framework using a trust-region method for updating
metamodels according to the improvement of the objective function during an optimization procedure.

• Messac et al.39 developed a new methodology to quantify the surrogate error in different regions of the
design space, which is called the Regional Error Estimation of Surrogate (REES) method. The REES
method provides a model independent error measure that does not require any additional function
evaluations. It works roughly as follows: after segregating the design space into sub-spaces (or regions)
Variation of the Error with Sample Points (VESP) regression models are constructed to predict the
accuracy of the surrogate in each subspace. These regression models are trained by the errors (the
mean and the maximum error) evaluated for the intermediate surrogates in an iterative process. At
each iteration, the intermediate surrogate is constructed using different subsets of training points and
tested over the remaining points. Their results indicate that the REES measure is capable of evaluating
the regional performance of a surrogate with reasonable accuracy and that one could use this error
estimate to guide the surrogate-building process.

• Rosenbaum et al.40 applied an adaptive sampling strategy where the samples are generated sequentially
as well. At every stage of the adaptation process, a surrogate model is generated and assessed in order
to find a new training point location at which the objective function is evaluated.

• Recently, a dynamic training point selection approach developed by one of the authors32 has proven to
yield better results than other domain-based strategies, where a local surrogate (Dutch Intrapolation)
has been employed to guide the training point selection process. First, an initial number of training
points are chosen via LHS and more training points are added in locations with the largest discrepancy
between the function predictions of the Kriging and the local surrogate model. Thus, instead of just
specifying the number of training points in the beginning and picking the points randomly, the model
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is built by adding more training points in promising regions of the design space. This is similar to the
concept of expected improvement12,41 (EI) when optimizing with a Kriging model where a potential for
improvement is used, which considers both estimated function values and uncertainties in the surrogate
model, thereby keeping the balance between global and local search performance.

For a comprehensive review on training point selection strategies the reader is referred to Keane and Nair,36

Arora,33 and Forrester et al.37

II.B. Surrogate Model Review

In the following paragraphs, short accounts on Kriging, Dutch Intrapolation and Multivariate Interpolation
and Regression are provided.

II.B.1. Kriging

The Kriging model was originally developed in the field of geological statistics by the South-African mining
engineer Danie G. Krige.6 Kriging was introduced in engineering design following the work of Sacks et al42

and has been increasingly used in aerospace engineering and design.14–17 Kriging predicts the function value
by using stochastic processes and has the flexibility to represent multi-modal and non-linear functions. The
basic formulation of Kriging is given as,33

f̃(x) = µ+ Z(x) (2)

where f̃ is the approximated function value, µ models the mean behavior using a regression model, and Z(x)
models the local variation from the mean behavior using a Gaussian process with zero mean E[Z(x)] = 0.

A gradient enhanced direct as well as indirect Kriging model has previously been developed and has shown
very beneficial results.8,19,31 In the direct co-Kriging approach, the covariances between function values,
function values and gradients, as well as gradients have to be considered within the correlation matrix as
opposed to the original Kriging formulation where only the covariances between function values have to be
considered. Thus, the correlation matrix Rdcok becomes asymmetric and its size increases to N · (M + 1)
(from N), where N is the number of training points, and M represents the number of input parameters. On
the other hand, the formulation of the indirect co-Kriging model is exactly the same as that of the original
Kriging model. In this approach, additional training points are constructed around a real training point
by using a Taylor series extrapolation. Direct and indirect co-Kriging models produce identical results in
the limit of small real to extrapolated point step sizes, although the direct approach is preferable due to
its robustness and lack of tunable parameters. For more mathematical background on Kriging the reader is
referred to previously published papers.8,19,31

II.B.2. Dutch Intrapolation

One can construct a local response surface using a hybrid of extrapolation and interpolation involving a
few, already existing, training points xi, i = 1 . . . , Nloc, where Nloc is the number of training points used to
construct the local response surface. The function values and available derivatives at each training point are
used to construct extrapolated function values of order ne for a test candidate location, x. The extrapolations
from the training points are then weighted with a low-order interpolant of order ni to find a unique function
value f̃(x). This approach has been coined Dutch Intrapolation43,44 (DI) and it has been shown that the order
of accuracy of the intrapolant is equal to ni + ne, that is, using function, gradient, and Hessian information
for the extrapolations and second-order interpolation leads to a fourth-order accurate intrapolant. This is
demonstrated in Figure 3 where the two-dimensional Rosenbrock function (a fourth-order polynomial) is
represented exactly using function, gradient, and Hessian information in six training points chosen randomly
using LHS. The Dutch extrapolation functions are normal multivariate Taylor expansions of order ne with
a correction term given in multi-index notation by44

T neni(x, xi) =

|k|≤ne∑
|k|≥0

aneni

k

k!
(x− xi)k∇kf(xi) for i = 1, . . . , Nloc with aneni

k =

(
ne + ni
ne

)−1(
ne − k + ni
ne − k

)
(3)

where f(xi) is the objective function value at training point xi. It is important to note that although the
Dutch Taylor expansions are discussed here for general order ne, practical applications are usually restricted
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to low values of ne. The range of practical applicability is similar to that of “normal” Taylor expansions.
High-order Taylor expansions are often used in theoretical formulations, however, in practical applications
their use is limited because the convergence with increasing order is typically very slow, and the region
of convergence is very small. Thus, the Dutch Taylor expansions are to be used in small regions where
the function to be approximated is well represented by a low-order polynomial, that is, where the Taylor
expansion coefficients decrease quickly for increasing order. In addition, it becomes impractical to calculate
higher-order derivatives of the objective function for high-fidelity physics-based simulations.
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Figure 3: Comparison between two-dimensional Rosenbrock function and Dutch Intrapolation. The six
spheres are the training point locations with function, gradient and Hessian information.

II.B.3. Multivariate Interpolation and Regression

Multivariate Interpolation and Regression (MIR) is a surrogate model where each data point is represented
as a Taylor series expansion, and the higher order derivatives in the Taylor series are treated as random
variables. The approximation coefficients are then chosen such that they minimize the objective function in
each point by solving an equality constrained least squares problem. The approximation is an interpolation
when the data points are given as exact, or a non-linear regression function if non-zero measurement errors
are associated with the data points. Mathematically, the objective function, f , in an M -dimensional design
space is approximated as21,22

f̃ =

Nv∑
i=1

avi(x)f̂(xvi) +

Ng∑
i=1

agi(x)∇f̂(xgi) (4)

where Nv is the number of training data points at which the function is evaluated and Ng is the number of
gradient data points (if used), avi and agi are the basis functions of the resulting approximate polynomial,

and f̂ and ∇f̂ are the function f and gradient values ∇f added with their corresponding measurement errors
σvi and σgi. The tunable parameters in MIR are the Taylor order n, the wave number β, magnitude of the
weights γ and polynomial exactness parameter P . We would expect to improve the accuracy of the model
by using a higher n, but round-off errors originating in the solution of the least squares problem propagate
to the approximate function via equation (4).

Thus, higher n do not always guarantee an improved approximation. This is further explained in Wang et
al.21,22 The polynomial order finds the highest order polynomial for which the approximation f̃ is exact.
It can be set by the user when higher order approximations are necessary. Other parameter of the scheme
namely the wave number β and magnitude γ of the weights are not set by the user explicitly, but are
calculated automatically and hence the reader is referred to Wang et al.21,22 for details of the algorithm.
Although other parameters of the approximation scheme can be computed automatically from the data
points, the choice of an optimum Taylor order n is a tedious task and it varies from function to function and
with the dimensionality of the problem as well.
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III. Adaptive Training Point Selection

This section compares the performance of MIR to that of the original Kriging for some analytical test
functions, followed by a discussion of our idea to use MIR as local guidance for choosing Kriging training
points.

III.A. Analytic Test Functions

The following are the analytic test functions used in this paper on a hypercube [−2, 2]M for evaluation
purposes:

1. A multi-dimensional Cosine function: f1(x1, . . . , xM ) = cos(x1 + . . .+ xM )

2. The multi-dimensional Runge function: f2(x1, . . . , xM ) = 1
1+x2

1+...+x2
M

3. A multi-dimensional Exponential function: f3(x1, . . . , xM ) = e(x1+...+xM )

A two-dimensional plot for each of the above test function is shown in Figure 4.

X

Y

Z

Cosine

X

Y

Z

Runge

Y

X

Z

Exponential

Figure 4: Analytic test functions in two-dimensions (red) together with a Kriging surrogate (white) con-
structed from nine training points.

The root mean square error (RMSE) between the actual f and approximated function values f̃ calculated
on an M -dimensional Cartesian mesh with Nt total nodes is given by,

RMSE =

√√√√ 1

Nt

Nt∑
i=1

(fi − f̃i)2. (5)

where fi and f̃i are the actual and approximated function values in the sample point locations xi, i = 1 . . . , Nt,
respectively. RMSE is used throughout this paper as a measure of goodness.

III.B. Effect of Taylor Order on MIR

Figure 5 shows the effect of different Taylor orders on the accuracy of the MIR function value f̃ . RMSE
is calculated on a Cartesian mesh with 101 × 101 nodes. It can be seen that lower n such as 1 or 2 yield
a less accurate approximation whereas higher n usually produce a more accurate approximation, but they
also demand much more computational time.21,22

III.C. RMSE Comparison between Kriging and MIR

Figure 6 compares original Kriging (green lines) and MIR (blue lines) for the two-dimensional cosine, Runge,
and exponential test functions. RMSE is again calculated using 101 × 101 nodes. One can see that MIR
approximates the two-dimensional cosine and exponential test functions better than the original Kriging
surrogate model, however, the Kriging is performing slightly better for the Runge function. It can also be
noted that the addition of gradient information (labeled FG, continuous lines) shows better results than the
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Figure 5: RMSE between the two-dimensional test functions and the MIR approximation vs. number of
training points plotted for different Taylor orders, n. All training points are selected through LHS.

approximation with function values alone (labeled F , dotted lines). For this experiment, the Taylor order
is set equal to the number of training points (N) when only function values are used and it is set to (3 ·N)
when both function and gradient information is used. A detailed comparison of MIR with other surrogate
modeling methods and higher-dimensional test functions are reported in Wang et al.21,22
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Figure 6: RMSE between the two-dimensional test functions and the surrogate models vs. number of
training points which are selected through LHS.

III.D. Summary of Comparisons

In spite of nice convergence properties as shown in the previous subsection, the main drawback of MIR is
that it is computationally expensive and it scales poorly to higher dimensions and to more training points.
Additionally, there is no good way to estimate the optimal Taylor order that is shown to have a significant
impact on the results. A higher Taylor order can corrupt the solution and it is also computationally expensive.
For example, from Figure 5 one can observe that for the Runge function a Taylor order of four exhibits
almost the same performance as higher Taylor orders. However, MIR has a great potential to serve as a local
surrogate as it is much cheaper as well as still accurate for a small number of training points. We exploit
the information available from local MIR surrogates to guide the global training point selection process and
we use a lower Taylor order in this work to maintain a balance between computation and accuracy.

In summary, the reasons for using MIR as a local rather than a global surrogate model are as follows:

1. The associated computational burden with MIR is very high21,22

2. The choice of an optimum Taylor order, n, is a tedious task and it varies from function to function as
well as with the dimensionality of the problem
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3. Kriging supports the usage of both high- and low-fidelity training points45–48

4. Kriging has the capability to represent multi-modal functions and can effectively capture non-polynomial
functions8

5. The currently available version of MIR has severe memory restrictions for higher dimensions

A detailed account on our proposed adaptive training point selection method is provided next.

III.E. Our Adaptive Training Point Selection Framework

Figure 7 shows a schematic diagram of our MIR enhanced Kriging surrogate construction approach.

Set of
training
points

Center
of

domain

Initial
points

by LHS

Evaluate exact
function value at
training points

Build Kriging

Geometric
constraint

Pick random
test candidates

Kriging
values for test

candidates

Compare
Kriging

and MIR

Identify user spec-
ified number of

discrepant locations

Find some existing
training points in
neighborhood of
test candidates

MIR values for
test candidates

Build MIR

Max training points/
Convergence?

Model ready for
its applications

No

Yes

Figure 7: Our Kriging surrogate construction algorithm using MIR as local surrogate

The steps involved in the process are explained below.

• Start by evaluating the function value (also gradients, if desired) at the center of the domain.

• Then pick a user specified additional number of training points via LHS and evaluate their function
(and gradient) value.

• Then repeat the following steps until convergence or until a maximum amount of function (and gradient)
evaluations has been reached. (We define convergence as having the worst discrepancy below a certain
threshold.)

1. Specify a set of test candidates via LHS.
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2. Construct a local function value for each test candidate using MIR involving an appropriate
number of closest neighbors with function (and gradient) information.

3. Compare the global Kriging surrogate model function value predictions for the test candidates
with the local MIR predictions.

4. Add a user-specified number of test candidates with the worst discrepancy between the two
predicted values to the set of training points and evaluate the real function (and gradient) at
these discrepant points and rebuild the Kriging surrogate.

• We also augment the selection process by geometric criteria, for example, we make sure that the distance
of a test candidate to the nearest existing training point is above the average distance between all test
candidates to their respective closest training point. This ensures that the training points are not
clustered in one particular region and are sparse in other regions of the design space.

IV. Discussion of Results

IV.A. Avoidance of Training Point Clustering

In our approach, a user specified number of training points are added to the set of training points and the
exact function (and gradient) is evaluated at those locations at each iteration. In Figure 8, we show the
effect of number of training points chosen per cycle on the accuracy of the surrogate for all three analytic
test functions in two-dimensions, with and without gradient information. Overall it can be observed that
the surrogate is more accurate when only two points are added per cycle. However, adding only two points
per cycle implies more computational burden since the Kriging has to be constructed more often to reach a
fixed number of training points compared to adding more than two training points per cycle.
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Figure 8: A comparison of number of training points added per cycle for two-dimensional test cases. Top :
function values only, Bottom: function and gradient values.

Since the general behavior is preserved for all the tested cases (two, four, six, eight and ten), one may
accelerate the convergence by adding more training points per cycle. But care must be taken to incorporate
appropriate geometric constraints to prevent clustering of training points (see Figure 9) that can harm
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the convergence by ill-conditioning the correlation matrix. In our studies we observed that, whenever two
or more training points lie very close to each other, fluctuations tend to occur in an otherwise monotone
convergence. Attributing lack of enough training points as a possible cause for fluctuation, we repeated
the experiments with a densely sampled domain and carefully observed when fluctuations occurred and
identified “proximity” as the main cause. Hence it is very important to prevent proximity of training points
by enforcing a geometrical constraint.
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Figure 9: Training point distributions to demonstrate the need for a distance-based geometrical constraint.
Total number of points is 105 and twenty points were added per cycle using the exponential test function,
f3, as an example.

In Figure 10, red and green regions characterize a larger change in the function value compared to other
regions in the domain and the blue regions have a near zero gradient. One can clearly observe that our
adaptive training point selection strategy chooses training points more efficiently than LHS by concentrating
them in regions where the gradient is high. This behavior can save a lot of computational time when applied
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Figure 10: Training point distributions (N = 101) for two-dimensional test functions shaded by their con-
tours. Top: Latin hypercube sampling. Bottom: Our strategy.
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to high fidelity simulations by reducing the number of required function evaluations for an accurate surrogate
model. Moreover, in terms of “space filling efficiency”, our method is better than LHS as well. Evidently,
in the top row of Figure 10 (which corresponds to LHS results) there are larger unsampled regions in the
domain than in the bottom row, where the training points are more spread throughout the domain. Hence
our surrogate model can capture the overall functional behavior better and locate local and/or global extrema
more accurately.

IV.B. RMSE Comparisons

In this subsection we show plots of the RMSE between the Kriging surrogate and the exact function versus
the number of training points (with or without gradient information) used to construct the surrogate models
for all three analytic test functions given in Subsection III.A. The RMSE between the actual and approx-
imate function are calculated on a Cartesian mesh with 10201, 1, 889, 568 and 1, 953, 125 total number of
nodes for two-, five- and nine-dimensional test cases, respectively. The training points always include the
center of the domain and the others are either all selected through LHS or we start with a user specified num-
ber of LHS training points and add additional points through dynamic training point selection as described
in the Subsection III.E.

IV.B.1. Two-dimensional Results

From Figure 11 one can see that our enhanced Kriging (shown as blue lines) shows better results than other
surrogate approaches namely, the original Kriging (shown as green lines) and the Kriging enhanced with
DI (shown as red lines). In case of the two-dimensional cosine function one can see that with about thirty
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Figure 11: RMSE versus the number of training points in two dimensions. Green, red, and blue lines show
the performance of original Kriging, dynamically sampled Kriging with DI, and our new Kriging model,
respectively.

training points with function and gradient information (FG), our model is able to outperform the previously
enhanced Kriging with DI which requires about 150 function and gradient evaluations, to obtain the same
level of accuracy. Furthermore, the addition of gradient information did not always produce a more accurate
model in the case of Kriging with DI, whereas in our new model gradient information always improves the
accuracy. For the Runge function, we see a significant improvement compared to the original Kriging but
only a slightly better approximation when compared to the previously enhanced Kriging with DI. A similar
observation applies to the exponential test function, f3 as well.

Unfortunately, both DI and MIR based adaptive models incur fluctuations for the gradient cases (FG) of
f3, when the number of training points increase over 100. But the function only cases (F ) of f3 which have
the same training point distribution (shown in Figure 12) are still showing monotone behavior. The gradient
cases see an earlier onset of fluctuations because now the Kriging has to accommodate two potentially very
different gradient values from two relatively close training points which actually causes numerical instabilities.
Now it becomes an open question of when one should use higher-order information in the construction of
the surrogate. Generally, based on our observations, when training points are concentrated in some parts
of the domain, it is advisable to refrain from using higher-order information in those regions, whereas it is

13 of 18

American Institute of Aeronautics and Astronautics



advantageous to use higher-order information in sparse regions of the domain. Figures 12a and 12b show
typical training point distributions when fluctuations are occurring in the convergence of f3, for function
(F ) and gradient (FG) cases respectively.
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Figure 12: Study of onset of fluctuations in convergence for f3

It can also be observed that the Runge and exponential test cases have a single mode in the domain,
whereas the cosine test function has multiple modes in the domain, as explained by the contours of Figure 10.
Due to the presence of multiple potential good locations to add the training points (cosine test function), the
Kriging surrogate features a remarkably good convergence behavior. Hence our enhanced approach can be a
good choice for approximating multimodal functions and their corresponding surrogate based optimization
and/or uncertainty quantification will be more accurate.

IV.B.2. Five-dimensional Results

Figure 13 shows the performance of our developed method for five-dimensional test functions. An improved
convergence behavior can be noticed for all three test cases with fewer fluctuations compared to other
approaches.
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Figure 13: RMSE versus the number of training points in five dimensions. Green, red, and blue lines show
the performance of original Kriging, dynamically sampled Kriging with DI, and our new Kriging model,
respectively.

IV.B.3. Nine-dimensional Results

Results for nine-dimensional test cases are shown in Figure 14. No consistent behavior can be seen as the
surrogate suffers from the “curse of dimensionality”. But it can be noticed that the addition of gradient in-
formation improves the approximation greatly. Since efficient Hessian calculation methods are available,29,30

their use can hopefully improve the convergence even more.
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Figure 14: RMSE versus the number of training points in nine dimensions. Green, red, and blue lines show
the performance of original Kriging, dynamically sampled Kriging with DI, and our new Kriging model,
respectively.

IV.B.4. Summary of Observations

Overall, one can clearly see that all gradient (FG) enhanced Kriging models (shown as continuous lines)
perform much better than the models that are only based on function evaluations (F ) (shown as dotted lines),
for all functions, approaches (original Kriging, Kriging with DI, and Kriging with MIR), and dimensions
tested in this paper. It can also be inferred that the dynamic training point selection performs better than
just selecting all training points through LHS. The dynamic training point selection also helps to reduce
the effect due to randomness that more training points do not necessarily lead to a more accurate surrogate
model. Another important feature that can be generally observed is that the Kriging with MIR tends to
have a better convergence rate than the other two approaches. Thus, our new method provides improved
approximations compared to other approaches, irrespective of whether the training points are with or without
gradient information.

IV.C. Variable-fidelity Results

As can be inferred from Figures 11, 13 and 14, the number of training points needed by the surrogate
increases exponentially with the dimension of the problem. As each training point is, in general, compu-
tationally expensive to obtain in physics-based simulations, we seek to show the potential advantage of
multi-fidelity modeling (variable-fidelity) in this subsection since lower-fidelity data can usually be obtained
computationally cheaper (e.g. coarser mesh data, Euler solution instead of Navier-Stokes solution, etc.). For
our test cases, we artificially perturb the high-fidelity test functions f1, f2, and f3 given in Subsection III.A
as fL1, fL2, and fL3, where fLi = 0.1 · fi, i = 1, . . . , 3. Since the variable-fidelity model involves some
high-fidelity data as well, for ease of comparison, we adopt the following method. If Nh and Nl are the
number of high- and low-fidelity training points in the variable-fidelity surrogate, respectively, the RMSE
is compared with that of the regular Kriging model constructed with NH training points

NH = Nh +
Nl

K
(6)

where K is a constant representing savings in computational time. Though there is hardly any difference
in computational time for analytic function evaluations (high- or low-fidelity), we assume K = 5, i.e. the
low-fidelity model is five times cheaper to evaluate than the high-fidelity one. In practical applications, K
can be estimated and could easily be larger.

The Kriging incorporates the correlations in the low-fidelity data-values rather than the actual function-
values to build the surrogate. We use a large number of low-fidelity data-values and fewer high-fidelity
data-values (Kriging is forced to pass through the high-fidelity data points) to build variable-fidelity MIR
enhanced Kriging surrogates. We compare their result with MIR enhanced Kriging surrogates built only
with high-fidelity training points in Table 1. It can be inferred that the use of variable fidelity data can
increase the accuracy of the surrogate model significantly. Depending on the computational budget, one can
choose the number of low- and high-fidelity training points appropriately.
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Table 1: RMSE comparisons for high- and variable-fidelity Kriging models

Dimensions Test case Nh Nl RMSE on variable- NH RMSE on high-

fidelity model fidelity model

2 fL1 & f1 25 125 0.64× 10−3 50 0.27× 10−2

2 fL2 & f2 25 125 0.11× 10−2 50 0.80× 10−2

2 fL3 & f3 25 125 0.13× 100 50 0.14× 100

5 fL1 & f1 40 400 0.71× 100 120 0.73× 100

5 fL2 & f2 40 400 0.31× 10−1 120 0.23× 10−1

5 fL3 & f3 40 400 0.22× 103 120 0.24× 103

9 fL1 & f1 40 800 0.72× 100 200 0.73× 100

9 fL2 & f2 40 800 0.36× 10−1 200 0.33× 10−1

9 fL3 & f3 40 800 0.17× 106 200 0.17× 106

V. Conclusions

We described an enhanced Kriging surrogate model approach which uses MIR as a local surrogate model
to guide a dynamic training point selection process. We demonstrated the quality of the surrogate by com-
parison with two-, five- and nine-dimensional analytic test functions and showed it to be a good candidate
for improving local deviation and space-filling designs. We also obtain a more monotone behavior in that
additional training points always lead to a more accurate surrogate model. The potential of our method to
approximate multi-modal functions better than other approaches has been illustrated. Though our model
maintains its performance for moderately higher dimensions, it still suffers from the “curse of dimensional-
ity”. Finally, we showed promising results incorporating variable-fidelity data. Our future plans entail the
application of our improved surrogate model to uncertainty quantification (UQ) and robust optimizations
(RO) applied to computational fluid dynamics (CFD) problems.
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