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Summary of the Thesis – Main Contributions

Ê Framework for design optimization of time dependent mechan-
ical systems

( enhanced existing implicit time marching methods
( formulated time dependent adjoint for sensitivity analysis
( demonstrated adjoint based optimization using rotorcraft

Ë Framework for design optimization under uncertainties

( quantified uncertainties using the stochastic Galerkin method
( devised reuse of reusing deterministic finite element and adjoint
( demonstrated optimization under uncertainty using Canadarm
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Section 2

Temporal Physics and Adjoint Based
Optimization
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Motivation : Consideration of time domain in structural design

Aircraft Rotorcraft

Wind farm Tacomac bridge

Time dependent issues like flutter, large vibrations, whirling of shaft
Komahan Boopathy – Ph.D Defense Georgia Tech – Aerospace Engineering July 17, 2020 Page 4 of 48



Adjoint Based Design Optimization of Systems With Time Dependent Physics and Probabilistically Modeled Uncertainties

Introduction Temporal Physics and Adjoint Based Optimization Optimization Under Uncertainty Conclusion

Time domain simulation of collective blade pitch of rotorcraft system

flexible multibody dynamics of helicopter hub
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Key items for time domain simulation of structural systems

Computational Resources, Governing Equations (DAEs), Numerical Methods

Ê Need high performance computing to per-
form high-fidelity time-domain analysis

Ë Governing Euler–Lagrange equations: the
states u = (w , µ), the DOFs w , constraints
g(w), multipliers µ, constraint Jacobian A,
time t, design variables ξ

R(t, ξ, u(t, ξ), u̇(t, ξ), ü(t, ξ))

, d

dt

(
∂L
∂ẇ

)
−
∂L
∂w
− ATµ

g(w)

 = 0

Ì Implicit time marching methods due to the
presence of constraints g(w)

1
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Contribution : Time Marching in Natural Second Form (A Principle)

( We enhanced the existing implicit time marching methods to apply
directly on second order form of governing equations

Backward
Difference

Formulas (BDF)

Adams Bashforth
Moulton (ABM)

Diagonally
Implicit Runge–
Kutta (DIRK)

Newmark

Implicit Time Marching Methods

Advantages:

1 we can avoid algebraic conversion to first order form

R(t, ξ, u(t, ξ), u̇(t, ξ), ü(t, ξ))
natural second order

algebraic

−−−−−−−−−−−−−−−→
substitutions

S(t, ξ, v(t, ξ), v̇(t, ξ))
first order

2 aligns with the “principle” of Newmark Family of integrators

3 makes the adjoint equations simpler

4 all time marching methods and adjoints can be implemented within
a common framework
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Subsection 2

Efficient Gradient Evaluation Methods
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Motivation : Devise Efficient Gradient Evaluation Methods

Need gradients of metrics of interest with respect to design variables

use existing function implementation and
produce numerical estimate of derivative

Numerical Derivatives
finite

differences
complex

step

• decompose as explicit and implicit parts

• numerically evaluate the explicit part

• algebraically solve the implicit part

Semianalytical Derivatives

adjoint
method

direct
method

adjoint method direct method

solution variable λj =
∂Fj

∂u

[
∂R

∂u

]−1

φi =

[
∂R

∂u

]−1
∂R

∂ξi

accuracy machine precision machine precision

efficiency more number of design
variables ξ = [ξ1, ξ2, . . .]

more number of func-
tions [F (ξ),G (ξ),H(ξ)]

adjoint in conjunction with constraint aggregation in space and time domains
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Contribution : Time Dependent Adjoint Sensitivity Formulations

( Developed adjoint equations for implicit
time marching methods based on abstrac-
tions of

• governing equations R(t, ξ, q, q̇, q̈)

• metrics of interest F (t, ξ, q, q̇, q̈)

Backward
Difference

Formulas (BDF)

Adams Bashforth
Moulton (ABM)

Diagonally
Implicit Runge–
Kutta (DIRK)

Newmark

Time Dependent Adjoint Formulations
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Time Dependent Lagrangian – BDF

( Verified the adjoint equations via complex-step method

K. Boopathy and G. J. Kennedy, “Adjoint-based derivative evaluation methods for flexible multibody systems with
rotorcraft applications”, 55th AIAA Aerospace Sciences Meeting, Grapevine, Texas. AIAA Paper 2017-1671.
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Subsection 3

Structural Optimization of Rotorcraft

• using time dependent analysis of rotorcraft

• using time dependent adjoint sensitivities
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Model Problem: Rotorcraft Hub Assembly

Sinusoidally modulated control amplitudes

Blade Pitch Control Motion Push rod 1 Push rod 2 Push rod 3

collective vertical 0.050 sin(Ωtt) 0.050 sin(Ωtt) 0.050 sin(Ωtt)
longitudinal cyclic forward/pitch 0.025 sin(Ωtt) 0.025 sin(Ωtt) 0.050 sin(Ωtt)
lateral cyclic sideways/roll 0.025 sin(Ωtt) 0.050 sin(Ωtt) 0.025 sin(Ωtt)

Ωshaft = 109.12 rad/s . . . Ωt = 27.28 rad/s . . . 28, 640 DOF
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Vertical displacement of bodies

(a) collective (b) longitudinal cyclic

(c) lateral cyclic
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Deterministic Optimization – Stress Constrained Mass Minimization

ξ1 ξ2 ξ3 · · · · ξ46 ξ47 ξ48

minimize
ξ

mass = m(ξ),

subject to ḡk
1 (ξ) = ξk − ξk+1 ≤ 1 mm, ∀k = 1, . . . 47,

ḡk
2 (ξ) = ξk+1 − ξk ≤ 1 mm, ∀k = 1, . . . 47,

ḡk
3 (ξ) = 1− 4.0

σk
vm

σk
max

≥ 0, ∀k = 1, . . . 3,

bounds 10 mm ≤ ξ ≤ 20 mm.

Blade Pitch Control Motion Push rod 1 Push rod 2 Push rod 3

g1
3 – collective vertical 0.050 sin(Ωtt) 0.050 sin(Ωtt) 0.050 sin(Ωtt)
g2

3 – longitudinal cyclic forward/pitch 0.025 sin(Ωtt) 0.025 sin(Ωtt) 0.050 sin(Ωtt)
g3

3 – lateral cyclic sideways/roll 0.025 sin(Ωtt) 0.050 sin(Ωtt) 0.025 sin(Ωtt)

Komahan Boopathy – Ph.D Defense Georgia Tech – Aerospace Engineering July 17, 2020 Page 14 of 48



Adjoint Based Design Optimization of Systems With Time Dependent Physics and Probabilistically Modeled Uncertainties

Introduction Temporal Physics and Adjoint Based Optimization Optimization Under Uncertainty Conclusion

Adjoint derivative verification using complex step method

Functional Complex-step Adjoint

1. Structural Mass 250.0000000000000 249.9999999999999
2. Compliance -0.008903780405108 -0.008903780457068
3. Failure -2.510549172940552 -2.510549173663148
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dF (ξ)

dξ
=

F (ξ + ∆ξi)

∆ξ

dF (ξ)

dξ
=
∂F (ξ)

∂ξ

−
∂F

∂u

[
∂R

∂u

]−1

︸ ︷︷ ︸
adjoint λ

∂R

∂ξ
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Optimization Results

ξ1 ξ2 ξ3 · · · · ξ46 ξ47 ξ48
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• initial uniform blade thickness of 2cm

• parallel analysis and sensitivity analysis using 5 processors for each
flight mode (20 minutes per load case for analysis and adjoint)

• optimizer required 222 function and 88 gradient evaluations
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Optimization Results

Contour plot of failure for lateral cyclic blade pitch

initial (left) and optimized designs (right)

( Optimized design has reduced stresses at the root of the blade
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Summary : Adjoint Based Deterministic Optimization

Ê Implicit time marching methods for natural form of governing equations

Backward
Difference

Formulas (BDF)

Adams Bashforth
Moulton (ABM)

Diagonally
Implicit Runge–
Kutta (DIRK)

Newmark

Implicit Time Marching Methods

Ë Developed adjoint equations for implicit time marching methods

Backward
Difference

Formulas (BDF)

Adams Bashforth
Moulton (ABM)

Diagonally
Implicit Runge–
Kutta (DIRK)

Newmark

Time Dependent Adjoint Formulations

Ì Demonstration using rotorcraft structural optimization

K. Boopathy and G. J. Kennedy, “Parallel Finite Element Framework for Rotorcraft Multibody
Dynamics and Adjoint Sensitivities”, AIAA Journal, Vol. 57, No. 8, pp. 3159–3172, 2019,
DOI: 10.2514/1.J056585.
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Section 3

Optimization Under Uncertainty

A product should be designed in such a way that makes its
performance insensitive to variation in variables beyond
the control of the designer Genichi Taguchi
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Uncertainties affecting Physics-Based Design

• The physics-based design of
aerospace systems involves solv-
ing differential equations to obtain
metrics of interest that guide the
design process

• Sometimes inputs (coefficients, forc-
ing, initial/boundary conditions) are
difficult to be characterized as a de-
terministic value

• The uncertainties in input parameters
have a direct impact on the output
metrics of interest which guide the
system design process

solve
u(ξ)

R(ξ, u(ξ)) = 0

evaluate F (ξ, u(ξ))

Nonlinear Algebraic System

solve
u(t,ξ),u̇(t,ξ),ü(t,ξ)

R(t, ξ, u(t, ξ), u̇(t, ξ), ü(t, ξ)) = 0

evaluate F (t, ξ, u(t, ξ), u̇(t, ξ), ü(t, ξ))

Nonlinear ODE System

solve
u(t,y(ξ)),u̇(t,y(ξ)),ü(t,y(ξ))

R(t, y(ξ), u(t, y(ξ)), u̇(t, y(ξ)), ü(t, y(ξ))) = 0

evaluate E [F (t, y(ξ), u(t, y(ξ)), u̇(t, y(ξ)), ü(t, y(ξ)))]

V [F (t, y(ξ), u(t, y(ξ)), u̇(t, y(ξ)), ü(t, y(ξ)))]

S [F (t, y(ξ), u(t, y(ξ)), u̇(t, y(ξ)), ü(t, y(ξ)))]

Nonlinear Stochastic ODE System
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Canadarm Example – A space system with uncertainty in operating conditions

• maximum payload mass 266, 000 kg for analysis by intuition/expert opinion

• distribution type: U(a = 0, b = 266, 000), N (µ = 100, 000, σ = 50, 000)
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Steps in Optimization Under Uncertainty

Characterization
of Input

Uncertainties

Propagation
of Input

Uncertainties

Characterization
of Output

Uncertainties

Optimization
Under

Uncertainty
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Deterministic Optimization Problem

minimize
ξ

F (ξ)

subject to G (ξ) ≤ 0

Deterministic Optimization

design
variables

constraints objective

Optimization Under Uncertainty

uncertaintyreliability robust
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Optimization Under Uncertainty Problem

Design optimization of
aeromechanical systems

Temporal
Analysis of

Physics

Uncertainty
Quantification

Temporal
Sensitivity
Analysis

minimize
ξ

(1− α) · E [F (y(ξ))] + α · S [F (y(ξ))]

subject to E [G (y(ξ))] + β · S [G (y(ξ))] ≤ 0

• objective and constraints are a linear combination of expec-
tation and standard deviation; α – objective robustness, β –
constraint reliability
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Sampling and projection based uncertainty propagation

Propagation
of Input

Uncertainties
intrusivenonintrusive

0.0 0.2 0.4 0.6 0.8 1.0
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y 2
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+0.50

+0.75

+1.00

projected Jacobian

repeated solutions smaller sys-
tem

principle one solution of bigger non-
linear system

no modifications (black box) code requires modifications

how to reuse deterministic FEA and adjoint code for projection?
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Subsection 5

Semi-Intrusive Stochastic Galerkin Projection
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Extending Deterministic Analysis to Stochastic Analysis

À Extending Time Domain Physical Analysis

Deterministic
Residuals

Stochastic
Residuals

Deterministic
States

Stochastic
States

Deterministic
Jacobian

Stochastic
Jacobian

Deterministic
Initial Conditions

Stochastic Initial
Conditions

Á Extending Adjoint Sensitivity Analysis

Deterministic
Right Hand Side

Stochastic Right
Hand Side

Deterministic
Adjoint States

Stochastic
Adjoint States

Deterministic
Adjoint Jacobian

Stochastic
Adjoint Jacobian
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Probabilistic Space and Inner Product

( probabilistic function space is approximated with N basis entries

Y ≈ span{ψ̂1(y), ψ̂2(y), . . . , ψ̂N(y)}

( polynomial type based on the probability distribution type

• Hermite, Legendre, Laguerre

• Normal, Uniform, Exponential

−2 −1 0 1 2
z

−2

−1

0

1

2

Ĥ
(z

)

Ĥ1

Ĥ2

Ĥ3

Ĥ4

Ĥ5

Ĥ6

• orthogonality + normality

• tensor product for multi-
variate basis
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Formation of Stochastic Physical States

The stochastic state vector is

u(t, y) ≈
N∑

i=1

Ui (t)ψ̂i (y)

Core principles at play:

¶ principle of variable separation – time and probabilistic domains

· principle of superposition . . . . . . . . . . . . . . . . . . . . . . . . summation

( the state vector coefficients: U(t) = [U1(t),U2(t), . . . ,UN(t)]
are available as guessed values from iterative solution

( the length of stochastic state vector is N times the length of
deterministic state vector

( time derivatives u̇(t, y) and ü(t, y) are approximated similarly
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Formation of Stochastic Residual

R =




R1

R2
...
RN



Ri ≈

Q∑

q=1

αqψ̂i (yq)︸ ︷︷ ︸
scalar

× R(t, yq, u(t, yq), u̇(t, yq), ü(t, yq))︸ ︷︷ ︸
deterministic residual for yq

( quadrature over deterministic residual implementations

( the length of stochastic residual vector is N times the length of
deterministic residual vector

( need ability to update elements with new parameter values

( residuals can be system-wide or element-wise
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Formation of Stochastic Jacobian

The stochastic Jacobian matrix is

J =




J1, 1 J1, 2 . . . J1,N

J2 1 J2, 2 . . . J2,N
...

...
. . .

...
JN, 1 JN, 2 . . . JN,N


 .

Ji , j ≈
Q∑

q=1

αqψ̂i (yq)ψ̂j (yq)︸ ︷︷ ︸
scalar

× J(t, yq, u(t, yq), u̇(t, yq), ü(t, yq))︸ ︷︷ ︸
deterministic Jacobian for yq

( quadrature over deterministic jacobian implementations

( need ability to update element with new parameter values

( the size of stochastic Jacobian is N times the size of determin-
istic Jacobian

( applies to system-wide and element-wise Jacobians
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Sparsity of Stochastic Jacobian Matrices
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( sparsity patterns depend on the non-linearity parameter y

( can optimize the number of quadrature evaluations

( can determine the sparsity apriori
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Formation of Stochastic Adjoint States

recall... stochastic physical state vector

U(t) = [U1(t),U2(t), . . . ,UN(t)]

u(t, y) ≈
N∑

i=1

Ui (t)ψ̂i (y)

Stochastic Adjoint state vector is formed in a similar manner

Λ(t) = [Λ1(t),Λ2(t), . . . ,ΛN(t)]

λ(t, y) ≈
N∑

i=1

Λi (t)ψ̂i (y)

4 transposed Jacobian matrix is formed similar to forward solve

4 the right hand sides of the adjoint linear system are formed in
a manner similar to residuals
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Software Architecture for Stochastic Galerkin Method

Deterministic Element Library

Stochastic Galerkin Plugin

«interface»
Element

Add Residual and Jacobian
Add Residual State Variable Sensitivity
Add Residual Design Variable Sensitivity

RevoluteConstraint

Add Residual and Jacobian
Add Residual State Variable Sensitivity
Add Residual Design Variable Sensitivity

BeamElement

Add Residual and Jacobian
Add Residual State Variable Sensitivity
Add Residual Design Variable Sensitivity

Actuator

Add Residual and Jacobian
Add Residual State Variable Sensitivity
Add Residual Design Variable Sensitivity

ProbabilisticSpace

Add Random Parameter
Get Quadarature Points and Weight
Evaluate Orthonormal Basis

StochasticElement

Add Residual and Jacobian
Add Residual State Variable Sensitivity
Add Residual Design Variable Sensitivity

uses

uses

uses

use
s

4 StochasticElement –

is an Element by inheritance and also

has an element (deterministic) by composition

4 ProbabilisticSpace – prob. quadrature and basis evaluations
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Subsection 6

Canadarm Design Optimization Under Uncertainties
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Canadarm Structural Model

simplified model of flexible remote manipulator onboard space shuttle

shoulder wrist

B C D E F
flexible booms

A

• 6 joint degrees of freedom (2 shoul-
der + 1 elbow + 3 wrist)

• The booms in Canadarm-I are made
of graphite epoxy – we use material
properties of steel

• 16 m long (foldable inside space
shuttle) and 33 cm wide

Komahan Boopathy – Ph.D Defense Georgia Tech – Aerospace Engineering July 17, 2020 Page 36 of 48



Adjoint Based Design Optimization of Systems With Time Dependent Physics and Probabilistically Modeled Uncertainties

Introduction Temporal Physics and Adjoint Based Optimization Optimization Under Uncertainty Conclusion

Canadarm Time Lapse of Simulated Motion

Simulated motion of the Canadarm model
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Optimization Problem Formulation

shoulder wrist

B C D E F
flexible booms

A

minimize E[mass]

design variable width of bars

uncertainty payload mass ∼ N (µ = 105, σ = 50, 000) kg

subject to E[failure] + β · S[failure] ≤ 1

bounds 25cm ≤ width ≤ 50cm

( Deterministic optimization with mass = 105 kg

( OUU with β = 0, 1, 2, 3, 4, 5, 6 (more constraint satisfaction)

( SGM for probabilistic moments of functions and adjoint-derivatives
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The complex-step verification of adjoint derivatives for the Canadarm system

Quantity Mass Failure

adjoint dE[F ]/dξ 1.24800000000001979 · 105 -3.76597889920338691
complex dE[F ]/dξ 1.24800000000001819 · 105 -3.76596706242138746

relative error 1.3 · 10−15 3.1 · 10−6

adjoint dV[F ]/dξ N/A −4.46442271585651973 · 10−1

complex dV[F ]/dξ N/A −4.46444953483493667 · 10−1

relative error N/A 6.0 · 10−6

4 used complex-step method to verify the consistency of adjoint
derivatives

4 no variance derivative for mass due to the choice of random
parameter
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Optimization Results : Probabilistic and Deterministic

Quantity Deterministic β = 0 β = 1 β = 2 β = 3 β = 4 β = 5 β = 6

width 1 [m] 0.250 0.250 0.250 0.271 0.303 0.343 0.385 0.428
width 2 [m] 0.250 0.250 0.250 0.250 0.250 0.278 0.311 0.347

constraint activity % 34.1 72.9 92.6 100 100 100 100 100
E[failure] 0.729 0.729 0.729 0.650 0.552 0.482 0.431 0.387

Recall: E[failure] + β · S[failure] ≤ 1

Objective Failure

Figure: The visualization of optimization design space with contours of the
mass and failure.

( deterministic optimum is at the lower bounds of variables
( OUU solutions are in the interior of design space and near the

constraint manifolds

Komahan Boopathy – Ph.D Defense Georgia Tech – Aerospace Engineering July 17, 2020 Page 40 of 48



Adjoint Based Design Optimization of Systems With Time Dependent Physics and Probabilistically Modeled Uncertainties

Introduction Temporal Physics and Adjoint Based Optimization Optimization Under Uncertainty Conclusion

Summary : Optimization Under Uncertainty

( Probabilistically modeled inputs

( Propagation of uncertainties
via projection using the semi-
intrusive Stochastic Galerkin
method

( Reuse of deterministic forward
analysis and adjoint capabilities

( Canadarm optimization under
uncertain payloads
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Section 4

Conclusion
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Mathematical Framework and Applications

optimizing
aeromechanical

systems
∈

{(1)⊗(2)⊗(3)}

(1)
temporal
physical
analysis

(2)
temporal

uncertainty
analysis

(3)
temporal
sensitivity
analysis

derivatives of probabilistic moments
of functions of interest

probabilistic moments
of functions of interest

functions of interest

Mathematical framework

Rotorcraft design application

Canadarm design application
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Computational Framework for UQ-OUU : Open Source Packages

TACS

Probabilistic Space
(PSPACE)

Stochastic TACS
(STACS)

stochastic finite elements, functions

probabilistic quadrature and basis

deterministic finite elements, functions

Deterministic Element Library

Stochastic Galerkin Plugin

«interface»
Element

Add Residual and Jacobian
Add Residual State Variable Sensitivity
Add Residual Design Variable Sensitivity

RevoluteConstraint

Add Residual and Jacobian
Add Residual State Variable Sensitivity
Add Residual Design Variable Sensitivity

BeamElement

Add Residual and Jacobian
Add Residual State Variable Sensitivity
Add Residual Design Variable Sensitivity

Actuator

Add Residual and Jacobian
Add Residual State Variable Sensitivity
Add Residual Design Variable Sensitivity

ProbabilisticSpace

Add Random Parameter
Get Quadarature Points and Weight
Evaluate Orthonormal Basis

StochasticElement

Add Residual and Jacobian
Add Residual State Variable Sensitivity
Add Residual Design Variable Sensitivity

uses

uses

uses

use
s

1 TACS finite element framework https://github.com/gjkennedy/tacs

2 Probabilistic Space PSPACE https://github.com/komahanb/pspace

3 Stochastic TACS framework STACS https://github.com/komahanb/stacs
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Fundamental Contributions

Enhanced Implicit Solution of DAEs

Implicit solution of initial value problems in natural descrip-
tor representation (second order form)

R(t, u(t), u̇(t), ü(t))

=

0

Generalized-α

Runge–Kutta

BDF

ABM

DIRK

Generalized Adjoint Derivatives

Discrete adjoint sensitivity formulations for implicit BDF,
ABM, DIRK and Newmark methods for abstract governing
equations and functions of interest

λk

ψk φk

1h

h

qk+1

qk

q̇k+1

q̈k

q̈k+1
1

βh2
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q̇k
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γ
)h
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q̈k
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1

βh2

h

q̇k+1

q̈k

q̈k+1

q̇k
γh

1

(1 −
γ
)h

q̈k

qk+1

qk

q̇k+1

q̈k

q̈k+1
1

βh2

h

q̇k+1

q̈k

q̈k+1

q̇k
γh

1

(1 −
γ
)h

Sk

Fk

1−2β

2

h
2

1−2β

2

h
2

1−2β

2

h
2

L

Rk

Tk

Novel Uncertainty Propagation Method

Semi-intrusive uncertainty propagation and adjoint sensitiv-
ity analysis using the stochastic Galerkin projection method
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Design Under Uncertainty Framework

Unified framework featuring temporal analysis of physics,
adjoint sensitivities and uncertainty quantification

optimizing
aeromechanical

systems
∈

{(1)⊗(2)⊗(3)}

(1)
temporal
physical
analysis

(2)
temporal

uncertainty
analysis

(3)
temporal
sensitivity
analysis

derivatives of probabilistic moments
of functions of interest

probabilistic moments
of functions of interest

functions of interest
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Applied Contributions

Rotorcraft Design Application

• Rotorcraft hub model with full con-
trol chain included in analysis

Canadarm Design Application

• Flexible remote manipulator with
uncertain payload masses

Architecture and Implementation

• Modular extensible time dependent
adjoint framework

• Stochastic implementations from
deterministic implementations

Adjoint Implementation

«interface»
Assembler

functions : Function
elements : Element

1. Product of Adjoint and Residual State Variable Sensitivity
2. Function State Variable Sensitivity
3. Product of Adjoint and Residual Design Variable Sensitivity
4. Function Design Variable Sensitivity

«interface»
Integrator

assembler : Assembler

1. Evaluate Adjoint
2. Evaluate Total Derivative

«interface»
Function

1. Add Function State Variable Sensitivity
2. Add Function Design Variable Sensitivity

«interface»
Element

1. Add Residual State Variable Sensitivity
2. Add Residual Design Variable Sensitivity

has
1

has
1..* has

1..*
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⟨
F (y , u(y))
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⟩
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