Building Aerodynamic Databases Using Enhanced Kriging Surrogate Models Komahan Boopathy Markus P. Rumpfkeil AIAA Region III Student Conference, Illinois Institute of Technology, Chicago University of Dayton Department of Mechanical and Aerospace Engineering April 6, 2013 ### Outline ### Table of Contents #### Introduction and Motivation I #### Analysis: - Theory - Experimentation - Computation #### Advancements: - Hardware (processor speed, multi-core systems) - Software (parallel programming) - Algorithms and other tools (sophisticated methods) #### Optimization: - Many design iterations can be very expensive - Highly coupled with several disciplines - Time consuming to do physical testing and infeasibility #### Introduction and Motivation II #### Deficiencies: - Computational power (we are at tera/peta flops) - Storage (thousands of gigabytes) - Numerical errors (discretization, round-off etc.) #### How to alleviate computational burden? • Surrogate models / Meta models / Response surfaces ### Surrogate Model Approximation of the exact function using interpolation and/or extrapolation #### Introduction and Motivation III - Some Applications: - Design Optimization - Uncertainty Quantification - Aero-database creation - Some noteworthy works: #### **NASA** - Heavy Lift Launch Vehicle: Ares V - ► Reusable Launch Vehicle: X-34 #### $C^2A^2S^2E$ – DLR "Digital Flight" (full flight simulation) ### Table of Contents ### Training Point Selection #### Domain based sampling - ► Monte-Carlo - ► Latin Hypercube - Delaunay Triangulation ### Training Point Selection #### Domain based sampling - Monte-Carlo - Latin Hypercube - Delaunay Triangulation ### Response based (adaptive) Distance / Function values / Gradients / Physics ### Monte-Carlo Sampling #### Monte-Carlo - Random number generator - Very simple to program - No control over locations ## Latin Hypercube Sampling ### Latin Hypercube - McKay while designing computer experiments - Equal probability - ► *N*^M bins in the design space - No two points lie in the same bin ### Latin Hypercube Sampling ### Typical convergence history - Random fluctuations - Each data point is expensive to obtain - Waste of computational time - Need for monotonicity ### **Delaunay Triangulation** ### Delaunay Triangulation - Geometrical method - Split into hyper triangles - Poor scaling to higher dimensions ## Kriging Surrogate - Originated in geological statistics - Predicts the function by stochastic processes - Highly non-linear and multi-modal functions - ▶ Uses spatial corr. between F F data points - The basic formulation of Kriging is given as, $$\tilde{f} = f(x)^{\mathsf{T}} \beta + Z(x)$$ - $\rightarrow f(x)^T$ models the mean behavior using a regression model - \rightarrow Z(x) models the local variation from the mean behavior using a Gaussian process ### Multivariate Interpolation and Regression - Based on Taylor series expansion - Mathematically, $$\tilde{f} = \sum_{i=1}^{N_v} a_{vi}(x) f(x_{vi}) + \sum_{i=1}^{N_g} a_{gi}(x) \nabla f(x_{gi})$$ - N_v , N_g is the number of function and func-grad data points - a_{vi} and a_{gi} are the basis functions - f and ∇f are the function f and gradient values - ▶ **Tunable parameters:** Taylor order *n* and others | Kriging | MIR | |---------|-----| | | | | | | | | | | | | | | | | | Kriging | MIR | |--------------------|---------|-----------| | Computational time | Less | Very high | | | | | | | | | | | | | | | | | | | Kriging | MIR | |--------------------|---------|--------------------| | Computational time | Less | Very high | | Hessian capability | Yes | No (research area) | | | | | | | | | | | | | | | Kriging | MIR | |---------------------------|---------|--------------------| | Computational time | Less | Very high | | Hessian capability | Yes | No (research area) | | Variable fidelity support | Yes | No (research area) | | | | ' | | | | | | | Kriging | MIR | |---------------------------|---------|--------------------| | Computational time | Less | Very high | | Hessian capability | Yes | No (research area) | | Variable fidelity support | Yes | No (research area) | | Convergence rate | Low | High | | | | | | | Kriging | MIR | |---------------------------|---------|--------------------| | Computational time | Less | Very high | | Hessian capability | Yes | No (research area) | | Variable fidelity support | Yes | No (research area) | | Convergence rate | Low | High | | Tunable parameters | Absent | Present | | | Kriging | MIR | |---------------------------|---------|--------------------| | Computational time | Less | Very high | | Hessian capability | Yes | No (research area) | | Variable fidelity support | Yes | No (research area) | | Convergence rate | Low | High | | Tunable parameters | Absent | Present | Our theme: Use MIR to guide global Kriging ## Adaptive Training Point Selection ### Table of Contents #### Problem Setup - NACA0012 airfoil - Eulerian flow solver - Cell-centered second-order accurate finite-volume approach - ightharpoonup 0.5 < M < 1.5 and 0° < lpha < 5° - ▶ Fine mesh 19,548 elements - Coarse mesh 4,433 elements # Convergence History # Exact Drag Database #### Exact Drag Database - Solves Euler Equations (Inviscid) - ightharpoonup Cartesian mesh α vs. M - ▶ 2601 nodes - Computationally expensive # Kriging Drag Database - High Fidelity Model #### Kriging Drag Database - ▶ 25 Euler evaluations - ► Fine mesh 19,548 elements - Adaptive sampling strategy - Not computationally expensive - Nicely captures transonic behavior # Kriging Drag Database - Variable Fidelity Model #### Variable Fidelity - ▶ 9 High fid. training points adaptively - ► Fine mesh 19,548 elements - ► 64 Low fid. training points via LHS - Coarse mesh 4, 433 elements # Drag Database ### Exact Lift Database #### Exact Lift Database - Solves Euler Equations (Inviscid) - ightharpoonup Cartesian mesh α vs. M - ▶ 2601 nodes - Computationally expensive # Kriging Lift Database - High Fidelity Model ### Kriging Lift Database - ▶ 25 Euler evaluations - ► Fine mesh 19,548 elements - Adaptive sampling strategy - Not computationally expensive - Nicely captures transonic behavior # Kriging Lift Database - Variable Fidelity Model ### Variable Fidelity - ► 15 High fid. training points adaptively - ► Fine mesh 19,548 elements - ► 40 Low fid. training points via LHS - Coarse mesh 4, 433 elements ### Lift Database ### Observations #### RMSE comparisons for Kriging models | RMSE | High-fidelity | Variable-fidelity | |------|---------------|-------------------| | | | | | | | | #### Observations #### RMSE comparisons for Kriging models | RMSE | High-fidelity | Variable-fidelity | |------------------|--------------------------|--------------------------| | Drag Coefficient | 0.45868×10^{-2} | 0.38118×10^{-2} | | | | | #### Observations #### RMSE comparisons for Kriging models | RMSE | High-fidelity | Variable-fidelity | |------------------|--------------------------|--------------------------| | Drag Coefficient | 0.45868×10^{-2} | 0.38118×10^{-2} | | Lift Coefficient | 0.32746×10^{-1} | 0.27735×10^{-1} | ### Table of Contents #### Conclusions: • Improved convergence of our model #### Conclusions: - Improved convergence of our model - Applied to build lift and drag databases #### Conclusions: - Improved convergence of our model - Applied to build lift and drag databases - Saves computational time #### Conclusions: - Improved convergence of our model - Applied to build lift and drag databases - Saves computational time - Advantage of variable fidelity data #### Conclusions: - Improved convergence of our model - Applied to build lift and drag databases - Saves computational time - Advantage of variable fidelity data #### Potential Applications: Aerospace design & optimization #### Conclusions: - Improved convergence of our model - Applied to build lift and drag databases - Saves computational time - Advantage of variable fidelity data #### Potential Applications: - Aerospace design & optimization - Uncertainty quantification #### Conclusions: - Improved convergence of our model - Applied to build lift and drag databases - Saves computational time - Advantage of variable fidelity data #### Potential Applications: - Aerospace design & optimization - Uncertainty quantification - Multi-dimensional databases #### Conclusions: - Improved convergence of our model - Applied to build lift and drag databases - Saves computational time - Advantage of variable fidelity data #### Potential Applications: - Aerospace design & optimization - Uncertainty quantification - Multi-dimensional databases Marthik Mani - Flow solver - Marthik Mani Flow solver - Wataru Yamazaki Kriging surrogate - Marthik Mani Flow solver - Wataru Yamazaki Kriging surrogate - Qiqi Wang MIR source code # Selected Bibliography Wang, Q., Moin, P., and laccarino, G., "A rational interpolation scheme with super-polynomial rate of convergence," *SIAM Journal of Numerical Analysis*, Vol. 47, No. 6, 2010, pp. 4073–4097. Wang, Q., Moin, P., and laccarino, G., "A High-Order Multi-Variate Approximation Scheme for Arbitrary Data Sets," *Journal of Computational Physics*, Vol. 229, No. 18, 2010, pp. 6343–6361. Boopathy, K. and Rumpfkeil, M. P., "A Multivariate Interpolation and Regression Enhanced Kriging Surrogate Model," 21st AIAA Computational Fluid Dynamics Conference, San Diego, California, Accepted, 2013. Mani, K. and Mavriplis, D. J., "An Unsteady Discrete Adjoint Formulation for Two-Dimensional Flow Problems with Deforming Meshes," AIAA Paper, 2007-60, 2007. Mani, K. and Mavriplis, D. J., "Discrete Adjoint Based Time-Step Adaptation and Error Reduction in Unsteady Flow Problems," AIAA Paper, 2007-3944, 2007. # Direct Kriging - Gradient/Hessian terms are included in the formulation - Function value estimated using a linear combination of function, gradient and Hessian values - Minimize mean-squared-error (MSE) between exact and estimated function value - Final form of the gradient/Hessian enhanced direct Cokriging: $$\hat{\mathcal{J}}(D) = \mu + r^{\mathsf{T}}(D)R^{-1}(Y - \mu I)$$ #### where $$\begin{array}{ll} \mu = (I^TR^{-1}I)^{-1}(I^TR^{-1}Y) & \text{constant mean term} \\ R & \text{correlation matrix between samples} \\ Y = \left(\left.\mathcal{J}(D_1), \ldots, \left.\frac{d\mathcal{J}}{dD}\right|_{D_1}, \ldots, \left.\frac{d^2\mathcal{J}}{dD^2}\right|_{D_1}, \ldots\right) & \text{vector of sample point information} \\ r(D) & \text{correlation between D and samples} \end{array}$$ • Determine required derivatives of correlation function (up to fourth order) with automatic differentiation ## Indirect Kriging Additional samples are created by using gradient and Hessian information - Major parameters: distance between real and additional points ΔD and number of additional points per real sample point - Worse *R* matrix conditioning with smaller distances and larger number of additional points - \rightarrow Severe trade-offs for these parameters ## **Analytic Test Functions** Analytic test functions on hypercube $[-2,2]^M$ **1** Cosine: $$f_1(x_1, ..., x_M) = \cos(x_1 + ... + x_M)$$ 2 Runge: $$f_2(x_1,...,x_M) = \frac{1}{1+x_1^2+...+x_M^2}$$ **3** Exponential: $$f_3(x_1,...,x_M) = e^{(x_1+...+x_M)}$$ # Effect of Taylor order (2D) #### Remarks: - ▶ Higher *n*, generally accurate not always - ▶ Higher *n* mandates more computational time - Choice of an optimum Taylor order: tedious task ## Original Kriging vs. MIR in two dimensions #### Remarks: - Advantage: Rapid convergence - ▶ **Disadvantage:** Computation, tunable parameters