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Introduction and Motivation I

I Analysis:
Theory
Experimentation
Computation

I Advancements:

Hardware (processor speed, multi-core systems)
Software (parallel programming)
Algorithms and other tools (sophisticated methods)

I Optimization:
Many design iterations – can be very expensive
Highly coupled with several disciplines
Time consuming to do physical testing and infeasibility
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Introduction and Motivation II

I Deficiencies:

Computational power (we are at tera/peta flops)
Storage (thousands of gigabytes)
Numerical errors (discretization, round-off etc.)

I How to alleviate computational burden?
Surrogate models / Meta models/ Response surfaces

Y

Z

X

Surrogate Model

Approximation of the exact
function using interpolation
and/or extrapolation
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Introduction and Motivation III

I Some Applications:

Design Optimization
Uncertainty Quantification
Aero-database creation

I Some noteworthy works:

NASA

I Heavy Lift Launch Vehicle: Ares V

I Reusable Launch Vehicle: X-34

C 2A2S2E – DLR

I “Digital Flight” (full flight simulation)
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Training Point Selection

Domain based sampling

I Monte-Carlo

I Latin Hypercube

I Delaunay Triangulation

Response based (adaptive)

I Distance / Function values / Gradients / Physics
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Monte-Carlo Sampling

Monte-Carlo
I Random number generator

I Very simple to program

I No control over locations
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Latin Hypercube Sampling

Latin Hypercube

I McKay - while designing
computer experiments

I Equal probability

I NM bins in the design
space

I No two points lie in the
same bin
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Latin Hypercube Sampling

Number of Sample Points
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Typical convergence history

I Random fluctuations

I Each data point is
expensive to obtain

I Waste of computational
time

I Need for monotonicity
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Delaunay Triangulation
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Delaunay Triangulation

I Geometrical method

I Split into hyper triangles

I Poor scaling to higher
dimensions
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Kriging Surrogate

I Originated in geological statistics

I Predicts the function by stochastic processes

I Highly non-linear and multi-modal functions

I Uses spatial corr. between F − F data points

I The basic formulation of Kriging is given as,

f̃ = f (x)Tβ + Z (x)

→ f (x)T models the mean behavior using a regression model
→ Z (x) models the local variation from the mean behavior
using a Gaussian process
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Multivariate Interpolation and Regression

I Based on Taylor series expansion

I Mathematically,

f̃ =
Nv∑
i=1

avi (x)f (xvi ) +

Ng∑
i=1

agi (x)∇f (xgi )

Nv , Ng is the number of function and func-grad data points
avi and agi are the basis functions
f and ∇f are the function f and gradient values

I Tunable parameters: Taylor order n and others
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Choice of local and global surrogate

Kriging MIR

Computational time Less Very high

Hessian capability Yes No (research area)

Variable fidelity support Yes No (research area)

Convergence rate Low High

Tunable parameters Absent Present

Our theme: Use MIR to guide global Kriging

AIAA Region III Conference, Komahan Boopathy, April 2013 Aerodynamic Databases Using Enhanced Kriging Surrogate Models



Choice of local and global surrogate

Kriging MIR

Computational time Less Very high

Hessian capability Yes No (research area)

Variable fidelity support Yes No (research area)

Convergence rate Low High

Tunable parameters Absent Present

Our theme: Use MIR to guide global Kriging

AIAA Region III Conference, Komahan Boopathy, April 2013 Aerodynamic Databases Using Enhanced Kriging Surrogate Models



Choice of local and global surrogate

Kriging MIR

Computational time Less Very high

Hessian capability Yes No (research area)

Variable fidelity support Yes No (research area)

Convergence rate Low High

Tunable parameters Absent Present

Our theme: Use MIR to guide global Kriging

AIAA Region III Conference, Komahan Boopathy, April 2013 Aerodynamic Databases Using Enhanced Kriging Surrogate Models



Choice of local and global surrogate

Kriging MIR

Computational time Less Very high

Hessian capability Yes No (research area)

Variable fidelity support Yes No (research area)

Convergence rate Low High

Tunable parameters Absent Present

Our theme: Use MIR to guide global Kriging

AIAA Region III Conference, Komahan Boopathy, April 2013 Aerodynamic Databases Using Enhanced Kriging Surrogate Models



Choice of local and global surrogate

Kriging MIR

Computational time Less Very high

Hessian capability Yes No (research area)

Variable fidelity support Yes No (research area)

Convergence rate Low High

Tunable parameters Absent Present

Our theme: Use MIR to guide global Kriging

AIAA Region III Conference, Komahan Boopathy, April 2013 Aerodynamic Databases Using Enhanced Kriging Surrogate Models



Choice of local and global surrogate

Kriging MIR

Computational time Less Very high

Hessian capability Yes No (research area)

Variable fidelity support Yes No (research area)

Convergence rate Low High

Tunable parameters Absent Present

Our theme: Use MIR to guide global Kriging

AIAA Region III Conference, Komahan Boopathy, April 2013 Aerodynamic Databases Using Enhanced Kriging Surrogate Models



Choice of local and global surrogate

Kriging MIR

Computational time Less Very high

Hessian capability Yes No (research area)

Variable fidelity support Yes No (research area)

Convergence rate Low High

Tunable parameters Absent Present

Our theme: Use MIR to guide global Kriging

AIAA Region III Conference, Komahan Boopathy, April 2013 Aerodynamic Databases Using Enhanced Kriging Surrogate Models



Adaptive Training Point Selection

Set of
training
points

Center of
domain

Initial
points

by LHS

Evaluate exact function
value at training points

Build Kriging

Max training points/
Convergence?

Pick random
test candidates

No

Kriging
values for test

candidates

Find some existing training points
in neighborhood of test candidates

Build local MIR
MIR values for
test candidates

Compare
Kriging

and MIR

Identify user specified num-
ber of discrepant locations

Model ready for
its applications

Yes
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Test Case

Problem Setup

I NACA0012 airfoil

I Eulerian flow solver

I Cell-centered second-order
accurate finite-volume approach

I 0.5 < M < 1.5 and 0◦ < α < 5◦

I Fine mesh 19, 548 elements

I Coarse mesh 4, 433 elements
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Convergence History

Number of Training Points
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Exact Drag Database

Angle of attack (degree) 0
1

2
3

4
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Mach number
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0.06
0.05
0.04

Exact Drag Database

I Solves Euler Equations
(Inviscid)

I Cartesian mesh - α vs. M

I 2601 nodes

I Computationally expensive
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Kriging Drag Database - High Fidelity Model

Angle of attack (degree)
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Kriging Drag Database

I 25 Euler evaluations

I Fine mesh 19, 548 elements

I Adaptive sampling strategy

I Not computationally
expensive

I Nicely captures transonic
behavior
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Kriging Drag Database - Variable Fidelity Model

Angle of attack (degree) 0
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Variable Fidelity

I 9 High fid. training points
adaptively

I Fine mesh 19, 548 elements

I 64 Low fid. training points
via LHS

I Coarse mesh 4, 433
elements
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Exact Lift Database
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Exact Lift Database
I Solves Euler Equations

(Inviscid)

I Cartesian mesh - α vs. M

I 2601 nodes

I Computationally expensive
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Kriging Lift Database - High Fidelity Model
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Kriging Lift Database

I 25 Euler evaluations

I Fine mesh 19, 548 elements

I Adaptive sampling strategy

I Not computationally
expensive

I Nicely captures transonic
behavior
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Kriging Lift Database - Variable Fidelity Model
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Variable Fidelity

I 15 High fid. training points
adaptively

I Fine mesh 19, 548 elements

I 40 Low fid. training points
via LHS

I Coarse mesh 4, 433
elements
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Lift Database
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Observations

RMSE comparisons for Kriging models

RMSE High-fidelity Variable-fidelity

Drag Coefficient 0.45868× 10−2 0.38118× 10−2

Lift Coefficient 0.32746× 10−1 0.27735× 10−1
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Conclusions and Potential Applications

I Conclusions:
Improved convergence of our model

Applied to build lift and drag databases
Saves computational time
Advantage of variable fidelity data

I Potential Applications:
Aerospace design & optimization
Uncertainty quantification
Multi-dimensional databases
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Any Questions?
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Direct Kriging

I Gradient/Hessian terms are included in the formulation

Function value estimated using a linear combination of
function, gradient and Hessian values
Minimize mean-squared-error (MSE) between exact and
estimated function value
Final form of the gradient/Hessian enhanced direct Cokriging:

Ĵ (D) = µ+ rT (D)R−1(Y − µI )

where
µ = (ITR−1I )−1(ITR−1Y ) constant mean term

R correlation matrix between samples

Y =

(
J (D1), . . . ,

dJ
dD

∣∣∣
D1
, . . . , d2J

dD2

∣∣∣∣
D1

, . . .

)
vector of sample point information

r(D) correlation between D and samples

Determine required derivatives of correlation function (up to
fourth order) with automatic differentiation
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Indirect Kriging

I Additional samples are created by using gradient and Hessian
information

Jadd =J (Di ) + dJ
dD

∣∣
Di

∆D

Jadd =J (Di ) + dJ
dD

∣∣
Di

∆D + 1
2∆DT d2J

dD2

∣∣∣
Di

∆D

Major parameters: distance between real and additional points
∆D and number of additional points per real sample point
Worse R matrix conditioning with smaller distances and larger
number of additional points
→ Severe trade-offs for these parameters
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Analytic Test Functions

Y

Z

X

Cos

Y

Z

X

Runge

X

Y

Z

Exponential

Analytic test functions on hypercube [−2, 2]M

1 Cosine: f1(x1, . . . , xM) = cos(x1 + . . .+ xM)

2 Runge: f2(x1, . . . , xM) = 1
1+x21+...+x2M

3 Exponential: f3(x1, . . . , xM) = e(x1+...+xM)
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Effect of Taylor order (2D)

Number of Training Points
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M
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Number of Training Points
R

M
S

E
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S
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10-3
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10-1

100

101

n = 1
n = 2
n = 4
n = 8
n = 16
n = N

Exponential

Remarks:

I Higher n, generally accurate – not always

I Higher n mandates more computational time

I Choice of an optimum Taylor order: tedious task
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Original Kriging vs. MIR in two dimensions

Number of Training Points
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Remarks:

I Advantage: Rapid convergence

I Disadvantage: Computation, tunable parameters
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